Направленный мутагенез рековерина
Диссертация
Действие Са на системы клеточной сигнализации зачастую опосредовано Са2±связывающими белками, мишенями для которых очень часто служат протеинкиназы и протеинфосфатазы. Сасвязывающим белкам и механизмам регуляции ими процессов фосфорилирования дефосфорилирования посвящено огромное число работфоторецепторная клетка в этом отношении — исключение. Систематическое и интенсивное исследование роли… Читать ещё >
Список литературы
- Lodish, Н., Baltimore, D., Berk, A., Zipursky St., L., Matsudaira, P., Darnell, J. (1995). .Molecular Cell Biology 3d ed.
- Филиппов П.П., Аршавский В. Ю., Дижур A.M. (1987). Биохимия зрительной рецепции. Итоги науки и техники. ВИНИТИ, т.26.
- Schwartz, Е.А. (1981). First events in vision: the generation of responses in vertebrate rods. J. Cell Biol. 90, 271−278.
- Chabre, M. (1985). Trigger and amplification mechanisms in visual phototransduction. Ann. Rev. Biophys. Chem. 14, 331−60.
- Абдулаев, Н.Г. и Артамонов, И.Д. (1984). Биоорганическая химия зрительного процесса. Биол. мембраны. 1, 775−793.
- Dratz, Е.А. and Hargrave, P.А. (1983). The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem. Sci. 8, 128−131.
- Hamm, H.E. and Bownds, M.D. (1986). Protein complement of rod outer segments of frog retina. Biochemistry 25, 4512−4525.
- Stryer, L. (1986). Cyclic GMP cascade of vision. Annu. Rev. Neurosci. 9, 87−119.
- Ovchinnikov, Y.A. (1982). Rhodopsin and bacteriorhodopsin: structure function relationships. FEBS Lett. 148, 179−191.
- Mullen, E. and Akhtar, M. (1982). Topographic and activesite studies on bovine rhodopsin. FEBS Lett. 132, 261−264.
- Ovchinnikov, Y. A., Abdulaev, N. G. and Bogachuk, A. S. (1988). Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett. 230, 1−5.
- Khorana, H.G. (1992). Rhodopsin, photoreceptor of the rod cell. J. Biol. Chem. 267, 1−4.
- Hargrave, P. A. and Hofmann, K. P. (1989). Three cytoplasmic loops of rhodopsin interact with transducin. Proc. Natl. Acad. Sci. USA 86, 6878−6882.
- Anukanth, A. and Khorana, H.G. (1994). Structure and function in rhodopsin: requirement of a specific structure for the intradiscal domain. J. Biol. Chem. 269. 19 738−19 744.
- Hargrave, P. A. and McDowell, J. H. (1993). Rhodopsin and Phototransduction. Int. Rev. Cytology 137B, 49−97.
- Jurgen, A.W., Heymann and Sriram Subramaniam (1997). Expression, stability, and membrane integration of truncation mutants of bovine rhodopsin. Proc. Natl Acad. Sci. USA. 94, 4966−4971.
- Nathans, J. (1992). Rhodopsin: Structure, function, and genetics. Biochemistry 31,4923−4931.
- Oprian, D.D. (1992). The ligand-binding domain of rhodopsin and other С protein-linked receptors. J. Bioenerg. Biomem. 24, 211−217.
- Strader, C.D., Fong, T.M., Tota, M.R., Underwood, D. and Dixon, R.A.F. (1984) Structure and function of G protein-coupled receptor. Annu. Rev. Biochem. 63, 101 132.
- Sakmar, T. P., Franke, R. R. and Khorana, H. G. (1989). Glutamic acid-113 serves as the retinylidine schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci USA 86, 8309−8313.
- Applebury, M. A. (1991). Molecular determinants of visual pigment function Curr. Opin. Neurobiol. 1, 263−269.
