Помощь в написании студенческих работ
Антистрессовый сервис

Метод прочностного расчета канатных грейферов при зачерпывании сыпучих грузов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Можно вывести формулу для определения напряжений со стороны сыпучей среды для вертикального внедрения плоского индентора с учетом скорости внедрения, если решить систему дифференциальных уравнений равновесия сплошной среды при плоской деформации и критерия текучести сыпучей среды Ш. Кулона, с учётом зависимости от скорости по А. Б. Филякову. Эта задача была частично решена Л. Прантдлем и… Читать ещё >

Метод прочностного расчета канатных грейферов при зачерпывании сыпучих грузов (реферат, курсовая, диплом, контрольная)

Содержание

  • Перечень сокращений
  • 1. Существующие теоретические подходы к расчёту грейферов
    • 1. 1. Основные положения механики грунтов и сыпучей среды
    • 1. 2. Работы по теории резания грунтов и зачерпыванию навалочных грузов перегрузочными рабочими органами
    • 1. 3. Влияние скорости зачерпывания на сопротивление внедрению рабочих органов в насыпной груз и грунт
    • 1. 4. Процесс внедрения в насыпной груз ковшовых органов
    • 1. 5. Процесс зачерпывания грейфером сыпучего груза
    • 1. 6. Современное состояние проблемы прочности грейферов
    • 1. 7. О системном подходе к анализу грейферов
    • 1. 8. Выводы по главе
  • 2. Теоретические основы взаимодействия челюстей грейфера с сыпучей средой
    • 2. 1. Напряжённое состояние в сыпучей среде
      • 2. 1. 1. Общие замечания
      • 2. 1. 2. Критерий текучести
      • 2. 1. 3. Дифференциальные уравнения равновесия идеально сыпучей среды
      • 2. 1. 4. Примеры определения направлений сдвига
      • 2. 1. 5. Исследование системы определяющих уравнений статики сыпучей среды
        • 2. 1. 5. 1. Сведение трёх уравнений к двум
        • 2. 1. 5. 2. Определение уравнений характеристик
        • 2. 1. 5. 3. Изменение гидростатического компонента напряжения s и угла 0 отклонения линии скольжения первого семейства от вертикали вдоль характеристик
        • 2. 1. 5. 4. Характеристические координаты
        • 2. 1. 5. 5. Приведение системы ДУЧП к каноническому виду
        • 2. 1. 5. 6. Приведение системы ДУЧП к каноническому и линейному виду
        • 2. 1. 5. 7. Случаи нулевого якобиана А
        • 2. 1. 5. 7. 1. Случай прямых характеристик 1-го семейства
        • 2. 1. 5. 7. 2. Случай прямых характеристик 2-го семейства
        • 2. 1. 5. 7. 3. Случай прямых характеристик и 1-го, и 2-го семейств
      • 2. 1. 6. Пластическое течение в сыпучей среде при вертикальном внедрении плоского индентора
      • 2. 1. 7. Дальнейшее развитие задачи о внедрении индентора в сыпучую среду
    • 2. 2. Нагрузки и расчётные случаи нагружения
      • 2. 2. 1. Общие замечания
      • 2. 2. 2. Сопротивления при первоначальном внедрении грейфера в штабель сыпучего груза
      • 2. 2. 3. Сопротивления зачерпыванию сыпучего груза в процессе смыкания челюстей
      • 2. 2. 4. Результаты решения математической модели движения грейфера при смыкании челюстей
      • 2. 2. 5. Физический смысл неопределённых множителей
      • 2. 2. 6. Определение сопротивлений зачерпыванию по заданному усилию в замыкающем канате
      • 2. 2. 7. Случаи нерегулярного нагружения
    • 2. 3. Выводы по главе
  • 3. Движение грейфера при смыкании челюстей
  • 3. Л. Общие замечания
    • 3. 2. Анализ движения механизмов с использованием неопределённых множителей
    • 3. 3. Движение челюсти грейфера
    • 3. 4. Прямолинейное движение верхней траверсы
    • 3. 5. Движение тяги
    • 3. 6. Прямолинейное движение нижней траверсы
    • 3. 7. Приведение масс и сил, действующих на замыкающую лебёдку, к её- барабану
    • 3. 8. Анализ кинематики грейферного полиспаста
    • 3. 9. Математическая модель движения грейфера
    • 3. 10. Расчёт положения грейферного механизма
    • 3. 11. Определение скоростей
    • 3. 12. Алгоритм численного интегрирования уравнений движения
    • 3. 13. Имитационное моделирование движения грейфера
      • 3. 13. 1. Об имитационном моделировании в ADAMS
      • 3. 13. 2. Расчётная схема грейфера как механизма в ADAMS
      • 3. 13. 3. Сравнение результатов
      • 3. 13. 4. Выводы по главе
  • 4. Моделирование напряжённого состояния несущих элементов грейферов
    • 4. 1. Особенности метода конечных элементов
    • 4. 2. Основания для выбора тетраэдра
    • 4. 3. Характеристики тетраэдрального элемента
      • 4. 3. 1. Основные соотношения теории упругости
      • 4. 3. 2. Тетраэдральные координаты
      • 4. 3. 3. Линейное поле перемещений
      • 4. 3. 4. Реализация метода Галёркина
    • 4. 4. Триангуляция
    • 4. 5. Перенумерация узлов
    • 4. 6. Ошибки метода конечных элементов
    • 4. 7. Ансамблирование
    • 4. 8. Решение системы линейных алгебраических уравнений
    • 4. 9. Расчёт челюсти на прочность
    • 4. 10. Расчёт нижней траверсы на прочность
    • 4. 11. Расчёт тяги на прочность
    • 4. 12. Расчёт верхней траверсы на прочность
    • 4. 13. Методика силового и прочностного расчёта двухчелюстных грейферов при зачерпывании сыпучего груза
    • 4. 14. Выводы по главе
  • 5. Экспериментальное исследование напряжённого состояния челюсти грейфера
    • 5. 1. Общие замечания
    • 5. 2. Обзор методов электротензометрирования
    • 5. 3. Описание тензостанции
    • 5. 4. Описание работы измерительного комплекса
    • 5. 5. Рекомендации к проектированию и изготовлению аналогичных комплексов
    • 5. 6. Описание проведения эксперимента
    • 5. 7. Результаты измерений
    • 5. 8. Выводы по главе

