Нагрев и релаксация электронов в зоне проводимости диэлектрика при облучении фемтосекундными лазерными импульсами
Диссертация
В четвертой главе исследуется релаксация по энергии нагретых электронов в диэлектрике с учетом их движения из глубины к поверхности. Вначале анализируются релаксационные процессы и обосновываются допущения и приближения. Далее строится модель релаксации нагретых электронов по энергии с учетом вторичных процессов. Приведены расчеты релаксации для алмаза. Также приводятся результаты расчета… Читать ещё >
Список литературы
- L. Jiang, H.L. Tsai «A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics» J. Appl. Phys. 104, 9 3101(2008)
- D. P. Korflatis, K. A. Thoma and J. C. Vardaxoglou «Conditions for femtosecond laser melting of silicon» J. Phys. D: Appl. Phys. 40, 6803−6808 (2007)
- J. Bonse, S. Baudach, J. Kriiger, W. Kautek, M. Lenzner, «Femtosecond laser ablation of silicon-modification thresholds and morphology» Appl. Phys. A 74, 19−25 (2002)
- N. Barsch, K. Korber, A. Ostendorf, K.H. Tonshoff, «Ablation and cutting of planar silicon devices using femtosecond laser pulses» Appl. Phys. A 77, 237−242 (2003)
- С. Li, X. Shi, J. Si, F. Chen, T. Chen, Y. Zhang, X. Hou, «Photoinduced multiple microchannels inside silicon produced by a femtosecond laser» Appl Phys В 98: 377−381 (2010)0
- Hyung Sub Sim, Seong Hyuk Lee, Kwan Gu Kang, «Femtosecond pulse laser interactions with thin silicon films and crater formation considering optical phonons and wave interference» Microsyst Technol 14:1439−1446 (2008)
- Келдыш JI. В., «Ионизация в поле сильной электромагнитной волны» ЖЭТФ 47 5(11) (1964)
- V. Е. Gruzdev «Photoionization rate in wide band-gap crystals» Phys. Rev. В 75, 20 5106(2007)
- D. von der Linde and H. Schiiller, «Breakdown threshold and plasma formation in femtosecond laser-solid interaction», J. Opt. Soc. Am. В 13 (1), 216 (1996)1 О
- R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, «Coulomb explosion in ultrashort pulsed laser ablation of А12Оз» Phys. Rev. В 62, 13 167 (2000)
- С. Schaffer, A. Brodeur, and E. Mazur, «Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses», Meas. Sci. Technol. 12, 1784 (2001)
- I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, «Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics», Appl. Phys. A: Mater. Sci. Process. 81, 1627 (2005)
- A. Q. Wu, I. H. Chowdhury, and X. Xu, «Femtosecond laser absorption in fused silica: Numerical and experimental investigation», Phys. Rev. В 72, 85 128 (2005)
- О. Efimov, S. Juodkazis, and H. Misawa, «Intrinsic single- and multiple-pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region» Phys. Rev. A 69, 42 903 (2004)1V
- S. Juodkazis, T. Kondo, A. Rode, E. Gamaly, S. Matsuo, and H. Misawa, «Three-dimensional recording and structuring of chalcogenide glasses by femtosecond pulses», Proc. SPIE 5662, 179 (2004)
- V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, «Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization» Phys. Rev. Lett. 97, 237 403 (2006)
- L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, «Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica», Phys. Rev. Lett. 89, 186 601 (2002).
- S. Klarsfeld and A. Maquet, «Circular versus Linear Polarization in Multiphoton Ionization», Phys. Rev. Lett. 29, 79 (1972)
- H. R. Reiss, «Polarization Effects in High-Order Multiphoton Ionization», Phys. Rev. Lett. 29, 1129(1972)
- E. L. Ivchenko and E.Y. Perlin, Sov. Phys. Solid State 15, 1850 (1974)
- R. A. Fox, R. M. Kogan, and E. J. Robinson, «Laser Triple-Quantum Photoionization of Cesium», Phys. Rev. Lett. 26, 1416 (1971)
- H. S. Carman and R. N. Compton, J. Phys. Chem. 90, 1307 (1989).