- Farrens, D.L., Altenbach, С., Ke Yang, Hubbel, W.L., Khorana, H.G. (1997) Requirement of Rigid Body Motion of Transmembrane Helices for Light Activation of Rhodopsin. Science. 274. 768−770.
- Kinig, В., Arendt, A., McDowell, J. H., Kahlert, M., Hargrave, P. A. and Hofmann, K. P. (1989). Three cytoplasmic loops of rhodopsin interact with transducin. Proc. Natl. Acad. Sci. USA 86, 6878−6882.
- Kuhn, H. (1980). Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes. Nature 283, 587−589.
- Stryer, L., Hurley, J.B. and Fung, B.K.K. (1981). First stage of amplification in the cyclic nucleotide cascade of vision. Trends Biochem. Sci. 6, 245−247.
- Hurley, J.B. (1992). Signal Transduction Enzymes of Vertebrate Photoreceptors, J. Bioenerg. and Biomemb. 24, 219−226.
- Arshavsky, V.Y., Dizhoor, A.M., Shestakova, I.K. and Philippov, P.P. (1985), The effect of rhodopsin phosphorylation on the light-dependent activation oi phosphodiesterase from bovine rod outer segments. FEBS Lett. 181,264−266.
- Fukada, Y., Takao, Т., Ohguor, H., Yoshizawa, Т., Akino, T. and Shimonishi, Y (1990) Farnesylated gamma subunit of photoreceptor G protein indispensable foi GTP-binding. Nature 346, 658−660.
- Justice, J.M., Bliziotes, M.M., Stevens, L.A. and Vaughan, M.M. (1995). Involvement of N-myristoylatiom in monoclonal antibody recognition sites on chimeric G protein alpha subunits. J. Biol. Chem. 270, 6436−6439.
- Bigay, J., Faurobert, E., Franco, M. and Chabre, M. (1994). Roles of lipid modifications of transducin subunits in their GDP-dependent association and membrane binding. Biochemistry 33, 14 081−14 090.
- Parish, C.A., Smrcka, A.V., Rando, R.R., (1996) The role of G-protein methylation in the function of a geranylgeranylated beta gamma isoform. Biochemistry. 35(23). 7499−7505.
- Lambright, D.G., Sondek, J., Bohm, A., Skiba, N.P., Hamm, H.E., Sigler, P.B. (1996). The 2.0 crystal structure of a heterotrimeric G protein. Nature. 379, 311−319.
- Baehr, W., Delvin, M.J. and Applebury, M.L. (1979). Isolation and characterization of cGMP phosphodiesterase from bovine ROS. J. Biol. Chem. 254, 11 669−11 677.
- Hurley, J.B. and Stryer, L. (1982). Purification and characterization of the gamma regulatory subunit of the cGMP phosphodiesterase from retinal rod outer segments. J. Biol. Chem. 257, 11 094−11 099.
- Florio, S.K., Prusti, R. K and Beavo J.A. (1996). Solubilization of membrane-bound phosphodiesterase by the rod phosphodiesterase recombinant 5 subunit. J. Biol. Chem. 271, 24 036−24 047.
- Yamazaki, A., Stein, P.I., Chernoff, N. and Bitensky, M.W. (1983). Activation mechanism of rod outer segment cyclic GMP phosphodiesterase. R inhibitor by the GTP/GDP-binding protein. J. Biol. Chem. 258, 8188−8194.
- Palczewski, K., Saari, J.C. (1997). Activation and inactivation steps in the visual transduction pathway. Curr. Opin. Neurobiol., 7(4): 500−504.
- Yamazaki, A., Sen, I., Bitenski, M.W., Casnellie, J.E. and Greengard, P. (1980) Cyclic GMP-specific, high-affinity, noncatalytic binding sites on light-activatec phosphodiesterase. J. Biol. Chem. 255, 11 619−11 624.
- Yuen, P. S.T., Walseth, T.F., Panter, S.S., Sundby, S.R. and Goldberg, N. D (1986). Identification of rod outer segment cGMP binding proteins by direc photoaffmity labeling. Biophys. J. 49, 248a.
