Помощь в написании студенческих работ
Антистрессовый сервис

Липид-и полисахаридкиназная активности антител молока человека

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Основной фракцией AT молока являются секреторные иммуноглобулины класса, А (slgA), продуцируемые В-клетками молочной железы. Суммарный пул иммуноглобулинов класса G (IgG) молока формируется не только в результате секреции В-лимфоцитами молочной железы, но и за счет транспорта AT из кровотока. Более того, в отличие от slgA, IgG способны проникают в кровь младенцев через эпителий кишечника. Недавно… Читать ещё >

Липид-и полисахаридкиназная активности антител молока человека (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Киназы глицерофосфолипидов
      • 1. 1. 1. Фосфатидилинозитол 3-киназы
      • 1. 1. 2. Фосфатидилинозитол 4-киназы
      • 1. 1. 3. Фосфатидилинозитол-4-фосфат 5-киназы
    • 1. 2. Киназы сфинголипидов
    • 1. 3. Каталитически активные антитела
      • 1. 3. 1. Моноклональные абзимы с синтетическими свойствами
      • 1. 3. 2. Механизмы генерации каталитически активных антител
      • 1. 3. 3. Природные абзимы при аутоиммунных заболеваниях
      • 1. 3. 4. Природные абзимы молока человека
        • 1. 3. 4. 1. Абзимы с протеинкиназной активностью
        • 1. 3. 4. 2. Иммуноглобулины класса, А с липидкиназной активностью
        • 1. 3. 4. 3. Абзимы с другими типами активностей
    • 1. 4. Защитные факторы молока человека
      • 1. 4. 1. Иммуноглобулины
      • 1. 4. 2. Липиды
      • 1. 4. 3. Олиго- и полисахариды
  • 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Реактивы и материалы
    • 2. 2. Методы
      • 2. 2. 1. Выделение иммуноглобулинов из молока человека
      • 2. 2. 2. «Кислый шок» препаратов антител
      • 2. 2. 3. Концентрирование препаратов антител
      • 2. 2. 4. Определение концентрации белка
      • 2. 2. 5. Электрофоретический анализ белка
      • 2. 2. 6. Определение липидкиназной активности препаратов антител
      • 2. 2. 7. Опредение полисахаридкиназной активности препаратов антител
      • 2. 2. 8. Анализ стабильности комплекса олигосахаридов с антителами
      • 2. 2. 9. Гидролиз 32Р-меченных олиго- и полисахаридов
      • 2. 2. 10. Определение протеинкиназной активности препаратов антител
      • 2. 2. 11. Гидрофобная хроматография антител на фенил-сефарозе SL-B
      • 2. 2. 12. Исследование взаимодействия антител с аффинными сорбентами
      • 2. 2. 13. Аффинная хроматография иммуноглобулинов на сорбентах с иммобилизованными анти Ig-антителами
      • 2. 2. 14. Аффинная хроматография иммуноглобулинов на сорбентах с иммобилизованными антителами против легких цепей
      • 2. 2. 15. Тестирование липидкиназной активности антител in situ
      • 2. 2. 16. Тестирование полисахаридкиназной активности антител in situ
      • 2. 2. 17. Получение и очистка Fab-фрагментов иммуноглобулинов класса А
      • 2. 2. 18. Получение и очистка Fab-фрэгментов имуноглобулинов класса G
      • 2. 2. 19. Определение кинетических параметров реакции фосфорилирования
      • 2. 2. 20. Аффинная хроматография препаратов антител на АТР-сефарозе
  • 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
    • 3. 1. Выделение иммуноглобулинов из молока
    • 3. 2. Исследование антител с липидкиназной активностью
      • 3. 2. 1. Стабильность комплексов антитела — липиды
      • 3. 2. 2. Анализ структуры эндогенных липидов
    • 3. 3. Исследование антител с полисахаридкиназной активностью
      • 3. 3. 1. Стабильность комплексов антитела — сахариды
      • 3. 3. 2. Анализ структуры эндогенных олиго- и полисахаридов
    • 3. 4. Доказательства принадлежности каталитической активности антителам
      • 3. 4. 1. «Кислый шок» препаратов антител
      • 3. 4. 2. Взаимодействие антител с аффинными сорбентами
      • 3. 4. 3. Тестирование препаратов антител in situ
    • 3. 5. Субстратная специфичность антител
      • 3. 5. 1. Липидкиназная активность антител
      • 3. 5. 2. Олигосахаридкиназная активность антител
    • 3. 6. Локализация активных центров антител
      • 3. 6. 1. Каталитическая активность Fab-фрагментов иммуноглобулинов
    • 3. 7. Кинетические параметры реакции фосфорилирования липидов
    • 3. 8. Кинетические параметры реакции фосфорилирования олигосахаридов
    • 3. 9. Возможная биологическая роль абзимов с киназными активностями
  • 1. ВЫВОДЫ

Процессы фосфорилирования играют важную роль в регуляции жизнедеятельности организмафосфорилирование существенно меняет химические свойства белков, липидов и углеводов. Реакции переноса фосфатной группы от АТР или других NTP катализируют ферменты — киназы, например, протеинкиназы фосфорилируют аминокислотные остатки, липидкиназы — ОН-группы липидов. Известно, что киназы принимают активное участие в процессах клеточного роста, деления и апоптоза.