Актуальность исследования. Одним из наиболее трудоёмких процессов перевалки грузов с одного вида транспорта на другой является перегрузка навалочных грузов, осуществляемая с помощью грейферов различных типов. Канатные грейферы, таким образом, нашли широкое применение в различных отраслях «реального сектора» экономики: на водном и железнодорожном транспорте, при строительстве, в производстве строительных материалов и т. д. Наиболее широко грейферы используются в портах.

Грейферные краны и перегружатели до настоящего времени остаются основным средством перевалки сыпучих грузов в промышленности, сельском хозяйстве и на транспорте. [Ясиновскгш, 1995]. Обязательным условием высокопроизводительной работы подобного оборудования является оснащение его грейферами, обладающими достаточной прочностью, надёжностью и зачерпывающей способностью. Грузоподъёмное оборудование, укомплектованное такими грейферами, резко выигрывает в покупательном спросе.

Путями повышения производительности портовых перегрузочных машин на операциях с навалочными грузами являются: снижение веса канатных грейферов, создание более рациональной системы их планово-предупредительного ремонта за счёт более точного прогнозирования отказов, а также более точное определение зачерпывающей способности. Все они являются взаимосвязанными. Основой для реализации первых двух из вышеуказанных путей является анализ динамики и прочности элементов металлоконструкций грейферов.

На водном транспорте грейферы подвержены особенно значительным разрушающим воздействиям. Потребность в увеличении ё-мкости грейферов с лучшим соотношением между массой конструкции и зачерпываемого материала без ущерба для надёжности повышает значимость таких факторов, как прочность и жёсткость. Решение подобных задач требует проведения широкого комплекса теоретических и экспериментальных исследований динамических характеристик и напряженно-деформированного состояния (НДС) конструктивных элементов грейферов.

Решение подобных задач требует проведения широкого комплекса теоретических и экспериментальных исследований силовых характеристик и напряженно-деформированного состояния (НДС) конструктивных элементов грейферов.

Актуальность темы

определяется практической необходимостью дальнейшего совершенствования теоретических основ нормативных документов РД 31.46.07−87 «Грейферы канатные для навалочных грузов. Типовые расчёты на прочность. Методика» и ГОСТ 24 599–87 «Грейферы канатные для навалочных грузов. Общие технические условия» в направлении создания методов силового и прочностного расчётов грейферов, учитывающих действительный характер взаимодействия зачерпываемого материала, привода и несущих элементов грейфера.

Имеется потребность в создании метода расчета, учитывающего реальный характер взаимодействия элементов «кран — грейфер» и «грейфер — навалочный груз», последнее из которых является существенно нелинейным.

Несущие элементовы грейфера — челюсти, тяги и траверсы — являются сложными пространственными конструкциями переменной жёсткости. Для их расчёта на прочность аналитических решений не существует. Рассчитывать их представляется возможным лишь численно. Наиболее универсальным на сегодняшний день численным методом расчёта является метод конечных элементов.

Для разработки математической модели напряжённого и деформированного состояния несущих элементов грейфера (в том числе, — и на основе метода конечных элементов) необходимы достоверные значения реакций в кинематических парах грейферного механизма: нужно выполнить силовой расчёт грейфера как механической системы. Широко распространённые в теории механизмов и машин графические методы силового расчёта механизмов являются весьма приближёнными. Поэтому имеет смысл разработать математическую модель движения грейферного механизма при зачерпывании на основе численных методов с последующим определением реакций в кинематических парах.

Для силового расчёта нужно знать нагрузки на челюсти грейфера от их взаимодействия с сыпучей средой.

Процессы, происходящие в сыпучей среде при зачерпывании, являются существенно нелинейными. Математическая модель пластического течения сыпучей среды разработана достаточно подробно: сыпучая среда ведёт себя как идеально пластическая среда с пределом текучести, зависящим от среднего гидростатического напряжения. Однако до сих пор решено весьма ограниченное число задач, связанных с взаимодействием инденторов с сыпучей средой.

Объект исследования: длиннозвеньевой (штанговый) канатный грейфер, взаимодействующий с сыпучей средой и приводом.