- Kaupp, U.B. and Koch, K.-W. (1992). Role of cGMP and Ca2+ in vertebratf photoreceptor excitation and adaptation. Annu. Rev. Physiol. 54, 153−175.
- Cote, R.H., Bownds, M.D. and Arshavsky, V.Y. (1994). cGMP binding sites on photoreceptor phosphodiesterase: role in feedback regulation of visual transdaction. Proc. Natl. Acad. Sci. U.S.A. 91, 4845−4849.
- Yamazaki, A., Bondarenko, V.A., Dua, S., Yamazaki, M., Usukura, J., Hayashi, F. (1996). Possible stimulation of retinal rod recovery to dark state by cGMP release from a cGMP phosphodiesterase non catalytic site. J. Biol. Chem., 51, 32 495−32 498.
- Rieke, F., Baylor, D.A., (1996). Molecular origin of continuous dark noise in rod photoreceptors. Biophys. J., 71, 2553−2572.
- Fesenko, E.E., Kolesnikov, S.S. and Lyubarsky, A.L. (1985). Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segments. Nature 313, 310−313.
- Lefkowitz, R.J. (1993). G protein-coupled receptor kinase. Cell. 74, 409−412.
- Inglese, J., Koch, W.J., Caron, M.G. and Lefkowitz, R.J. (1992). Isoprenilation in regulation of signal transduction by G protein-coupled receptor kinases. Nature. 359, 147−150.
- Palczewski, K., Arendt, A., McDowell, J.H., Hargrave, P.A. (1989). Substrate recognition determinants for rhodopsin kinase: studies with syntetic peptides, polyanions, and polycations. Biochemistry 28, 8764−8770.
- Palczewski, K, Buczylko, J., Kaplan, M.W., Polans, A.S., Crabb, J.W. (1991). Mechanism of rhodopsin kinase activation. J. Biol. Chem. 266, 12 949−12 955.
- Palczewski, K., Biczylko, J., Lebioda, L., Crabb, J.W., Polans, A.S. (1993). Identification of the N-terminal region in rhodopsin kinase involved in its interactions with rhodopsin. J. Biol. Chem. 268, 6004−6013.
- Dizhoor A.M. (2000). Regulation of cGMP synthesis in photoreceptors: role in signal transduction and congenital diseases of the retina. Cellular Signalling 12, 711 719.
- Palczewski, K., Buczylko, J., Van Hooser, P. Carr, S.A., Huddleston, M.J., Crabb, J.W. (1992). Identification of the autophosphorylation sites in rhodopsin kinase. J. Biol. Chem. 267. 18 991−18 998.
- Kuhn, H. and Wilden, U. (1987). Deactivation of photoactivated rhodopsin by rhodopsin kinase and arrestin. J. Recept. Res. 7, 283−298.
- Gurevich, V.V. and Benovic, J.L. (1992). Cell-free expression of visual arrestin. Truncation mutagenesis identifies identifies identifies multiples domains involved in rhodopsin interaction. J. Biol. Chem. 267, 21 919−21 923.
- Hargrave, P.A. and McDowell, J.H. (1992). Rhodopsin and phototransduction: A model system for G protein-linked receptors. FASEB Journal 6, 2323−2331.
- Arshavsky, V.Y. and Bownds, M.D. (1992). Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature 357, 416−417.
- Lee, R.H., Lieberman, B.S. and Lolley, R.N. (1987). A novel complex from bovine visual cells of a 33,000-dalton phosphoprotein with beta and gamma transducin: purification and subunit structure. Biochemistry 28, 3983−3990.
- Willardson, B.M., Wilkins, J.F., Yoshida, T. and Bitensky, M.W. (1996). Regulation of phosducin phosphorylation in retinas rods by Ca2+/calmodulin-dependent adenylyl cyclase. Proc. Natl. Acad. Sci. USA 93, 1475−1479.