В Лаборатории ферментов репарации ИХБФМ были впервые получены данные о том, что помимо канонических липидкиназ, способностью фосфорилировать липиды могут обладать антитела (AT), выделенные из молока здоровых рожениц. Каталитически активные антитела (КААТ), или абзимы, были найдены в крови больных астмой, аутоиммунными патологиями (СКВ, аутоиммунный тиреоидит, полиартрит, рассеянный склероз), некоторыми вирусными (СПИД, вирусный гепатит), раковыми и лимфопролиферативными заболеваниями [1 — 5]. Показано, что природные абзимы возникают при развитии аутоиммунных заболеваниях (АИЗ), а также в период беременности и лактации у здоровых рожениц и способны ускорять реакции гидролиза белков, ДНК, РНК, полисахаридов, АТР, фосфорилирования белков и некоторые другие реакции. Абзимы из крови здоровых людей катализируют ряд окислительно-восстановительных реакций [5]. Как и иммуноглобулины, генерируемые при обычном иммунном ответе, абзимы поликлональны по своей природе, т. е. представляют собой широкий набор моноклональных AT, различных по сродству к субстратам и обладающих разными каталитическими активностями.

Первыми абзимами, обнаруженными у здоровых по медицинским показателям людей, были slgA молока здоровых рожениц, катализирующие фосфорилирование около 15 белков молока. Молоко рожениц оказалось уникальным источником большого числа различных абзимов, биологические функции которых еще не до конца выяснены. Особенностью этих абзимов является более высокая каталитическая активность, по сравнению с активностью AT из крови больных с различными АИЗ.

Наряду с другими компонентами молока, антитела обеспечивают его защитные функции и ответственны за создание пассивного иммунитета ребенка в первые месяцы его жизни. В связи с этим, можно предположить, что антитела могут не только связывать компоненты патогенных вирусов или бактерий, но и при наличии у них каталитических активностей, также гидролизовать белки, нуклеиновые кислоты и полисахариды вирусов и бактерий, усиливая защитное действие AT молока [1−5]. Кроме того, выдвинута гипотеза о том, что в каталитических активностях абзимов могут быть запрограммированы дополнительные ферментативные функции белков организма, проявления которых наблюдается только в особых условиях, например при беременности и АИЗ. При этом до сих остается открытым вопрос, являются ли абзимы дополнительной, резервной системой ферментов млекопитающих, которая работает в экстремальных ситуациях и обеспечивает такие активности, которых нет у обычных ферментов, или абзимы — это все-таки побочный результат функционирования иммунной системы. Кроме того, нельзя исключить, что абзимы могут иметь пока не известную специфическую биологическую функцию в организме млекопитающих. Поэтому, исследование и сравнение абзимов у доноров без каких-либо патологических иммунных отклонений (КААТ молока здоровых рожениц), а также у больных с различными АИЗ, позволит понять возможные биологические функции абзимов и внести ясность в понимание механизмов патогенеза аутоиммунных заболеваний, которые до сих пор в большинстве случаев неизлечимы.

Основной фракцией AT молока являются секреторные иммуноглобулины класса, А (slgA), продуцируемые В-клетками молочной железы. Суммарный пул иммуноглобулинов класса G (IgG) молока формируется не только в результате секреции В-лимфоцитами молочной железы, но и за счет транспорта AT из кровотока. Более того, в отличие от slgA, IgG способны проникают в кровь младенцев через эпителий кишечника [6]. Недавно было обнаружено, что slgA молока прочно связаны с липидами, которые фосфорилируются под действием этих AT. Учитывая различное происхождение и разницу в биологических функциях slgA и IgG молока, сравнение ферментативных функций этих антител представляет особый интерес.

Цель данной работы заключалась в исследовании фосфорилирующих активностей slgA и IgG молока человека. В ходе исследования необходимо было решить следующие задачи:

• Исследовать активность IgG в реакции фосфорилирования прочно связанных с ними липидов. Доказать, что липидкиназная активность является собственным свойством IgG и slgA;

• Исследовать полисахаридкиназную активность slgA и IgG. Сравнить структуру эндогенных олигои полисахаридов, прочно связанных с slgA и IgG. Доказать, что данная активность является собственным свойством этих антител;

• Изучить субстратную специфичность абзимов в реакции фосфорилирования липидов, олигои полисахаридов;

• Определить кинетические параметры реакций фосфорилирования, катализируемых slgA и IgG.

1. ОБЗОР ЛИТЕРАТУРЫ.

Фосфорилирование липидов in vivo впервые было обнаружено в 1953 году [7]. В процессе стимуляции клеток печени ацетилхолином происходило включение меченого фосфата в один из минорных клеточных липидов поджелудочной железы. В дальнейшем было показано, что фосфорилированию подвергается фосфатидилинозитол. В настоящее время известно, что фосфорилирование фосфатидилинозитола, а также ещё одного глицеролипида — диацилглицерола, происходит в процессе внутриклеточной передачи сигнала (сигнальной трансдукции) и является одним из её ключевых моментов [7].

Другими известными процессами фосфорилирования липидов являются фосфорилирование долихола в процессе N-гликозилирования белков в эндоплазматическом регикулуме [8] и фосфорилирование церамида в эндоплазматическом ретикулуме и в синаптосомальных пузырьках [9, 10]. Наиболее изученными каноническими липидкиназами млекопитающих являются киназы глицерофосфолипидов и сфинголипидов, которые будут рассмотрены в данном обзоре.

4. ВЫВОДЫ.

1. Впервые показано, что иммуноглобулины класса G молока человека образуют прочные нековалентные комплексы с минорными липидами необычной структуры, которые фосфорилируются под действием этих антител в присутствии нуклеотидов. Доказано, что липидкиназная активность IgG и обнаруженное ранее sIgA-зависимое фосфорилирование липидов являются собственным свойством этих иммуноглобулинов.

2. Впервые показано, что небольшие фракции иммуноглобулинов класса, А и G из молока человека обладают способностью фосфорилировать прочно связанные с ними олигои полисахариды необычной структуры, при этом киназная активность является собственным свойством slgA и IgG. Показано, что фосфорилированные олигои полисахариды слабо гидролизуются известными гликозидазами, что свидетельствует о том, что они являются разветвленными гетеросахаридами, мономеры которых связаны между собой гликозидными связями разного типа.