Предметы исследования: напряжённое состояние в сыпучей среде, кинематические и силовые параметры грейферного механизма и напряжённо-деформированное состояние несущих элементов штангового канатного грейфера при зачерпывании сыпучего груза.

Основная научная идея работы.

Используя современные компьютерные программы (существующие и разработанные автором), можно разработать метод и методику силового и прочностного расчёта грейфера не на базе обширных экспериментальных исследований и эмпирических зависимостей, а путём решения фундаментальных законов механики. При этом:

0) Рассматривая движение боковин и днища челюстей в сыпучей среде как геометрическую сумму двух движений: внедрения и сдвига, — можно свести определение сопротивлений зачерпыванию челюстями к более простым задачам: вертикальному внедрению и горизонтальному сдвигу плоского индентора.

1) Можно вывести формулу для определения напряжений со стороны сыпучей среды для вертикального внедрения плоского индентора с учетом скорости внедрения, если решить систему дифференциальных уравнений равновесия сплошной среды при плоской деформации и критерия текучести сыпучей среды Ш. Кулона, с учётом зависимости от скорости по А. Б. Филякову. Эта задача была частично решена Л. Прантдлем и Г. Рёйсснером для грунта: ими получена только часть сетки характеристик при вдавливании, и их формула (для торцевого давления) не учитывает скорость;

2) чтобы применить формулы, описывающие внедрение плоского инден-тора, к челюстям грейфера, можно воспользоваться поэлементным сложением сопротивлений по Р. Л. Зенкову, позволяющим приложить нагрузку со стороны среды распределенно (что важно для прочностного расчета), в отличие от методики А. М. Ясиновского (принятой в РД), где нагрузки не учитывают свойств среды и приложены в точке;

3) Имеет смысл выполнить силовой расчет системы «привод — грейфер» (как механизма), приложив к челюстям главный вектор и главный момент сил сопротивления зачерпыванию, а к барабану замыкающей лебёдки — нелинейно зависящий от угловой скорости момент движущих сил. Для компьютерной реализуемости и универсальности можно записать эти дифференциальные уравнения в матричном виде. Тогда появится возможность рассчитывать другие типы двухчелюстных грейферов (клещевой, подгребающий), не меняя вида уравнений. В отличие от подхода Б. А. Таубера, в котором при силовом расчёте рассматривается только челюсть (отдельно) и принимаются эмпирические соотношения между неизвестными реакциями, такой подход должен оказаться точнее, так как будет свободен от ряда допущений;

4) Компьютерная реализация метода конечных элементов способна определять НДС несущих элементов грейфера как пространственных конструкций, не разбивая их на части, что должно существенно повысить точность прочностного расчёта.

Учитывая всё- вышеуказанное, примем в качестве цели исследования повышение прочности грейферов путём совершенствования метода прочностного расчёта их несущих элементов в процессе зачерпывания с учётом свойств сыпучей среды, скорости зачерпывания, нелинейности электропривода, пространственного нагружения несущих элементов и их конструктивных особенностей. Для этого нужно решить следующие задачи:

1. Анализ пластического течения сыпучей среды при внедрении в неё- плоского индентора. Уточнение формул Р. Л. Зенкова и А. Б. Филякова для определения торцевого и бокового давлений на индентор.

2. Определение распределённых по днищам и боковинам челюстей нагрузок от взаимодействия с сыпучей средой (сопротивлений зачерпыванию). Разработка компьютерной программы «Resistance» для автоматизации расчёта сопротивлений.

3. Создание и решение математической модели движения грейферного механизма для определения реакций в кинематических парах (силовой расчёт грейферного механизма). Разработка компьютерной программы «Movement» для автоматизации силового расчёта.

4. Анализ напряжённого и деформированного состояния несущих элементов грейфера (челюстей, тяг и траверс) на основе МКЭ, с учётом результатов задач (2) и (3).

5. Экспериментальная проверка теоретических результатов исследования.

Для решения поставленных задач были использованы следующие методы:

1. При исследовании определяющих уравнений пластического течения идеально сыпучей среды и для решения задачи о вертикальном внедрении плоского индентора в сыпучую среду были использованы теоретические методы математической физики, разработанные А. Пуанкаре, Р. Курантом и Д. Гильбертом, а также методы теории сыпучей среды [.Гениев и Эстрин, 1972, Филяков, 1972, 2004; Таубер, 1957; Соколовский, 1960].

2. Для разработки и реализации математической модели движения грейферного механизма были использованы метод множителей Ж.-Л.Лагранжа [Малиновский, 1980], методы линейного программирования [Форсайт, Мал-кольм, Моулер, 1980], метод Холецкого для решения систем линейных алгебраических уравнений, модификация метода линейного ускорения для интегрирования системы дифференциально-алгебраических уравнений [.Клаф Р., Пен-зиенДж., 1979; Гир, 1970; Гир и Кеврекидис, 2001].

3. Для реализации математической модели напряжённого и деформированного состояния несущих элементов грейфера были использованы следующие методы: линейной алгебры, взвешенных невязок Галёркина и конечных элементов [Зенкевич, 2000].

4. При проектировании и изготовлении измерительного комплекса были использованы методы аналоговой и цифровой электроники и схемотехники [Хоровиц иХилл, 1998].