- Faurobert, E., Hurley, J.B. (1997). The core domain of new retina specific RGS protein stimulates the GTPase activity of transducin in vitro. Proc. Natl. Acad. Sci. USA. 94, 2945−2950.
- Chen, C.-K., Wieland, Т., Simon, M.I. (1996). RGS-r, a retinal specific RGS protein, binds an intermediate conformational of transducin and enchances recycling. Proc. Natl. Acad. Sci. USA. 93, 12 885−12 889.
- Schnetkamp, P.P.M. (1989). Na+ -Ca2+ or Na+ -Ca2±K+ exchange in rod photoreceptors. Progr. Biophys. Mol. Biol. 54, 1−29.
- Schnetkamp, P.P.M., Basu, D.K. and Szerencsei, R.T. (1989). Na+ -Ca2+ exchanger in bovine rod outer segment requires and transports. Am. J. Physiol. 257, CI 53−157.
- Schnetkamp, P.P.M., Szerencsei, R.T. and Basu, D.K. (1991). Unidirectional Na+, Ca2+ and K+ fluxes through the bovine rod outer segment Na+ -Ca2±K±exchanger. J. Biol. Chem. 266, 198−206.
- Cook, N.J. and Kaupp, U.B. (1988). Solubilisation, purification and reconstitution of the sodium-calcium exchanger from bovine retinal rod outer segment. J. Biol. Chem. 263, 11 382−11 388.
- Kaupp, U.B. and Koch, K.-W. (1992). Role of cGMP and Ca2+ in vertebrate photoreceptor excitation and adaptation. Annu. Rev. Physiol. 54, 153−175.
- Lambrecht, H.-G. and Koch, K.-W. (1991). A 26 kd calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. EMBOJ. 10,793−798.
- Dizhoor, A.M., Ray, S., Kumar, S., Niemi, G., Spencer, M., Brolley, D., Walsh, K.A., Philipov, P.P., Hurley, J.B. and Stryer, L. (1991). Recoverin: A calcium sensitive activator of retinal rod guanylate cyclase. Science 251, 915−918.
- Gorodovikova, E.N. and Philippov, P.P. (1993). The presense of a calcium-sensitive p26-containing complex in bovine retina rod cell. FEBS Lett. 335, 277−279.
- Dizhoor, A.M., Lowe, D.G., Olshevskaya, E.V., Laura, R.P. and Hurley, J.B. (1994). The human photoreceptor membrane guanylyl cyclase, RetGC, is present inouter segments and is regulated by calcium and a soluble activator. Neuron. 12, 1345−1352.
- Hsu, Y.-T. and Molday, R.S. (1993). Modulation of the cGMP-gated channel of rod photoreceptor cell by calmodulin. Nature. 361, 76−79.
- Dizhoor, A.M., Ray, S., Kumar, S., Niemi, G., Spencer, M., Brolley, D., Walsh, K.A., Philipov, P.P., Hurley, J.B. and Stryer, L. (1991). Recoverin: A calcium sensitive activator of retinal rod guanylate cyclase. Science. 251, 915−918.
- Kawamura, S. (1993). Rhodopsin phosphorylation as a mechanism of cyclic
- GMP phosphodiesterase regulation by S-modulin. Nature 362, 855−857.101. Gorczyca, W.A., Polans, A.S., Surgucheva, I.G., Subbaraya, I., Baehr, W. and
- Palczewski, K. (1995). Guanylyl cyclase activation protein. J.Biol.Chem. 270,22 029−22 036.
- Chazin, W.J. (1995). Releasing the calcium trigger. Nature struct. Biol. 2, 707 710.113. Herzberg, O. and James, M.N.G. (1988). Refined crystal structure of troponin С from turkey skeletal muscle at 2. OA resolution. J. molec. Biol. 203, 761−779.