3. Показано, что slgA и IgG могут использовать в реакциях фосфорилирования липидов, олигои полисахаридов в качестве донора фосфата не только АТР, но и другие рибонуклеозиди дезоксирибонуклеозидтрифосфаты, а также уникальный субстрат — ор/яофосфат. При этом, в присутствии ор/иофосфата фосфорилирование часто протекает более эффективно, чем в случае АТР.

4. Показано, что антитела молока человека характеризуются несколькими значениями Км в реакциях фосфорилирования липидов и олигосахаридов, что подтверждает их каталитическую гетерогенность. Каталитические активности slgA и IgG в реакциях фосфорилирования и их сродство к ор/иофосфату и АТР сильно варьируют в зависимости от донора молока.

Показать весь текст

Список литературы

  1. Г. А., Канышкова Т. Г., Бунева В. Н. Природные каталитически активные антитела (абзимы) в норме и при патологии. Биохимия. 2000. Т. 65. С. 1473−1478.
  2. А.Г., Матюшин В. Г., Власов А. В., Забара В. Г., Наумов В. А., Жьеже Р., Бунева В. Н., Невинский Г. А. ДНК- и РНК-гидролизующие антитела из крови больных различными формами вирусного гепатита. Биохимия. 1997. Т. 62. С. 1590−1599.
  3. Nevinsky, G.A., Favorova, О.О., Buneva, B.N. Protein-protein interactions. A molecular cloning manual (Ed. Golemis, E.). New York.: Cold Spring Harbor Lab. Press. 2002. P. 523−534.
  4. Nevinsky G.A., Buneva V.N. Catalytic antibodies in healthy humans and patients with autoimmune and viral diseases. J. Cell. Mol. Med. 2003. V. 7 (3). P. 265−276.
  5. Nevinsky, G.A., Buneva, V.N. Natural catalytic antibodies abzymes. In: Catalytic antibodies (E. Keinan, Eds). Germany: VCH-Wiley press. 2004. P. 503−567.
  6. Т.Г., Бунева B.H., Невинский Г. А. Биологические функции молока человека и его компонентов. Успехи совр. биол. 2002. Т. 122 (3). С. 235−271.
  7. В.А. Фосфоинозитидный обмен и регуляция ионов Са2+. Биохимия. 1998. Т. 63. С. 47−56.
  8. Burton W.A., Scher M.G., Waechetere C.J. Enzymatic phosphorylation of dolichol in central nervous tissue. Jour. Biol. Chem. 1979. V. 254. P. 7129−7136.
  9. Bajjalieh S.M., Martin T.F., Floor E. Synaptic vesicle ceramide kinase. A calcium-stimulated lipid kinase that co-purifies with brain synaptic vesicles. Jour. Biol. Chem. 1989. V. 264. P. 14 354−14 360.
  10. Kolesnick R.N., Hemer M.R. Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity. Jour. Biol. Chem. 1990. V. 265. P. 18 803−18 808.
  11. Kapeller R., Cantley L.C. Phosphatidylinositol 3-kinase. BioEssays. 1994. V. 16 (8). P. 565 576.
  12. Hamburger A.W., Yoo Y. Phosphatidylinositol 3-kinase mediates heregulin-induced growth inhibition in human epithelial cells. Anticancer Res. 1997. V. 17 (3C). P. 2197−2000.
  13. Fry M.J. Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Res. 2001. V. 3 (5). P. 304−312.
  14. Whitman M., Downes C.P., Keeler M., Keller Т., Cantley L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature. 1988. V. 332(6165). P. 644−646.
  15. Fry M.J., Waterfield M.D. Structure and function of phosphatidylinositol 3-kinase: a potential second messenger system involved in grows control. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1993. V. 340 (1293). P. 337−344.
  16. Anderson K.E., Jackson S.P. Class I phosphoinositide 3-kinases. Int. J. Biochem. Cell Biol. 2003. V. 35 (7). P. 1028−1033.
  17. Stein RC. Prospects for phosphoinositide 3-kinase inhibition as a cancer treatment. (2001) Endocr. Relat. Cancer, 8 (3), 237−248.
  18. Cantrell D.A. Phosphoinositide 3-kinase signalling pathways. J. Cell Sci. 2001. V. 114 (8). P. 1439−1445.
  19. Domin J., Waterfield M.D. Using structure to define the function of phosphoinositide 3-kinase family members. FEBS Letters. 1997. V. 410 (1). P. 91−95.
  20. De Matteis M.A., Di Campli A., Godi A. The role of the phosphoinositides at the Golgi complex. Biochim. Biophys. Acta. 2005. V. 1744 (3). P. 396−405.
  21. Gerhmann Т., Heilmeyer L. Phosphatidylinositol 4-kinases. Eur. J. Biochem. 1998. V. 253. P. 357−370.
  22. Loijens J.C., Anderson R.A. Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J. Biol. Chem. 1996. V. 271 (51). P. 329−243.
  23. Э.В. Зависимость биоэффекторных свойств сфинголипидов от строения их гидрофобного фрагмента. Биохимия. 1998. V. 63 (1). Р. 67−74.
  24. Baumruker Т., Bornancin F., Billich A. The role of sphingosine and ceramide kinases in inflammatory responses. Immunol. Lett. 2005. V. 96 (2). P. 175−185.
  25. Mitsutake S., Kim T.J., Inagaki Y., Kato M., Yamashita Т., Igarashi Y. Ceramide kinase is a mediator of calcium-dependent degranulation in mast cells. J. Biol. Chem. 2004. V. 279 (17). P. 17 570−17 577.