Силы сопротивления движению грейфера при его броске на штабель с грузом, а также при смыкании челюстей в материале, определялись в разработанной в среде пакета «Maple» автором программе (см. Приложение 1) Resistance. Для анализа движения грейфера как механизма была использована разработанная автором в среде пакета «Maple» программа (см. Приложение 2) Movement. Для верификации заложенных в эту программу алгоритмов была построена имитационная модель грейферного механизма в программном комплексе «ADAMS».

Анализ напряжённого и деформированного состояния элементов грейфера (челюстей, траверс и тяг) был выполнен на основе метода конечных элементов с использованием 4-узлового тетраэдрального конечного элемента в программном комплексе «Cosmos Works» фирмы «Structural Research Inc.».

Научные положения, защищаемые автором:

1. Математическая модель взаимодействия челюстей грейфера с сыпучей средой, учитывающая физико-механические свойства сыпучей среды и скорость грейфирования, на основе пластического течения идеально сыпучей среды при внедрении в неё- плоского индентора и поэлементного сложения сопротивлений.

2. Математическая модель движения грейферного механизма при зачерпывании, учитывающая нелинейность механической характеристики двигателя и зависимость сопротивлений зачерпыванию от скорости.

3. Алгоритм прямого численного интегрирования системы нелинейных дифференциально-алгебраических уравнений движения грейферного механизма.

4. Метод конечноэлементного расчёта НДС несущих элементов грейфера как пространственных конструкций, взаимодействующих между собой, являющихся составными частями механической системы «привод — грейфер — сыпучая среда», и нагруженных распределёнными нагрузками от взаимодействия с сыпучей средой.

Научная новизна работы.

Результаты исследований по совокупности составляют решение проблемы прочности грейферов. Получены следующие новые научные решения:

1. Предложено использовать модифицированную (с учётом скорости внедрения) автором формулу Л. Прандтля — Г. Рёйсснера для определения торцевого давления на плоский индентор, которая точнее аналогичной формулы Р. Л. Зенкова на 51%. Выведена новая формула для определения бокового давления на плоский индентор, которая на 40% точнее, чем аналогичная формула Р. Л. Зенкова. Это даёт возможность значительно уточнить расчёт сопротивлений, возникающих при зачерпывании.

2. Разработана и реализована математическая модель движения («больших перемещений») грейферного механизма при смыкании челюстей, обладающая универсальностью, учитывающая нелинейность механической характеристики электродвигателя и зависимость сопротивлений зачерпыванию от скорости грейфирования, что позволяет определять кинематические и силовые параметры грейферного механизма и в периоды неустановившегося движения: например, — при пуске и остановке двигателя.

3. Разработанный автором алгоритм прямого численного интегрирования системы дифференциально-алгебраических уравнений движения грейферного механизма способен, в отличие от известных методов, учесть геометрическую нелинейность больших перемещений.

4. На основе МКЭ с использованием 4-узлового тетраэдра впервые разработан и реализован метод расчёта НДС несущих элементов грейфера как пространственных конструкций, учитывающий линейный характер распределения нагрузок на элементы челюсти от взаимодействия с сыпучей средой.

Теоретическая значимость работы.

В работе введены и реализованы специфические расчётные приёмы, построенные целиком на возможностях машинного анализа. Поэтому при решении поставленных задач были сняты все ограничения, связанные со сложностью (большой размерностью) используемых методов. Реализованные методы позволят, при необходимости, без существенной переработки вносить изменения и дополнения в расчётную схему грейферного механизма и в расчётные схемы несущих элементов грейфера. Математические модели при этом не изменятся качественно: изменится лишь их размерность.

В частности, можно добавить грейферному механизму ещё- одну степень свободы (учтя, скажем, упругость замыкающего каната), а конечноэлементную сетку несущих элементов — сгустить. Разрабатывать новые алгоритмы при этом не придётся.

Реализовав разработанные здесь математические модели (движения грейферного механизма и НДС несущих элементов грейфера) на основе предложенных методов, можно выполнить аналогичные исследования для клещевого и подгребающего грейферов.

Практическая значимость работы:

1. С использованием метода поэлементного сложения сопротивлений (по Р.Л.Зенкову) создана компьютерная программа «Resistance» для определения нагрузок на челюсти грейфера от сопротивлений при зачерпывании.

2. Создана программа «Movement» для автоматизированного определения параметров движения грейферного механизма при зачерпывании, в том числе и для определения реакций в кинематических парах.

3. Разработанная методика расчёта НДС несущих элементов грейфера позволяет получить действительные эпюры распределения напряжений в них на этапе проектирования с целью расчётного обоснования принимаемых конструктивных решений. В частности, по результатам прочностного расчёта челюсти рассматриваемого здесь грейфера, были приняты конструктивные решения, снизившие расчётные максимальные напряжения при зачерпывании на 40%, и повысившие жёсткость челюсти на 110%.

4. Разработан измерительный комплекс, обеспечивающий одновременную запись показаний от 17-ти тензорезисторов с частотой 1 кГц в персональный компьютер. Комплекс может быть использован при исследовании прочности. Программы Resistance и Movement доведены до состояния, позволяющего применять их в инженерной практике.

