Молекулярный механизм реакций расщепления и элонгации РНК-транскрипта, катализируемых ДНК-зависимой РНК-полимеразой E. coli
Диссертация
Что касается механизма стимулирующего действия GreB. то из-за низкого разрешения кристаллов комплекса авторы не могут точно сказать, прямо Gre белки участвуют в катализе реакции, предоставляя инвариантные остатки NTD D41 и Е44 для координации каталитического иона Mg-II. или индуцируют какое-то аллостерическое изменение в структуре РНКП. Расстояние от кислых а.к. остатков GreB D41 и Е44 до сайта… Читать ещё >
Список литературы
- Кульбачинский А. (2003), кандидатская диссертация, Институт молекулярной генетики РАН, Москва.
- Николаев Т. (1999), дипломная работа, Институт молекулярной генетики РАН, Москва.
- Сосунов В. (2003), кандидатская диссертация, Институт молекулярной биологии РАН, Москва.
- Лурье Ю. (1989) Учебник по аналитической химии, Химия, Москва
- Agarwal К., Baek К.Н., Jeon С.J., Miyamoto К., Ueno A., Yoon H.S. (1991) Stimulation of transcript elongation requires both the zinc finger and RNA polymerase II binding domains of human TFIIS. Biochemistry, 30- 7842−51.
- Armache K.J., Kettenberger H., Cramer P. (2003) Architecture of initiation-competent 12-subunit RNA polymerase II. Proc Natl Acad Sci USA, 100- 6964−8.
- Arndt K.M. and Chamberlin M.J. (1990) RNA chain elongation by Escherichia coli RNA polymerase. Factors affecting the stability of elongating ternary complexes. J. Mol. Biol. 213- 79−108.
- Artsimovitch I., Landick R. (2000) Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci USA, 97- 7090−5.
- Awrey D.E., Weilbaecher R.G., Hemming S.A., Orlicky S.M., Kane C.M., Edwards A.M. (1997) Transcription elongation through DNA arrest sites. A multistep process involving both RNA polymerase II subunit RPB9 and TFIIS. J Biol Chem., 272- 14 747−54.
- Barr J.N., Whelan S.P., Wertz G.W. (2002) Transcriptional control of the RNA-dependent RNA polymerase of vesicular stomatitis virus. Biochim Biophys Acta, 1577- 337−53.
- Beese L.S., Steitz T.A. (1991) Structural basis for the 3−5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBOJ., 10- 25−33.
- Bengal E., Flores O., Krauskopf A., Reinberg D., Aloni Y. (1991) Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase II. Mol Cell Biol, 11- 1195−206.
- Bentley D.L., Groudine M. (1988) Sequence requirements for premature termination of transcription in the human c-myc gene. Cell, 53- 245−56.
- Booth V., Koth C.M., Edwards A.M., Arrowsmith C.H. (2000) Structure of a conserved domain common to the transcription factors TFIIS, elongin A, and CRSP70. J Biol Chem., 275- 31 266−8.
- Borukhov S., Polyakov A., Nikiforov V., Goldfarb A. (1992) GreA protein: a transcription elongation factor from Escherichia coli. Proc Natl Acad Sci USA, 89- 8899−902.
- Borukhov S., Sagitov V., Goldfarb A. (1993a) Transcript cleavage factors from E. coli. Cell, 72- 459−66.
- Borukhov S., Goldfarb A. (1993b) Recombinant Escherichia coli RNA polymerase: purification of individually overexpressed subunits and in vitro assembly. Protein Expr Purif., 4- 503−11.
- Borukhov S., Goldfarb A. (1996) Purification and assay of Escherichia coli transcript cleavage factors GreA and GreB. Methods Enzymol., 274- 315−26.
- Borukhov S., Laptenko O. and Lee J. (2001) Escherichia coli transcript cleavage factors GreA and GreB: functions and mechanisms of action. Methods Enzymol., 342- 64−76.