  26. С., Кувилье О., Эдзаль JL, Кохама Т., Мензелеев Р., Оливера А., Томас Д., Ту 3., Дж. ван Бруклин, Ф. Ванг. Роль сфингозин 1-фосфата в росте, дифференцировке и смерти клеток. Биохимия. 1998. Т. 63 (1). С. 83−88.
  27. Olivera A., Spiegel S. Sphingosine kinase: a mediator of vital cellular functions. Prostaglandins. 2001. V. 64 (1−4). P. 123−134.
  28. Liu H., Chakravarty D., Maceyka M., Milstien S., Spiegel S. Sphingosine kinases: a novel family of lipid kinases. Prog. Nucleic Acid Res. Mol. Biol. 2002. V. 71. P. 493−511.
  29. Bajjalieh S.M., Martin T.F., Floor E. Synaptic vesicle ceramide kinase. A calcium-stimulated lipid kinase that co-purifies with brain synaptic vesicles. J. Biol. Chem. 1989. V. 264. P. 1 435 414 360.
  30. Sugiura M., Kono K., Liu H., Shimizugawa Т., Minekura H., Spiegel S., et al. Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization. J. Biol. Chem.2002. V. 277. P. 23 294−23 300.
  31. Billich A., Bornancin F., Devay P., Mechtcheriakova D., Urtz N., Baumruker T. Phosphorylation of the imunomodulatory drug FTY720 by sphingosine kinases. J. Biol. Chem.2003. V. 278. P. 47 408−47 415.
  32. Pyne S., Pyne N.J. Sphingosine 1-phosphate signalling in mammalian cells. Biochem. J. 2000. V. 349 (2). P. 385−402.
  33. Gorbunov D.V., Semenov D.V., Shipitsin M.V., Kit Yu.Yu., Kanyshkova T.G., Buneva V.N., Nevinsky G.A. Phosphorylation of Minor Lipids of Human Milk Tightly Bound to Secretory Immunoglobulin A. Rus. J. Immunol. 2000. V. 5. P. 267−278.
  34. , C.M. Иммуноглобулины. Белки и пептиды. М.: Наука. 1995. С. 319−329.
  35. Webster D.M., Henry А.Н., Rees A.R. Antibody-antigen interactions. Curr. Opinion in Structural Biology. 1994. V. 4. P. 123−129.
  36. Davies D.R., Cohen G.H. Interactions of protein antigens with antibodies. PNAS. USA. 1996. V. 93. P. 7−12.
  37. Padlan E.A. On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. Proteins. 1990. V. 7. P. 112−124.
  38. Epp 0., Lattman E.E., Schiffer M., Huber R., Palm W. The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI refined at 2.0-A resolution. Biochem. 1975. V. 14. P. 4943−4952.
  39. Golinelli-Pimpaneau В., Gigant В., Bizebard Т., Navaza J., Saludjian P., Zemel R., Tawfik D.S., Eshhar Z., Green B.S., Knossow M. Crystal structure of a catalytic antibody Fab with esterase-like activity. Structure. 1994. V. 2. P. 175−183.
  40. Smith T.J., Chase E.S., Schmidt T.J., Olson N.H., Baker T.S. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature. 1996. V. 383. P. 350−354.
  41. Braden B.C., Fields B.A., Poljak R.J. Conservation of water molecules in an antibody-antigen interaction. J. Mol. Recognit. 1995. V. 8. P. 317−325
  42. И.И., Новиков Д. К. Поликлональные каталитические антитела и их возможное биологическое значение. Успехи современной биологии. 1998. Т. 118 (2). С. 179−192.
  43. Pauling L. Molecular basis of biological specificity. Am. Scientist. 1948. V. 36. P. 51−59.
  44. Jencks, W. Catalysis in chemistry and enzymology. N.Y.: McGraw-Hill. 1969.
  45. Raso V., Stollar B.D. The antibody-enzyme analogy. Comparison of enzymes and antibodies specific for phosphopyridoxyltyrosine. Biochemistry. 1975. V. 14 (3). P. 591−599.
  46. Raso V., Stollar B.D. The antibody-enzyme analogy. Characterization of antibodies to phosphopyridoxyltyrosine derivatives. Biochemistry. 1975. V. 14 (3). P. 584−591.
  47. Tramontano A., Janda K.D., Lerner R.A. Catalytic antibodies. Science. 1986. V. 234 (4783). P. 1566−1570.
  48. Pollack S.J., Jacobs J.W., Schultz P.G. Selective chemical catalysis by an antibody. Science. 1986. V. 234 (4783). P. 1570−1573.
  49. A.M., Гололобов Г. В., Квашук О. А., Габибов А. Г. Антиидиотипические и природные каталитически активные антитела. Мол. биол. 1991. Т. 25. С. 593−602.
  50. Schultz P.G., Lerner R.A. From molecular diversity to catalysis: lessons from the immune system. Science. 1995. V. 269. P. 1835−1842.
  51. Thomas N.R. Hapten design for the Generation of catalytic antibodies. Appl. Biochem. Biotechnol. 1994. V. 47. P. 345−372.
  52. Г. А., Семенов Д. В., Бунева B.H. Каталитически активные антитела (абзимы), индуцированные химически стабильными аналогами переходных состояний. Биохимия. 2000. Т. 65 (И). С. 1459−1472.
  53. , М., Уэбб, Э. Ферменты, т. 1−3. М.: Мир. 1982.
  54. А. Структура и механизм действия ферментов. М.: Мир. 1980. С. 191−210.