- Skelton, N.J., Korder, J., Akke, M., Forsen, S. and Chazin, W.J. (1994). Signal transduction versus buffering activity in Ca2±binding proteins. Nature struct. Biol. 1,239−245
- Finn, B.E., Drakenberg, T. and Forsen, S. (1993). The structure of apocalmodulin: a 1H NMR examination of the carboxy-terminal domain. FEBS Lett. 336,368−374.
- Skeleton, N.J., Korderl, J., Akke, M., Forsem, S. and Chazin, W.J. (1994). Signal transduction versus buffering activity in Ca2±binding proteins. Nature Struct. Biol. 1, 239−245.
- Kawasaki, H. and Kretsinger, R.H. (1994). Calcium-binding proteins 1: EF-hands. Protein Profile 1, 343−346.
- Means, A.R., VanBerkum, M.F.A., Bagchi, I., Lu, K.R. and Rasmussen, C.D. (1991). Regulatory function of calmodulin. Pharmac. Ther. 50, 255−270.121. Vogel, H.J. (1994). Calmodulin: a versatile calcium mediator protein. Biochem. Cell Biol. 72,357−376.
- Nicholson, D.G. Proteins, Transmitters and Synapses. Blackwell Scientific Publication: Oxford, 1994, 31−39.
- Cheung, W.Y. Regulatory properties of bovine brain calmodulin-dependent phosphatase. Calcium and calcium binding proteins. Eds. C. Gerday et al. В.- Heidelberg: Springer, 1988, 163−178.
- Nicholson, D.G. Proteins, Transmitters and Synapses. Blackwell Scientific Publication: Oxford, 1994, 67−93.
- Nicholson, D.G. Proteins, Transmitters and Synapses. Blackwell Scientific Publication: Oxford, 1994, 132−158.
- Trifaro, J.M., Bader, M.F. and Duocet, J.P. (1985). Chromattin cell cytoskeleton: Its possible role in secretion. Canad. J. Biochem. Cell Biol. 63, 661 679.
- Afshar, M. (1994). Investigating the high affinity and low sequence specificity of calmodulin binding to its targets. J. Biol. Chem. 244, 554−571.
- O' Neil, K.T. and DeGrado, W.F. (1990) How calmodulin binds its targets: sequence inderpendent recognition of amphiphilac a-helices. Trends Biochem. Sci. 15, 59−64.
- Meador, W.E., Means, A.R. and Quiocho, F.A. (1992). Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science 257, 1251−1255.
- Kretsinger, R.H., Rudnick, S.E. and Weissman, L.J. (1986). Crystal structure of calmodulin. J. Inorg. Biochem. 28, 289−302.
- Babu, Y.S., Bugg, C.E. and Cook, W.J. (1988). Three-dimensional structure of calmodulin refined at 2.2 A resolution. J. Molec. Biol. 204, 191−204.
- Zhang, M., Tanaka, T. and Ikura, M. (1995). Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nature Struct. Biol. 2, 758−767.
- Finn, E.B. and Forsen, S. (1995). The evoluting model of calmodulin structure, function and activation. Structure 3, 7−11.
- LaPorte, D.C., Wierman, B.M. and Storm, D.R. (1980). Calcium-induced expopsure of a hydrophobic surface on calmodulin! Biochemistry 19, 3814−3819.
- Clore, G.M., Bax, A., Ikura, I. and Gronenborn, A.M. (1993). Structure of calmodulin-target peptide complexes. Curr. Opin. Struct. Biol. 3, 838−845.
- Woodruff, M.L. and Bownds, M.D. (1979). Regulation of the cGMP-gated channel of rod photoreceptor cell. J. Gen. Physiol. 73, 629−653.
- Ratto, G.M., Payne, R., Owen, W.G. and Tsien, R.Y. (1988). Identification of adenylyl cyclase activity in rod photoreceptor cells. J. Neurosci. 8, 3240−3246.
- Stryer, L. (1986). Cyclic GMP cascade of vision. Annu. Rev. Neurosci. 9, 87 119.