- Burgess R.R., Jendrisak J.J. (1991) A procedure for the rapid, large-scall purification of Escherichia coli DNA-dependent RNA polymerase involving Polymin P precipitation and DNA-cellulose chromatography. Biochemistry, 14- 4634−8.
- Campbell E.A., Korzheva N., Mustaev A., Murakami K., Nair S., Goldfarb A., Darst S.A. (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 104- 901−12.
- Cipres-Palacin G., Kane C.M. (1994) Cleavage of the nascent transcript induced by TFIIS is insufficient to promote read-through of intrinsic blocks to elongation by RNA polymerase 11. Proc Natl Acad Sci USA, 91- 8087−91.
- Cipres-Palacin G., Kane C.M. (1995) Alanine-scanning mutagenesis of human transcript elongation factor TFIIS. Biochemistry, 34- 15 375−80.
- Cech T.R. (1990) Self-splicing of group I introns. Annu Rev Biochem., 59- 543−68.
- Cech T.R. (1993) Catalytic RNA: structure and mechanism. Biochem Soc Trans., 21−229.34.
- Chang C.H., Luse D.S. (1997) The H3/H4 tetramer blocks transcript elongation by RNA polymerase II in vitro. J Biol Chem., 272- 23 427−34.
- Chedin S., Riva M., Schultz P., Sentenac A., Carles C. (1998) The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. Genes Dev. 12- 3857−71.
- Christie K.R., Awrey D.E., Edwards A.M., Kane C.M. (1994) Purified yeast RNA polymerase II reads through intrinsic blocks to elongation in response to the yeast TFIIS analogue, P37. J Biol Chem., 269- 936−43.
- Conaway R.C., Kong S.E., Conaway J.W. (2003) TFIIS and GreB: two like-minded transcription elongation factors with sticky fingers. Cell, 114- 272−4.
- Costa P.J., Arndt K.M. (2000) Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtfl protein in transcription elongation.Genetics, 156- 535−47.
- Cramer P., Bushnell D.A., Fu J., Gnatt A.L., Maier-Davis В., Thompson N.E., Burgess R.R., Edwards A.M., David P.R., Kornberg R.D. (2000) Architecture of RNA polymerase II and implications for the transcription mechanism. Science, 288- 640−9.
- Cramer P., Bushnell D.A., Kornberg R.D. (2001) Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science, 292- 1863−76.
- Cramer P. (2002) Multisubunit RNA polymerases. Curr. Opin. Struct. Biol. l2- 89−97.
- Darst S.A., Kubalek E.W., Kornberg R.D. (1989) Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography. Nature, 340- 730−2.
- Darst S.A., Kubalek E.W., Edwards A.M., Kornberg R.D. (1991) Two-dimensional and epitaxial crystallization of a mutant form of yeast RNA polymerase II. J Mol Biol., 221- 347−57.
- Darst S. A, (2001) Bacterial RNA polymerase. Curr Opin Struct Biol., 11- 155−62.
- Davie J.K., Kane C.M. (2000) Genetic interactions between TFIIS and the Swi-Snf chromatin-remodeling complex. Mol Cell Biol., 20- 5960−73.
- Derbyshire V., Pinsonneault J.K., Joyce C.M. (1995) Structure-function analysis of 3'— >5'-exonuclease of DNA polymerases. Methods Enzymol., 262- 363−85.
- Doherty E.A. and Doudna J.A. (2000) Ribozyme structures and mechanisms. Annu Rev Biochem., 69- 597−615.
- Ebright R.H. (2000) RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J Mol Biol., 304- 687−98.
- Eckstein F., Gindl H. (1970) Polyribonucleotides containing a phosphorothioate backbone. Eur J Biochem., 13- 558−64.
- Eckstein F., Armstrong V.W., Sternbach H. (1976) Stereochemistry of polymerization by DNA-dependent RNA-polymerase from Escherichia coli: an investigation with a diastereomeric ATP-analogue. Proc Natl Acad Sci USA, 73- 2987−90.