  55. Tramontano A., Janda K.D., Lerner R.A. Chemical reactivity at an antibody binding site elicited by mechanistic design of a synthetic antigen. Proc. Natl. Acad. Sci. USA. 1986. V. 83 (18). P. 6736−6740.
  56. Na J., Houk K. N., Hilvert D. Transition State of the Base-Promoted Ring-Opening of Isoxazoles. Theoretical Prediction of Catalytic Functionalities and Design of Haptens for Antibody Production. J. Am. Chem. Soc. 1996. V. 118. P. 6462−6471.
  57. Tantillo D.J., Leach A.C., Zhang X., Houk K.N. Theoretical Studies of Antibody catalysis. In: Catalytic antibodies (E. Keinan, Eds). Germany, VCH-Wiley press, 72−117.
  58. Chen J., Deng Q., Wang R., Houk K., Hilvert D. Shape complementarity, binding-site dynamics, and transition state stabilization: a theoretical study of Diels-Alder catalysis by antibody 1E9. Chembiochem. 2000. V. 1 (4). P. 255−261.
  59. Gouvemeur V.E., Houk K.N., de Pascual-Teresa B" Beno В., Janda K.D., Lerner R. Control of the exo and endo pathways of the Diels-Alder reaction by antibody catalysis. Science. 1993. V. 262. P. 204−208.
  60. Heine A., Stura E.A., Yli-Kauhaluoma J.T., Gao C., Deng Q., Beno B.R., Houk K.N., Janda K.D., Wilson I.A. An antibody exo Diels-Alderase inhibitor complex at 1.95 angstrom resolution. Science. 1998. V. 279 (5358). P. 1934−1940.
  61. J., Lerner R.A., Barbas C.F. 3rd. Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes. Science. 1995. V. 270 (5243). P. 1797−1800.
  62. Janda K.D., Lo L.C., Lo C.H.L., Sim M.M., Wang R., Wong C.H., Lerner R. Chemical selection for catalysis in combinatorial antibody libraries. Science. 1997. V. 275. P. 945−948.
  63. H.K. Каталитические антитела. Соросовский образовательный журнал. 1996. Т. 8. С. 23−31.
  64. Lerner R.A., Tramontano A. Catalytic antibodies. Sci. Am. 1988. V. 258 (3). P. 58−60.
  65. Blackburn G.M., Kang A.S., Kingsbury G.A., Burton D.R. Catalytic antibodies. Biochem. J. 1989. V. 262 (2). P. 381−390.
  66. Shokat K.M., Schultz P.G. Catalytic antibodies. Annu. Rev. Immunol. 1990. V. 8. P. 335−363.
  67. Lerner R.A., Benkovic S.J., Schultz P.G. At the crossroads of chemistry and immunology: catalytic antibodies. Science. 1991. V. 252 (5006). P. 659−667.
  68. Benkovic S.J. Catalytic antibodies. Annu. Rev. Biochem. 1992. V. 61. P. 29−54.
  69. Hanson C.V., Nishiyama Y., Paul S. Catalytic antibodies and their applications. Curr. Opin. Biotechnol. 2005. V. 16 (6). P. 631−636.
  70. Sastry L., Mubaraki M., Janda K.D., Benkovic S.J., Lerner R.A. Screening combinatorial antibody libraries for catalytic acyl transfer reactions. Ciba Found. Symp. 1991. V. 159. P. 145 151.
  71. Roberts V.A., Stewart J., Benkovic S.J., Getzoff E.D. Catalytic antibody model and mutagenesis implicate arginine in transition-state stabilization. J. Mol. Biol. 1994. V. 235 (3). P. 1098−1116.
  72. Stewart J.D., Krebs J.F., Siuzdak G., Berdis A.J., Smithrud D.B., Benkovic S.J. Dissection of an antibody-catalyzed reaction. Proc. Natl. Acad. Sci. USA. 1994. V. 91 (16). P. 7404−7409.
  73. Guo J., Huang W" Zhou G.W., Eetterick R.J., Scanlan T.S. Mechanistically different catalytic antibodies obtained from immunization with a single transition-state analog. Proc. Natl.Acad. Sci. USA. 1995. V. 92 (5). P. 1694−1698.
  74. Miller G.P., Posner B.A., Benkovic S.J. Expanding the 43C9 class of catalytic antibodies using a chain-shuffling approach. Bioorg. Med. Chem. 1997. V. 5 (3). P. 581−590.
  75. Shabat D., Itzhaky H., Reymond J.L., Keinan E. Antibody catalysis of a reaction otherwise strongly disfavoured in water. Nature. 1995. V. 374 (6518). P. 143−146.
  76. Brik A., Keinan E. Catalytic antibodies in natural products synthesis. Theoretical Studies of Antibody catalysis. In: Catalytic antibodies (E. Keinan, Eds). Germany: VCH-Wiley press. 2004. P. 132−151.
  77. S.C., Barbas C.F. 3rd, Lerner R.A. The antibody catalysis route to the total synthesis of epothilones. Proc. Natl. Acad. Sci. USA. 1998. V. 95 (25). P. 14 603−14 608.
  78. Jerne N.K. Towards a network theory of the immune system. Ann. Immunol. 1974. V. 125. P. 373−398.
  79. Shuster A.M., Gololobov G.V., Kvashuk O.A., Bogomolova A.E., Smimov I.V., Gabibov A.G. DNA hydrolyzing autoantibodies. Science. 1992. V. 256. P. 665−667.
  80. Puzzetti A., Madaio M.P., Bellese G., Migliorini P. Anti-DNA antibodies bind to DNase I. J. Exp. Med. 1995. V. 181. P. 1797−1804.
  81. P.M., Игнатьева Г. А., Сидорович И. Г. Иммунология. М.: Медицина. 2000.