- D. D. Venable and R. B. Kay, «Polarization effects in four-photon conductivity in quartz», Appl. Phys. Lett. 27, 48 (1975)1. OA
- В. Rethfeld, «Unified Model for the Free-Electron Avalanche in Laser-Irradiated Dielectrics», Phys. Rev. Lett. 92 (18), 187 401 (2004)
- A. Belsky, P. Martin, H. Bachau, A.N. Vasil’ev, B. Yatsenko, S. Guizard, G. Geoffroy, G. Petite, «Heating of conduction band electrons by intense femtosecond laser pulses» Europhys. Lett., 67 (2), 301 (2004)
- A. Belsky, A. Vasil’ev, B. Yatsenko, H. Bachau, P. Martin, G. Geoffroy, and S. Guizard, «Photoemission de Csl induite par une impulsion laser intense femtoseconde» J. Phys. (France) 108, 113 (2003).29
- A. H. Бельский, A. H. Васильев и Б. H. Яценко, «Электронные переходы в зоне проводимости широкозонных диэлектриков под действием мощных ультракоротких лазерных импульсов», Вестник Московского университета, Серия 3: Физика. Астрономия. 2, с. 38 (2003).
- В. Rethfeld, «Free-electron generation in laser-irradiated dielectrics» Phys Rev В 73, 35 101 (2006)
- В. Rethfeld, «Free-Electron Generation in Laser-Irradiated Dielectrics» Contrib. Plasma Phys. 47, No. 4−5, 360 367 (2007)
- F. Quere, S. Guizard, and P. Martin «Time-resolved study of laser-induced breakdown in dielectrics», Europhys. Lett., 56(1), 138 (2001)
- S. Jones, P. Braunlich, R. Casper, X.-A. Shen, and P. Kelly, Opt. Eng. 28, 1039 (1989).
- M. Lenzner, J. Kriiger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, «Femtosecond Optical Breakdown in Dielectrics» Phys. Rev. Lett. 80, 4076 (1998).о С
- А.С. Tien, S. Backus, Н. Kapteyn, М. Murnane, and G. Mourou, «Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration», Phys. Rev. Lett. 82, 3883 (1999).
- B.C. Stuart, M. D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, and M. D. Perry, «Nanosecond-to-femtosecond laser-induced breakdown in dielectrics», Phys. Rev. В 53, 1749 (1996).37
- A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, «Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses», Phys. Rev. В 61, 11437(2000).38
- N. M. Bulgakova, R. Stoiyan, A. Rosenfeld et. al. «Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials» Phys. Rev. В 64, 54 102 (2004)1. JQ
- G. Petite, P. Daguzan, S. Guizard, and P. Martin, «Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study», Nucl. Instrum. Methods Phys. Res. В 107, 97 (1996)
- M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, «Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics», Phys. Rev. Lett. 82, 2394(1999)
- S. S. Мао, X. L. Mao, R. Greif, and R. E. Russo, «Simulation of infrared picosecond laser-induced electron emission from semiconductors», Appl. Surf. Sci. 127−129, 206 (1998)
- M. C. Downer and С. V. Shank, «Ultrafast heating of silicon on sapphire by femtosecond optical pulses», Phys. Rev. Lett. 56, 761 (1986)
- M. Bonn, D. N. Denzler, S. Funk, M. Wolf, S. Wellershoff, and J. Hohlfeld, «Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport», Phys. Rev. В 61, 1101 (2000)
- R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, E. E. B. Campbell, and I. V. Hertel, «Laser ablation of dielectrics with temporally shaped femtosecond pulses», Appl. Phys. Lett. 80, 353 (2002)
- E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, «Three-dimensional optical storage inside transparent materials» Opt. Lett. 21, 2023 (1996)
- С. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, «Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy», Opt. Lett. 26, 93 (2001)
- S. Juodkazis, A. Rhode, E. Gamaly, S. Matsuo, and H. Mizawa, «Recording and reading of three-dimensional optical memory in glasses», Appl. Phys. В: Lasers Opt. 11, 361 (2003)
- R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov and A. Apolonski, «Pearl-chain waveguides written at megahertz repetition rate», Appl. Phys. В: Lasers Opt, 87 (1), (2007) DPI: 10.1007/s00340−006−2480-v
- S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly,
- A. Taflove, M. E. Brodwin, «Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations» IEEE Transactions on Microwave Theory and Techniques, 23, 623−630 (1975)
- H. Bachau, A. N. Belsky, P. Martin, A. N. Vasil’ev, B. N. Yatsentko, «Electron heating in the conduction band of insulators irradiated by ultrashort laser pulses» Phys Rev В 74, 235 215 (2006)
- В Tan and К Venkatakrishnan «A femtosecond laser-induced periodicalsurface structure on crystalline silicon» J. Micromech. Microeng. 16,1080−10 852 006) cn
- A. H. Васильев, В. В. Михайлин «Введение в спектроскопию диэлектриков», Москва, Издательство Московского университета, 2008го
- Ph. Daguzan, Ph. Martin, S. Guizard and G. Petite «Electron relaxation in the conduction band of wide band gap oxides» Phys. Rev. В 52 (24) (1995)
- Эланго M. А. «Элементарные неупругие радиационные процессы». Москва: Наука, 1988.