- Gray-Keller, M.P. and Detwiler, P.B. (1994). Regulation of the cAMP synthesis by calcium in rods. Neuron 13, 846−861.
- Nicholson, D.G. Proteins, Transmitters and Synapses. Blackwell Scientific Publication: Oxford, 1994, 198−239.
- Walsh, D.A. and Van Patten, S.M. (1994). Multiple pathway signal transduction by the cAMP-dependent protein kinase. FASEB J. 8, 1227−1236.
- Willardson, B.M., Wilkins, J.F., Yoshida, T. and Bitensky, M.W. (1996).• • 2+
- Regulation of phosducin phosphorylation in retinal rods by Ca /calmodulindependent adenylyl cyclase. Proc. Natl. Acad. Sci. USA 93, 1475−1479.
- Gorczyca, W.A., Gray-Keller, M.P., Detwiler, P.B. and Palczewski, K. (1994). Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods. Proc. Natl. Acad. Sci. USA 91, 4014−4018.
- Gorczyca, W.A., Polands, A.S., Surgucheva, I.G., Subbaraya, I., Baehr, W. and Palczewski, K. (1995). Guanylyl cyclase activating protein. J. Biol. Chem. 270, 22 029−22 036.
- Semple-Rowland, S.L., Gorczyca, W.A., Buczylko, J., Helekar, B.S., Ruiz, C.C., Subbaraya, I., Palczewski, K. and Baehr, W. (1996). Expression of GCAP1 and GCAP2 in the retinal degeneratiom mutant chicken retina. FEBS Lett. 385, 47−52.
- Ames J.B., Dizhoor A.M., Ikura M., Palczewski K., Stryer L. (1999). Three-dimensional Structure of Guanylyl Cyclase Activating Protein-2, a Calcium-sensitive
- Modulator of Photoreceptor Guanylyl Cyclases. J. Biol. Chem. 274, (27), 1 932 919 337.
- Okazaki, K., Watanabe, M., Ando, Y., Hagiwara, M., Terasawa, M., Hidaka, H. (1992) Full sequence of neurocalcin, a novel calcium-binding protein abundant in central nervous system. Biochem Biophys Res Commun. 185(1), 147−153.
- Terasawa, M., Nakano, A., Kobayashi, R., Hidaka, H. (1992). Neurocalcin: a novel calcium-binding protein from bovine brain. J. Biol. Chem. 267(27), 1 959 619 599.
- Okazaki, K., Obata, N.H., Inoue, S., Hidaka, H. (1995). S100 beta is a target protein of neurocalcin delta, an abundant isoform in glial cells. Biochem J 1995, 306(Pt 2), 551−555.
- Ladan. D., Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli. J. Biol. Chem. 270(7), 3179−3185.
- Faurobert, E., Chen, C.K., Hurley, J.B., Teng, D.H. Drosophila neurocalcin, a fatty acylated, Ca2±binding protein that associates with membranes and inhibits in vitro phosphorylation of bovine rhodopsin. J. Biol. Chem., 271(17), 10 256−10 262
- Lambrecht, H.-G. and Koch, K.-W. (1991). Light-dependent phosphorylation a 26 kd calcium binding protein from bovine rod outer segments. FEBS Lett. 317, 4548.
- Nockolds, C.E., Kretsinger, R.H., Coffee, C.J. and Bradshaw, R.H. (1972). Structure of a calcium binding carp myogen. Proc. Natl .Acad. Sci. USA 69, 581 584.
- Dizhoor, A.M., Chen, C.-K., Olshevskaya, E., Sinelnikova, V.V., Phillipov, P. and Hurley, J.B. (1993). Role of the acylated amino terminus of recoverin in Ca2±dependent membrane interaction. Science 259, 829−832.
- Dizhoor, A.M., Ericsson, L.H., Johnson, R.S., et al. (1992). The NH2 terminus of retinal recoverin is acylated by a small family of fatty acids. J.Biol.Chem. 267, 16 033−16 036.