  82. Paul S., Voile D.J., Beach С.М., Johnson D.R., Powell M.J., Massey R.J. Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody. Science. 1989. V. 244 (4909). P. 11 581 162.
  83. Slobin L.I. Preparation and some properties of antibodies with specificity toward p-nitrophenyl esters. Biochemistry. 1966. V. 5. P. 2836−2841.
  84. А., Дочева В., Тарханова И. А., Спивак В. А. О протеолитической активности в препаратах очищенного иммуноглобулина G и антител кролика. Биохимия. 1969. Т. 34. С. 1178−1183.
  85. Shuster A.M., Gololobov G.V., Kvashuk O.A., Bogomolova A.E., Smimov I.V., Gabibov
  86. A.G. DNA hydrolyzing autoantibodies. Science. 1992. V. 256 (5057). P. 665−667.
  87. B.H., Андриевская O.A., Романникова И. В., Гололобов Г. В., Ядав Р.П., Ямковой
  88. B.И., Невинский Г. А. Взаимодействие каталитически активных антител с олигорибонуклеотидами. Молекуляр. биология. 1994. Т. 28. С. 738−743.
  89. Li L., Paul S., Tyutyulkova S., Kazatchkine M.D., Kaveri S. Catalytic activity of anti-thyroglobulin antibodies. J. Immunol. 1995. V. 154 (7). P. 3328−3332.
  90. Kalaga R., Li L., O’Dell J.R., Paul S. Unexpected presence of polyreactive catalytic antibodies in IgG from unimmunized donors and decreased levels in rheumatoid arthritis. J. Immunol. 1995. V. 155 (5). P. 2695−26 702.
  91. Savel’ev A.N., Eneyskaya E.V., Shabalin K.A., Filatov M.V., Neustroev K.N. Antibodies with amylolytic activity. Protein Peptide Lett. 1999. V. 6. P. 179−184.
  92. Vlassov A., Florentz C., Helm M., Naumov V., Buneva V., Nevinsky G., Giege R. Characterization and selectivity of catalytic antibodies from human serum with RNase activity. Nucleic Acids Res. 1998. V. 26 (23). P. 5243−5250.
  93. Gololobov G.V., Mikhalap S.V., Starov A.V., Kolesnikov A.F., Gabibov A.G. DNA-protein complexes. Natural targets for DNA-hydrolyzing antibodies. Appl. Biochem. Biotechnol. 1994. V. 47 (2). P. 305−314.
  94. B.H., Кудрявцева A.H., Гальвита A.B., Дубровская В. В., Хохлова О. В., Калинина И. А., Галенок В. А., Невинский Г. А. Динамика уровня нуклеазной активности антител крови женщины во время беременности и лактации. Биохимия. 2003. Т. 68. С. 1088−1100.
  95. Kit Y.Y., Kim А.А., Sidorov V.N. Affinity-purified secretory immunoglobulin A possesses the ability to phosphorylate human milk casein. Biomed. Sci. 1991. V. 2. P. 201−204.
  96. Кит Ю.Я., Семенов Д. В., Невинский Г. А. Существуют ли каталитически активные антитела у здоровых людей? Молекуляр. биология. 1995. Т. 29. С. 519−526.
  97. Buneva V.N., Kanyshkova T.G., Vlassov A.V., Semenov D. V, Khlimankov D.Yu., Breusova L.R., Nevinsky G.A. Catalytic DNA- and RNA-hydrolyzing antibodies from milk of healthy human mothers. Appl. Biochem. Biotechnol. 1998. V. 75 (1). P. 63−76.
  98. Savel’ev A.N., Kanyshkova T.G., Kulminskaya A.A., Buneva V.N., Eneyskaya E.V., Filatov M.V., Nevinsky G.A., Neustroev K.N. Amylolytic activity of IgG and slgA immunoglobulins from human milk. Clin. Chim. Acta. 2001. V. 314 (1−2). P. 141−152.
  99. Mohan C., Adams S., Stanik V., Datta S.K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 1993. V. 177 (5). P. 1367−1381.
  100. Amino N., Tada H., Hidaka Y. Postpartum autoimmune thyroid syndrome: a model of aggravation of autoimmune disease. Thyroid. 1999. V. 9 (7). P. 705−713.
  101. Tanaka A., Lindor K., Ansari A., Gershwin M.E. Fetal microchimerisms in the mother: immunologic implications. Liver Transpl. 2000. V. 6 (2). P. 138−143.
  102. Freeman R., Rosen H., Thysen B. Incidence of thyroid dysfunction in an unselected postpartum population. Arch. Intern. Med. 1986. V. 146 (7). P. 1361−1364.
  103. Nevinsky G.A., Kit Y.Ya., Semenov D.V., Khlimankov D.Yu., Buneva V.N. Secretory immunoglobulin A from human milk catalyzes milk protein phosphorylation. Appl. Biochem. Biotechnol. 1998. V. 75 (1). P. 77−91.
  104. Kit Y.Y., Semenov D.V., Nevinsky GA. Phosphorylation of different human milk proteins by human catalytic secretory immunoglobulin A. Biochem. Mol. Biol. Intern. 1996. V. 39. P. 521−527.
  105. Gorbunov D.A., Semenov D.V., Shipitsin M.V., Nevinsky G.A. Unusual phospholipids of human breast milk. Dokl. Biochem. Biophys. 2001. V. 377. P. 62−64.
  106. Kanyshkova T.G., Semenov D.V., Khlimankov D.Yu., Buneva V.N., Nevinsky G.A. DNA-hydrolyzing activity of the light chain of IgG antibodies from milk of healthy human mothers. FEBS Lett. 1997. V. 416 (1). P. 23−26.
  107. Nevinsky G.A., Kanyshkova T.G., Semenov D.V., Vlassov A.V., Gal’vita A.V., Buneva V.N. Secretory immunoglobulin A from healthy human mothers' milk catalyzes nucleic acid hydrolysis. Appl. Biochem. Biotechnol. 2000. V. 83 (1−3). P. 115−129.