- Ландау Л. Д., Лившиц Е. М., " Теоретическая физика «, Учебное пособие для вузов в Ют., Т. III. Квантовая механика (нерелятивистская теория). Москва: Наука, 1989.
- М. Sparks, D. L. Mills, R. Warren et al, „Theory of electron-avalanche breakdown in solids“ Phys Rev В 24, 3519 (1981)
- A. Ausmees, M. Elango, A. Kikas, J. Pruulmann, „Monte-Carlo simulation of electron-phonon scattering in the XUV-induced electron emission of NaCl“ Phys. Status solidi (b), V. 137, No. 2. P. 495−500. (1986)
- В. Ф. Гантмахер, И. Б. Левинсон, „Рассеяние носителей тока в металлах и полупроводниках“ — Москва, Наука, 1984
- А. N. Vasil’ev, Y. Fang, and V. V. Mikhailin, „Impact production of secondary electronic excitations in insulators: Multiple-parabolic-branch band model“, Phys. Rev. В 60 (8), 5340−5347 (1999)
- A. Lushchik, Е. Feldbach, Ch. Lushchik, M. Kirm, and I. Martinson, „Multiplication mechanisms of electronic excitations in KBr and KBr: Tl crystals“, Phys. Rev. В 50, 6500 (1994).
- A. Lushchik, E. Feldbach, R. Kink, Ch. Lushchik, M. Kirm, and I. Martinson, „Secondary excitons in alkali halide crystals“, Phys. Rev. В 53, 5379 (1996)
- V. V. Mikhailin, Nucl. Instrum. Methods Phys. Res. В 97, 530 (1995)
- Келдыш Л. В., ЖЭТФ 37, 713 (1960)
- D. J. Robbins, „Aspects of the Theory of Impact Ionization in Semiconductors (II)“, Phys. Status Solidi В 97, 387 (1980)
- A. N. Vasil’ev, Nucl. Instrum. Methods Phys. Res. В 107, 165 (1996)
- E. O. Kane, „Electron Scattering by Pair Production in Silicon“, Phys. Rev. 159, 624(1967)72 • • • •
- N. Sano and A. Yoshii, „Impact-ionization theory consistent with a realistic band structure of silicon“, Phys. Rev. В 45, 4171 (1992)
- N. Sano and A. Yoshii, „Impact-ionization model consistent with the band structure of semiconductors“, J. Appl. Phys. 77, 2020 (1995)
- M. Stobbe, R. Redmer, and W. Schattke, „Impact ionization rate in GaAs“ Phys. Rev. В 49, 4494 (1994)
- Y. Wang and K. F. Brennan, „Semiclassical study of the wave vector dependence of the interband impact ionization rate in bulk silicon“, J. Appl. Phys. 75,313 (1994)
- A. Haug, „Theoretische Festkorperphysik I, II“, Fr. Deuticke, Wien, (1970)
- J. M. Ziman, „Electrons and Phonons The Theory of Transport Phenomena in Solids“, 2nd ed. Claredon, Oxford, (1962)
- B. Ridley, „Quantum Processes in Semiconductors“, Claredon, Oxford, (1993)
- R. Binder, H. S. Kohler, M. Bonitz, and N. Kwong, „Green's function description of momentum-orientation relaxationof photoexcited electron plasmas in semiconductors“ Phys Rev. B. 55, 5110 (1997)or»
- A. Kaiser, Diplom thesis, Technische Universitat Braunschweig, 1998.81
- D. Arnold and E. Cartier, «Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids», Phys. Rev. В 46, 15 102 (1992)
- В. С. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, «Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses» Phys. Rev. Lett. 74, 2248 (1995)