Реализация результатов работы.

Результаты исследования были внедрены на предприятии ООО ПФ «ВТС-Порт», г. Астрахань, где рассматриваемая методика расчёта была использована для расчётного обоснования ремонта грейфера пр. 2587 ё-мкостью 4,5 м³ для песка с целью увеличения его наработки до отказа.

Полученные картины НДС челюстей, траверс и тяг были использованы в курсах лекций «Строительные машины» и «Портовые грузоподъёмные машины и машины безрельсового транспорта» (ГПМ). Программы «Resistance» и «Movement» были использованы при выполнении спецраздела дипломного проекта по специальности 190 602.65 «Эксплуатация перегрузочного оборудования портов и транспортных терминалов».

Степень достоверности результатов проведённых исследований подтверждается адекватностью используемых математических моделей, апробированными методами исследования, использованием современных информационных технологий при вычислениях и при экспериментальных измерениях. Силы сопротивления, определённые по предложенной автором методике (в программе «Resistance»), были сопоставлены с экспериментами А. Б. Филякова по определению сил сопротивления для такого же грейфера (расхождение — 4%). Адекватность математической модели движения грейфера как механизма (при зачерпывании, в программе «Movement») была проверена сравнением результатов её- решения с результатами имитационного моделирования грейфера как механизма в известном программном комплексе «ADAMS» (максимальное расхождение — 10%). Результат последовательного решения трёх математических моделей (напряжённого состояния сыпучей среды, движения грейфера и напряжённого и деформированного состояния элементов грейфера на основе МКЭ) был сопоставлен с результатами физического эксперимента (расхождение около 11%). Выбор типа конечного элемента (тетраэдр) обоснован сравнением результатов расчётов МКЭ с известными аналитическими решениями. Степень сгущения конечно-элементной сетки определялась путем оценки точности вычислений и скорости сходимости численных экспериментов.

Апробация результатов исследования. Основные результаты работы изложены в 12-ти публикациях, в том числе в двух — в изданиях, входящих в перечень ВАК России.

Результаты были доложены и одобрены на: научно-технической конференции профессорско-преподавательского состава, посвящённой 70-летию АГТУ (Астрахань, 2001 г.);

Межрегиональной научно-практической конференции «Научные разработки учёных — решению социально-экономических задач Астраханской области» (Астрахань, 5−6 июня 2001 г.) — научной конференции «Проблемы динамики и прочности исполнительных механизмов и машин» (Астрахань, октябрь 2002 г.);

П-рой международной научной конференции «Проблемы динамики и прочности исполнительных механизмов и машин», (Астрахань, сентябрь 2004 г.);

Ш-ей международной научной конференции «Проблемы динамики и прочности исполнительных механизмов и машин», (Астрахань, 10—16 сентября 2007 г.) — на 44 — 53 ежегодных научных конференциях профессорско-преподавательского состава Астраханского государственного технического университета. семинаре «Механика и математика» кафедры «Подъёмно-транспортные машины» АГТУ.

Структура и объем работы. Диссертационная работа состоит из введения, 5-ти глав, заключения, списка литературы (составляющего 97 наименований) и 6-ти приложений, изложенных на 350 страницах машинописного текста, содержит 154 иллюстрации и 3 таблицы.

5.8. Выводы по главе.

1. Спроектирован и изготовлен комплекс по измерению деформаций в машиностроительных конструкциях (КИД), состоящий из компьютера, АЦП, тензостанции и тензорозеток.

2. С помощью этого комплекса были измерены эквивалентные напряжения в четырёх точках челюсти экспериментального грейфера в течение всего периода зачерпывания. Расхождение между экспериментальными и теоретическими напряжениями в конце зачерпывания составило в среднем около 11%.

3. С помощью комплекса КИД и кольцевого электротензометрического динамометра КЭД было выполнено взвешивание гружёного и порожнего грейфера. Результаты взвешивания были использованы в качестве исходных данных для математической модели движения грейфера (при зачерпывании и при броске грейфера на штабель с грузом).

4. Значительное расхождение экспериментального и теоретического напряжений в точке № 2 объяснятся резким изменением жёсткости пояса в рассматриваемом месте и резким изменением напряжённого состояния по длине тензорозетки.

5. Результаты физической верификации позволяют утверждать, что методика определения сопротивлений зачерпыванию, математическая модель движения грейфера и математическая модель напряжённого состояния несущих структур грейфера с достаточной для инженерной практики точностью отражают реальность.

ЗАКЛЮЧЕНИЕ

.

В диссертационной работе дано решение важной научно-технической задачи: разработан, научно обоснован и апробирован на практике уточнённый метод прочностного расчёта канатных грейферов при зачерпывании сыпучих грузов, который позволяет учитывать скорость зачерпывания, свойства сыпучей среды, нелинейность механической характеристики двигателя замыкающей лебёдки, геометрическую нелинейность больших перемещений и конструктивные особенности элементов грейфера.

В результате исследований получены следующие основные выводы и результаты:

1. Модифицированная формула Л. Прандтля — Г. Рёйсснера (2.61) и впервые полученная автором формула для определения бокового давления (2.63), учитывающие скорость движения индентора в сыпучей среде, дают на 51% и на 40% более точные значения торцевого и бокового давлений на вертикально внедряющийся в сыпучую среду индентор, чем «известные формулы Р. Л. Зенкова.