  108. Nevinsky, G.A., Buneva, V.N. Human catalytic RNA- and DNA-hydrolyzing antibodies. J. Immunol. Methods. 2002. V. 269. P. 235−245.
  109. Savel’ev A.N., Eneyskaya E.V., Shabalin K.A. Autoantibodies with amylolytic activity. Prot. Pept. Lett. 1999. V. 6. P. 179−184.
  110. Stewart J.D., Bencovic S.J. Catalytic antibodies: mechanistic and practical considerations. Chem. Soc. Rev. 1993. V. 22. P. 213−219.
  111. Kalaga R., James L.L., O’Dell J.R., Paul S. Unexpected presence of polyreactive catalytic antibodies in IgG from unimmunized donors and decreased levels in rheumatoid arthritis. J. Immunol. 1995. V. 155. P. 2695−2702.
  112. Xanthou M. Immune protection of human milk. Biol. Neonate. 1998. V. 74. P. 121−133.
  113. Mestecky J., Russell M.W., Jackson S., Brown T.A. The human IgA system: a reassessment. Clin. Immunol. Immunopathol. 1986. V. 40 (1). P. 105−114.
  114. Mazanec M.B., Nedrud J.G., Kaetzel C.S., Lamm M.E. A three-tiered view of the role of IgG in mucosal defense. Immunol. Today. 1993. V. 14. P. 430−435.
  115. Gregory R.L., Kindle J.C., Hobbs L.C., Filler S.J., Malmstrom H.S. Function of anti-Streptococcus mutans antibodies: inhibition of virulence factors and enzyme neutralization. Oral Microbiol. Immunol. 1990. V. 5 (4). P. 181−188.
  116. Kim K., Keller M. A., Heiner D.C. Immunoglobulin G subclasses in human colostrum, milk and saliva. Acta Paediatr. 1992. V. 91. P. 113−118.
  117. Bahna S. I., Keller M. A., Heiner D. C. IgE and IgD in human colostrum and plasma. Pediatr. Res. 1962. V. 20. P. 604−607.
  118. Г., Гуд P. Иммуноглобулины. M.: Мир. 1981. С. 104−111.
  119. В.И. Иммунология репродукции. М.: Медицина. 1987. С. 304.
  120. Zaman S., Carlsson В., Morikawa A., Jeansson S., Narayanan I., Thiringer K., Jalil F., Hanson L.A. Poliovirus antibody titres, relative affinity, and neutralising capacity in maternal milk. Arch. Dis. Child. 1993. V. 68 (2). P. 198−201.
  121. Hjelt K., Grauballe P.C., Nielsen O.H., Schiotz P.O., Krasilnikoff P.A. Rotavirus antibodies in the mother and her breast-fed infant. J. Pediatr. Gastroenterol. Nutr. 1985. V. 4 (3). P. 414 420.
  122. Jensen R.G., Ann M.F., Carol J. L-K. Lipids of human milk and infant formulas. Annu. Rev. Nutr. 1992. V. 12. P. 417−441.
  123. Sauerwald T.U., Demmelmair H., Koletzko B. Polyunsaturated fatty acid supply with human milk. Lipids. 2001. V. 36 (9). P. 991−6.
  124. Koletzko В., Rodriguez-Palmero M., Demmelmair H., Fidler N., Jensen R., Sauerwald T. Physiological aspects of human milk lipids. Early Hum. Dev. 2001. V. 65. P. 3−18.
  125. Koletzko В., Rodriguez-Palmero M. Polyunsaturated fatty acids in human milk and their role in early infant development. J. Mammary Gland Biol. Neoplasia. 1999. V. 4 (3). P. 269−284.
  126. Rueda R., Maldonado J., Narbona E., Gil A. Neonatal dietary gangliosides. Early Hum. Dev. 1998.V. 53. P. 135−147.
  127. Nakano Т., Sugawara M., Kawakami H. Sialic acid in human milk: composition and functions. Acta Paediatr. Taiwan. 2001. V. 42 (1). P. 11−17.
  128. Thormar H., Isaacs C.E., Brown H.R., Barshatzky M.R., Pessolano T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 1987. V. 31 (1). P. 27−31.
  129. Hernell O., Ward H., Blackberg L., Pereira M.E. Killing of Giardia lamblia by human milk lipases: an effect mediated by lipolysis of milk lipids. J. Infect. Dis. 1986. V. 153 (4). P. 715 720.
  130. Newburg D.S. Oligosaccharides and glycoconjugates in human milk: their role in host defense. J. Mammary Gland Biol. Neoplasia. 1996. V. 1 (3). P. 271−283.
  131. Viverge D., Grimmonprez L., Cassanas G., Bardet L., Solere M. Variations in oligosaccharides and lactose in human milk during the first week of lactation. J. Pediatr. Gastroenterol Nutr. 1990. V. 11 (3). P. 361−364.
  132. Newburg D.S. Do the binding properties of oligosaccharides in milk protect human infants from gastrointestinal bacteria? J. Nutr. 1997. V. 127 (5). P. 980−984.
  133. Coppa G.V., Bruni S., Morelli L., Soldi S., Gabrielli O. The first prebiotics in humans: human milk oligosaccharides. J. Clin. Gastroenterol. 2004. V. 38 (6). P. 80−83.
  134. Newburg D.S., Ruiz-Palacios G.M., Morrow A.L. Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 2005. V. 25. P. 37−58.
  135. Coppa G.V., Gabrielli 0., Giorgi P., Catassi C., Montanari M.P., Varaldo P.E., Nichols B.L. Preliminary study of breastfeeding and bacterial adhesion to uroepithelial cells. Lancet. 1990. V. 335(8689). P. 569−571.