- J.-Ch. Kuhr, H.-J. Fitting «Monte Carlo simulation of electron emission from solids», Journal of Electron Spectroscopy and Related Phenomena 105, 257 273 (1999)
- J.-Ch. Kuhr and H.-J. Fitting «Monte-Carlo Simulation of Low Energy Electron Scattering in Solids», Phys. Stat. Sol. (a) 172, 433 (1999)
- Z. Czyzewski, D.O. MacCallum, A. Romig, D.C. Joy, «Calculations of Mott scattering cross section», J. Appl. Phys. 68, 3066−3072 (1990)
- M. Fink, J. Ingram, «Theoretical electron scattering amplitudes and spin polarizations*, f: Electron energies 100 to 1500 eV Part II. Be, N, O, Al, CI, V, Co, Cu, As, Nb, Ag, Sn, Sb, I, and Та targets», Atomic Data 4 (1972) 129−207.1. Q*7
- J.C. Ashley, «Interaction of low-energy electrons with condensed matter: stopping powers and inelastic mean free paths from optical data», J. Electr. Spectr. Rel. Phenom. 46, 199−214 (1988)no
- J.C. Ashley, «Energy loss rate and inelastic mean free path of low-energy electrons and positrons in condensed matter», J. Electr. Spectr. Rel. Phenom. 50, 323−334 (1990)1. QQ
- S. Tanuma, J.C. Powell, D.R. Penn, «Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50−2000 eV range», Surf. Interface Anal. 17(13), 911−926(1991)
- J.C. Ashley, V.E. Anderson, «Energy Losses and Mean Free Paths of Electrons in Silicon Dioxide», IEEE Transact. Nucl. Sci. NS-28 (6), 4132−4136 (1981), DOI 10.1109/TNS. 1981.4 335 688
- T. Reich, V.G. Yarzhemski, V.I. Nefedov, «Calculation of inelastic mean free path of photoelectrons in some solids» J. Electr. Spectr. Rel. Phenom. 46 (1988) 255−267.
- T. Watanabe, T. Teraji, T. Ito, Y. Kamakura and Kenji Tanigushi «Monte Carlo simulations of electron transport properties of diamond in high electric fields using full band structure» J. Appl. Phys. 95 (9) 4866 (2004)
- A. T. Collins, Mater. Res. Soc. Symp. Proc. 162, 3 (1989)
- R. F. Davis, «Deposition and characterization of diamond, silicon carbide and gallium nitride thin films», J. Cryst. Growth 137, 161 (1994)
- M. W. Geis, N. N. Efremow, and D. D. Rathman, «Summary Abstract: Device applications of diamonds», J. Vac. Sci. Technol. A 6, 1953 (1988)
- М. V. Fischetti and S. E. Laux, «Monte carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects» Phys. Rev. В 38, 9721 (1988)97
- Y. Kamakura, I. Kawashima, K. Deguchi, and K. Taniguchi, «Verification of hot hole scattering rates in silicon by quantum-yield experiment», J. Appl. Phys. 88, 5802 (2000)
- Feynman R. P. «Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction» Phys. Rev. 1950. 80 P.440
- Kim H., J. Lee, Kim J. K., «Heisenberg-picture approach to the exact quantum motion of a time-dependent forced harmonic oscillator», Phys Rev. A 53, 3767 (1966)
- C.J. Pickard, M.C. Payne, «Extrapolative approaches to Brillouin-zone integration», Phys. Rev. В 59, 4685 (1999)