2. Определение силы сопротивления зачерпыванию по усилию в замыкающем канате (по А.М.Ясиновскому) не позволяет распределить эту силу между элементами челюсти грейфера (днищем и боковыми стенками), что искажает действительное распределение напрялсений в них. Поэтому предложено определять сопротивления зачерпыванию поэлементным суммированием по формулам (2.61) и (2.63).

3. Метод неопределённых множителей позволил учесть ограничения (уравнения связи) грейферного механизма и привёл к матричной форме уравнений, что позволило автоматизировать силовой расчёт грейферного механизма во всех фазах зачерпывания.

4. При исследовании движения грейферного механизма при смыкании челюстей были разработаны методы определения избыточных координат и избыточных скоростей, которые позволяют эффективно (быстро и точно) решать нелинейные задачи кинематики больших перемещений. В частности, с помощью этих методов были найдены передаточные функции грейферного механизма, необходимые для определения сопротивлений.

5. Разработаны вычислительные алгоритмы и программные средства для интегрирования системы дифференциально-алгебраических уравнений движения грейферного механизма при смыкании челюстей, позволяющие учитывать большие перемещения.

6. В результате исследования и анализа напряжённого состояния несущих элементов грейферов установлено, что их расчётные схемы, принятые в РД, являются весьма приближёнными: наибольшее расхождение результатов расчёта по РД и экспериментальных результатов для рассмотренного грейфера, — 170% (в точке 2).

7. Разработан метод расчёта напряжённого и деформированного состояния элементов грейфера (челюстей, тяг и траверс) на основе метода конечных элементов. Это позволило выполнить расчёт на прочность элементов грейфера значительно точнее, без ряда допущений, принятых в РД.

8. Результаты экспериментальной проверки показали, что методика определения сопротивлений зачерпыванию, математическая модель движения грейфера и метод определения напряжённого состояния несущих структур грейфера дают расхождение с экспериментом около 11%.