- Sanada, К., Kokame, К., Yoshizawa, Т., Такао, Т., Shimonishi, Y. and Fukada, Y. (1995). Role of heterogeneous N-terminal acylation of recoverin in rhodopsin phosphorylation. J. Biol. Chem. 270, 15 459−15 462.
- Flaherty, K.M., Zozulya, S., Stryer, L. and McKay, D.B. (1993). Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 75, 709−716.
- Hughes, R.E., Brzovic, P. S., Klevit, R.E. and Hurley, J.B. (1995). Calcium-dependent solvation of the myristoyl group of recoverin. Biochemistry 34, 1 141 011 416.
- Ray, S., Zozulya, S., Niemi, G.A., Flaherty, K.M., Brolley, D., Dizhoor, A.M., McKay, D.B., Hurley, J.B. and Stryer, L. (1992). Cloning, expression, and crystallization of recoverin, a calcium sensor in vision. Proc.Nat.Acad.Sci.USA 89, 5705−5709.
- Zozulya, S. and Stryer, L. (1992). Calcium-myristoyl protein switch. Proc.Natl.Acad.Sci.USA 89, 11 569−11 573.
- Neubert, T.A., Walsh, K.A., Hurley, J.B., Johnson, R.S. (1997). Monitoring calcium-induced conformational changes in recoverin by electrospray mass spectrometry. Protein Sci. 6(4), 843−850.
- Sculptor in vitro mutagenesis system. Amersham UK, 1995.
- Seraphin, В. and Kandel-Lewis, S. (1996). An efficient PCR mutagenesis strategy without gel purification step that is amenable to automation. Nucl. Acids Res. 24, 3276−3277.
- Кутузов M.A. и др. (1992). Р26-кальцийсвязывающий белок фоторецепторных клеток сетчатки быка: первичная структура и экспрессия в E.coli. 18, 623−634.
- Senger, F., Nicklen, S. and Couson, A.R. (1977). DNA sequencing with chain terminating inhibitors. Proc. Nat. Acad. Sci. USA. 74, 5463−5467.
- Заргаров А. А. и др. (1996). Получение миристоилированной и немиристоилированной форм рекомбинантного рековерина в клетках E. coli и сравнение их функциональной активности. Биоорг. химия. 22, 483−488.
- Palczewski, К., McDowell, J.H. and Hargrave, P.А. (1988). Purification and characterization of rhodopsin kinase. J. Biol. Chem. 263, 14 067−14 073.
- Kawamura, S., Cox, J.A. and Nef, P. (1994). Inhibition of rhodopsin phosphorylation by non-myristoylated recombinant recoverin. Biochem. Biophys. Res. Comm. 203, 121−127.
- Shichi, H. and Somers, R.L. (1978). Light-dependent phosphorylation of rhodopsin. J. Biol. Chem. 253, 7040−7046.
- Klenchin, V.A., Calvent, P.D. and Bownds, M.D. (1995). Rhodopsin kinase inhibition by recoverin. J. Biol. Chem. 270, 16 147−16 152.
- Практикум по Биохимии/ Издательство Московского университета 1989, стр. 85.
- Laemmli. U.K. (1970). Nature, 227, 680.
- Остерман JI.А. Методы исследования белков и нуклеиновых кислот: Электорофорез и ультрацентрифугирование (практическое пособие). М.: Наука, 1981. стр. 93.
- Paulus, H.(1969) Anal. Biochem. 32, 91−100 109
- Alekseev A.M., ShuFga-Morskoy S.V., Zinchenko D.V., Suchkov D.V. Vaganova S.A., Senin I.I., Zargarov A.A., Lipkin V.M., Akhtar M, PhilippovP. P (1998) Obtaining and Characterization of EF-hand mutants of recoverin. FEBS Lett. 440(1−2), 116−118.
- Автор выражает благодарность всем сотрудникам группы регуляторных белков ФИБХ РАН за помощь и создание творческой обстановки в ходе работы.