  136. Martin-Sosa S., Martin M.J., Hueso P. The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. J. Nutr. 2002. V. 132 (10). P. 3067−3072.
  137. Andersson В., Porras O., Hanson L.A., Lagergard Т., Svanborg-Eden C. Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. J. Infect. Dis. 1986. V. 153 (2). P. 232−237.
  138. Peterson J.A., Patton S., Hamosh M. Glycoproteins of the human milk fat globule in the protection of the breast-fed infant against infections. Biol. Neonate. 1998. V. 74 (2). P. 143−162.
  139. Newburg D.S., Linhardt R.J., Ampofo S.A., Yolken R.H. Human milk glycosaminoglycans inhibit HIV glycoprotein gpl20 binding to its host cell CD4 receptor. J. Nutr. 1995. V. 125 (3). P. 419−424.
  140. , Г. Иммунологические методы. М.: Медицина. 1987.
  141. Ghosh S., Gepstein S., Heikkila J.J., Dumbroff E.B. Use of a scanning densitometer or an ELISA plate reader for measurement of nanogram amounts of protein in crude extracts from biological tissues. Anal. Biochem. 1988. V. 169 (2). P. 227−33.
  142. , JI.А. Методы исследования белков и нуклеиновых кислот: электрофорез и центрифугирование. М.: Наука. 1981. С. 70−71.
  143. Merril C.R., Goldman D., van Keuren M.L. Gel protein stains: silver stain. Methods Enzymol. 1984. V. 104. P. 441−447.
  144. Suelter C.H. A particial guide to enzymology. Biochemistry: A series of monographs. 1985. P. 164−166.
  145. Towbin H., Staehelin Т., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 1976. V. 9. P. 4350−4356.
  146. Harlow, E., Lane, D. Antibodies: A laboratory manual. Cold Spring Harbor, N. Y.: Cold Spring Harbor Laboratory Press. 1988. P. 630−631.
  147. , Я. Аффинная хроматография. М.: Мир. 1980. С. 190−191.
  148. Т.Г. Нуклеазные активности антител и лактоферрина молока человека. Диссертация на соискание уч. степени канд. хим. наук. Новосибирск. 1999.
  149. Д.В. Нуклеотид-гидролизующая активность иммуноглобулинов и лактоферрина молока человека. Диссертация на соискание уч. степени канд. хим. наук. Новосибирск. 1998.
  150. Akerstrom В., Bjorck L. A physicochemical study of protein G, a molecule with unique immunoglobulin G-binding properties. J. Biol. Chem. 1986. V. 261 (22). P. 10 240−10 247.
  151. А.Г. Нуклеазные активности антител при рассеянном склерозе. Диссертация на соискание уч. степени канд. хим. наук. Новосибирск. 2004.
  152. Jensen, R.G. The lipid of human milk. Boca Raton, R: CRC Press. 1989. P. 65−92.
  153. Wiegant, H. Glycolipids. Amsterdam.: Elsevier. 1985.
  154. Meyer zu, Heringdorf D., van Koppen C.J., Jakobs K.H. Molecular diversity of sphingolipid signalling. FEBS Lett. 1997. V. 410 (1). P. 34−38.
  155. Kates, M. Techniques of lipidology. New York.: Elsevier. 1972.
  156. Pan X.L., Izumi T. Variation of the ganglioside compositions of human milk, cow’s milk and infant formulas. Early Hum. Dev. 2000. V. 57 (1). P. 25−31.
  157. Pan X.L., Hua Т., Wu Y. Detection of gangliosides in human milk with a high performance thin layer chromatography (HPTLC). Zhonghua Yu Fang Yi Xue Za Zhi. 2001. V. 35 (2). P. 111−113.
  158. P. Гликопротеины: Пер. с англ. М.: Мир. 1985. С. 140.
  159. О.А. РНК-гидролизующие антитела из сыворотки крови больных системной красной волчанкой. Диссертация на соискание уч. степени канд. хим. наук. Новосибирск. 1998.
  160. Kasho V.N., Baykov А.А. Two pathways for phosphate/water oxygen exchange by yeast inorganic pyrophosphatase. Biochem. Biophys. Res. Commun. 1989. V. 161 (2). P. 475−480.
  161. Smirnova I.N., Shestakov A.S., Dubnova E.B., Baykov A.A. Spectral and kinetic studies of phosphate and magnesium ion binding to yeast inorganic pyrophosphatase. Eur. J. Biochem. 1989. V. 182 (2). P. 451−456.
  162. Shestakov A.A., Baykov A.A., Avaeva S.M. Tightly bound pyrophosphate in Escherichia coli inorganic pyrophosphatase. FEBS Lett. 1990. V. 262 (2). P. 194−196.
  163. Simpson D.A., Hausinger R.P., Mulks M.H. Purification, characterization, and comparison of the immunoglobulin A1 proteases of Neisseria gonorrhoeae. J. Bacteriol. 1988. V. 170 (4). P. 1866−1873.
  164. Nevinsky G.A., Buneva V.N. Human catalytic RNA- and DNA-hydrolyzing antibodies. J. Immunol. Methods. 2002. V. 269 (1−2). P. 235−249.
  165. Mei S., Mody В., Eklund S.H., Paul S. Vasoactive intestinal peptide hydrolysis by antibody light chains. J. Biol. Chem. 1991. V. 266 (24). P. 15 571−15 574.
  166. Д.В. Каталитические антитела. Молекулярная биология. 1997. Т. 31 (1). С. 515.
Заполнить форму текущей работой