Показать весь текст

Список литературы

  1. А.З. Механика грунтов: Учебное пособие / А. З. Абуханов. — Ростов н/Д: Феникс, 2006. — 352 с. — (Строительство).
  2. Е.Я. Динамика механизмов переменной структуры. — Киев: Наукова Думка, 1988. — 182 с.
  3. Дж. Матричный анализ малых и больших перемещений в трёхмерных упругих средах. // Ракетная техника и космонавтика, 3, № 1, стр. 177−186(1965).
  4. Быдеровский С.И.. Диссертация на соискание учёной степени кандидата технических наук. — М., 1969.
  5. А.А. Подъёмно-транспортные машины. — 3-е изд. — М.: Машиностроение, 1975. — 431 с.
  6. Галлагер Ричард. Метод конечных элементов. Основы: Пер. с англ. — М.: Мир, 1984. — 428 е., ил.
  7. Р., Падлог Дж., Бейлард П. Анализ напряжений в конструкциях сложной формы, подверженных нагреву. //Ракетная техника и космонавтика, 32, № 5, стр. 52−61 (1962).
  8. Ю.Гарманов А. В. Подключение измерительных приборов. Решение вопросов электросовместимости и помехозащиты на примере продукции фирмы L-Card. Rev. 3.1.0. — М.: ЗАО «L-Card», 2003. — 41 с.
  9. А.И., Корнишин М. С. Введение в метод конечных элементов статики тонких оболочек. — Казань: Казанский физико-технический университет, 1989,-269 с.
  10. ГОСТ 24 599–87. Грейферы канатные для навалочных грузов. Общие технические условия. — М.: Изд-во стандартов. 1987. — 32 с. (рук. разработки Ясиновский A.M.).
  11. Гилл Филипп, Мюррей Уолтер, Райт Маргарет. Практическая оптимизация: Пер. с англ. — М.: Мир, 1985. — 509 е., илл. — Перевод изд.: Practical optimization /Philip E. Gill, Walter Murrey, Margaret H. Wright (1981).
  12. Д., Прагер В. Механика грунтов и пластический анализ или предельное проектирование, 1952. В кн.: Определяющие законы механики грунтов/Под ред. А. Ю. Ишлинского, Г. Г. Чёрного. — М.: Мир, 1975.
  13. В.Д. Исследование рабочих процессов ковшовых погрузочных машин: Автореф. дис.. канд. техн. наук. — Новочеркасск, 1971. — 18 с.
  14. А.Н. Физические основы теории резания грунтов. — М.: Изд-во АН СССР, 1959. —371с.
  15. Р.Л., Ивашков И.И, Колобов JT.H. Машины непрерывного транспорта. — М.: Машиностроение, 1980. — 304 с.
  16. В.К. Экспериментальное и теоретическое исследование рабочего процесса двухчелюстных грейферов при погрузке торфа и выбор их конструкции и параметров: Автореф. дис.. канд. техн. наук. — М., 1955. — 16 с.
  17. Кафа Самир Нымр. Автоматизация проектирования и исследование систем грейферного подъёма: Автореф. дис.. канд. техн. наук. — Харьков, 1977.16 с.
  18. Р., Пензиен Дж. Динамика сооружений: Перевод с англ. — М.: Стройиздат, 1979. — 320 с. — Перевод изд.: Dinamics of Structures/ Ray W. Clough, Joseph Penzien. —New York, 1975.
  19. Дж., Бреббиа К. Метод конечных элементов в механике жидкости: Пер. с англ. —Ленинград: Судостроение, 1979. — 264 е., ил.
  20. Н.Е. Векторное исчисление и начала тензорного анализа: Девятое издание. — М.: Наука, 1965. — 426 с.
  21. И.П. Теоретическое и экспериментальное исследование двух-челюстных грейферных механизмов: Автореф. дис.. докт. техн. наук. — М., 1957. —32 с.
  22. Курант Рихард, Гильберт Д. Методы математической физики. Т.1., 1937.525 с.
  23. Курант Рихард, Гильберт Д. Методы математической физики. Т.2., 1937.620 с.
  24. Курков Сергей Викторович. Метод конечных элементов в задачах динамики механизмов и приводов. — 1992.
  25. Мак C.JI. Некоторые вопросы проектирования и эксплуатации грейферов // Тр. ин-та / Одесский индустриальный институт. — Одесса, 1940, Вып. 2, № 7.1. С. 34−41.
  26. Л.И. К выводу расчётной зависимости для зачерпывающей способности грейфера // Конструирование и производство транспортных машин. Респ. межвед. научно-технический сборник. — Харьков, 1981, Вып. 13. — С. 55−59.
  27. И.В., Синелыциков А. В. Методика вывода матриц жёсткости линейно упругих объёмных конечных элементов// Вестник Астраханского государственного технического университета. — 2004. — № 1(20) — С. 40−47.
  28. И.В. Движение несвободного твёрдого тела. // Вестник Астраханского государственного технического университета. — 2006. — № 2 (31). — С. 102−108.
  29. И.В. Математическая модель движения грейфера. // Вестник Астраханского государственного технического университета. — 2006. — № 1 (30). —С. 231−238.
  30. И.В. Математическая модель движения грейфера при зачерпывании. // Вестник Астраханского государственного технического университета.2006. — № 1 (30). — С. 231 -238.
  31. Ю.И., Фуфаев Н. А. Динамика неголономных систем. — М.: Наука, 1967. 519 с.
  32. Д., де Фриз Ж. Введение в метод конечных элементов. Пер. с англ. Под ред. акад. Г. И. Марчука. — М.: Мир, 1981.
  33. С.В. Повышение эксплуатационных качеств грейферов портовых кранов: Дис.. канд. техн. наук. — М., 1989. — 317с.
  34. Ю.Н. Механика деформируемого твёрдого тела. — Учеб. пособие для ВУЗов. — 2-е изд., испр. — М.: Наука. Гл. ред. физ.-мат. лит., 1988. — 712 с.
  35. Расчёт и проектирование строительных и дорожных машин на ЭВМ/ Под ред. Е. Ю. Малиновского. — М.: Машиностроение, 1980. 216 с., ил.
  36. РД 31.46.07−87. Грейферы канатные для навалочных грузов. Типовые расчёты на прочность. Методика. — М.: В/О «Мортехинформреклама», 1987. 32 с. (рук. разработки Ясиновский A.M.).
  37. П. Дж. Вычислительная гидродинамика: Пер. с англ. под ред. Я. И. Чушкина. — М.: Мир, 1980. — 612 е., ил.
  38. .П. Исследование работы моторного грейфера: Автореф. дис.. каид. техн. наук. — М., 1956. — 16 с.
  39. А.В. Триангуляция Делоне и её- применение. — Томск: Изд-во Томского университета, 2002. — 128 с.
  40. .М. Влияние скорости грейфирования и переменной массы материала на зачерпывающую способность двухканатного грейфера: Дис.. канд. техн. наук. — Астрахань, 1990. — 158 с.
  41. А.С. Разработка основ расчёта и конструирования рабочих органов подъёмно-транспортных машин, подвергающих сыпучий материал объёмному сжатию: Дисс.. докт. техн. наук. — Нижний Новгород, 1991. — 392 с.
  42. В.Г. Вопросы теории, расчёта и пути повышения производительности перегрузочных грейферных установок: Дис.. канд. техн. наук. — Л., 1975. — 192 с.
  43. Г., Фикс Д. Теория метода конечных элементов. — М.:Мир, 1977. — 350 с.
  44. .А. Грейферные механизмы. 2-е изд. — М.: Машиностроение, 1967, —430с.
  45. .А. Основы теории грейферных механизмов // Вестник машиностроения. — 1957, № 10. — С. 29−35.
  46. .А. Структурное исследование грейферных механизмов // Тр. ин-та / Московский лесотехнический институт. — 1957, Вып. 7. — С. 24−31.
  47. Устройства для мобильных систем Е14−440. Внешний модуль АЦП/ЦАП/ТТЛ на шину USB 1.1 Руководство пользователя. — М.: ЗАО «Л-Кард», 2005. — 24 с.
  48. А.Б. Исследование процесса зачерпывания двухканатным грейфером насыпных грузов: Диссертация на соискание учёной степени кандидата технических наук. — Астрахань, 1972.— 182 с.
  49. А.Б. Развитие научных основ взаимодействия рабочих органов перегрузочных машин с насыпными грузами: Диссертация на соискание учёной степени доктора технических наук. — Астрахань, 2004.— 411 с.
  50. А.Б., Михайлов И. В. Обзор методов расчёта на прочность двух-челюстных грейферов // Материалы международной научно-технической конференции, посвящённой 70-летию АГТУ. В 3-х томах, Т. 3. — Астрахань, 2001.1. С. 156−157.
  51. Дж., Малкольм М., Моулер К. Машинные методы математических вычислений. Пер. с англ. Х. Д. Икрамова. — М.: Мир, 1980.
  52. Г. Ш. Исследование ходового привода с асинхронными двигателями ковшовых погрузочных машин. Автореф. дисс.. канд. техн. наук. — Новочеркасск, 1965. 23 с.
  53. П., Хилл У. Искусство схемотехники: В 3-х томах: Т.1. Пер. с англ. — 4-е изд., перераб. и доп. — М.: Мир, 1993. — 413 с., ил.
  54. П., Хилл У. Искусство схемотехники: В 3-х томах: Т.2. Пер. с англ. — 4-е изд., перераб. и доп. — М.: Мир, 1993. — 413 е., ил.
  55. П., Хилл У. Искусство схемотехники: & 3-х томах: Т. З. Пер. с англ. — 4-е изд., перераб. и доп. — М.: Мир, 1993. — 413 е., ил.
  56. С.А. Плоская задача математической теории пластичности при внешних силах, заданных на замкнутом контуре. 1936. В кн.: Христианович С. А. Механика сплошной среды. — М.: Наука, 1981. — 485 с.
  57. Н.А. Механика грунтов (краткий курс). 4-е изд., перераб. и доп.
  58. М.: Высшая школа, 1983. — 288 с.
  59. Н.А. Исследование зачерпывающей способности грейферных механизмов: Дисс.. канд. техн. наук. — Ворошиловград, 1976. — 178 с.
  60. A.M. Вопросы силового и прочностного расчёта длинно-звеньевых двухчелюстных канатных грейферов: Автореферат диссертации на соискание учёной степени кандидата технических наук. — Одесса, 1970.
  61. A.M. К методике прочностного расчёта элементов челюстей канатных грейферов // Сб. «Детали машин и подъёмно-транспортные машины».
  62. Киев: Техника, 1966, Вып. 6 — С. 82−88.
  63. A.M. Конечноэлементные модели канатных грейферных систем для навалочных грузов// Вюник Одеського Державного Морського ушверситету. Одеса «Астропринт», изд. ОДМУ 4/1999. С. 47−50 (ОДМУ).
  64. Bethman. Die Hebezeuge, Berechmung und Konstruktion derElemente, Flan-schenztige, Winden und Krane. Braunschweig, Vieweg, 1920.
  65. Dinglinger E. Voer den Crabeviderstand. Diss. Tehn/ Hochscbule, Hannover, 1937, auch Fordertahn, Bd 22 (1920).
  66. Dub. Der Kranbau. — Wittenberg, 1922.
  67. C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 1971.
  68. C.W.Gear, Ioannis G.Kevrekidis. Telescopic Projective Methods for Stiff Differential Equations. — 2001.
  69. Kammerer. Versuche mit Selbstgreifem. ZVD I, Band 56, 1912, № 16.
  70. Hellkotter W. Motorgreifer fur Mull «Fordern und Heben». — 1972, № 8.
  71. Meierr К. Untersuchugen liber der Fiillungsvorgang von Greifern bei Ver-suchen in Sand «Deutsche Hele — und Fordertechnik». — 1962, № 9.
  72. Ninelt. Uber Kraft und Arbeitsver-bellung an Greifern, besonders in Motor-greifern. — «Fordertechnik», 1927.
  73. Niemann. Neue Erkenntnisse im Greiferban. — VDI, 1935.
  74. Pfahl. Krafteverteilung und Greifen bei Selbetgreifen. — VDJ, 1912.
  75. Rathje. Uber den Schnittergang in Sande Dissertotion. — VDI, H.350, 1931.
  76. Reissner H. Zum Erddruckproblem. Proceedings of the First international congress for applied mechanics. — Delft, 1925.
  77. Salomon. Neuere Bagger und Erdgrabemaschinen, ZVDI, 1886−1887.
  78. Zienkiewitcz O.C., Taylor R.L. The Finite Element Method. Fifth Edition. Volume 1: The Basics. — Oxford-Auckland-Boston-Johannesburg-Melburn-New Delhi: Butterworth-Heinemann, 2000. — 707 p.
  79. Zienkiewitcz O.C., Taylor R.L. The Finite Element Method. Fifth Edition. Volume 2: Solid Mechanics. — Oxford-Auckland-Boston-Johannesburg-Melburn-New Delhi: Butterworth-Heinemann, 2000. — 479 p.
  80. Zienkiewitcz O.C., Taylor R.L. The Finite Element Method. Fifth Edition. Volume 3: Fluid Dinamics. — Oxford-Auckland-Boston-Johannesburg-Melburn-New Delhi: Butterworth-Heinemann, 2000. — 348 p.251
Заполнить форму текущей работой