- Ederth J., Artsimovitch I., Isaksson L.A., Landick R. (2002) The downstream DNA jaw of bacterial RNA polymerase facilitates both transcriptional initiation and pausing. J Biol Chem., Ill-, 37 456−63.
- Edwards A.M., Kane C.M., Young R.A., Kornberg R.D. (1991) Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J Biol Chem., 266- 71−5.
- Ellinger Т., Behnke D., Bujard H., Gralla J.D. (1994) Stalling of Escherichia coli RNA polymerase in the +6 to +12 region in vivo is associated with tight binding to consensus promoter elements. J Mol Biol., 239- 455−65.
- Epshtein V., Mustaev A., Markovtsov V., Bereshchenko O., Nikiforov V., Goldfarb A. (2002) Swing-gate model of nucleotide entry into the RNA polymerase active center. Mol Cell, 10- 623−34.
- Erie D.A., Hajiseyedjavadi O., Young M.C., von Hippel P.H. (1993) Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. Science, 262- 86 773.
- Exinger F., Lacroute F. (1992) 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr Genet., 22- 9−11.
- Fedor M.J. (2000) Structure and Function of the Hairpin Ribozyme. J. Mol. Biol., 297- 269−291.
- Fish R.N., Kane C.M. (2002) Promoting elongation with transcript cleavage stimulatory factors. Biochim Biophys Acta, 1577- 287−307.
- Furter-Graves E.M., Hall B.D., Furter R. (1994) Role of a small RNA pol II subunit in TATA to transcription start site spacing. Nucleic Acids Res., 22- 4932−6.
- Galburt E.A., Chevalier В., Tang W., Jurica M.S., Flick K.E., Monnat R.Jr., Stoddard B.L. (1999) A novel endonuclease mechanism directly visualized for I-Ppol. Nat Struct Biol., 6- 1096−9.
- Gnatt A.L., Cramer P., Fu J., Bushnell D.A., Kornberg R.D. (2001) Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science, 292(5523): 1876−82.
- Gnatt A.L. (2002) Elongation by RNA polymerase II: structure-function relationship. Biochim Biophys Acta, 1577(2) — 175−90.
- Gribskov M., Burgess R.R. (1983) Overexpression and purification of the sigma subunit of Escherichia coli RNA polymerase. Gene, 26(2−3) — 109−118.
- Gross С.A., Chan С., Dombroski A., Gruber Т., Sharp M. f Tupy J., Young B. (1998) The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb. Symp. Quant. Biol. 63- 141−155.
- Guo H., Price D.H. (1993) Mechanism of DmS-II-mediated pause suppression by Drosophila RNA polymerase II. J Biol Chem., 268- 18 762−70.
- Hagler J., Shuman S. (1993) Nascent RNA cleavage by purified ternary complexes of vaccinia RNA polymerase. J Biol Chem., 268- 2166−73.
- Hausner W., Lange U., Musfeldt M. (2000) Transcription factor S, a cleavage induction factor of the archaeal RNA polymerase. J Biol Chem., 275- 12 393−9.
- Hawley D.K., Wiest D.K., Holtz M.S., Wang D. (1993) Transcriptional pausing, arrest, and readthrough at the adenovirus major late attenuation site. Cell Mol Biol Res., 39- 339−48.
- Higuchi H., Endo Т., Kaji A. (1990) Enzymic synthesis of oligonucleotides containing methylphosphonate internucleotide. Biochemistry, 29- 8747−53.
- Hirai H., Sekimizu K., Horikoshi M., Nakanishi Y., Natori S. (1988) Stimulation of transcription from accurate initiation sites by purified S-II. FEBS Lett., 238- 119−22.
- Hogan B.P., Hartsch Т., Erie D.A. (1995) Transcript cleavage by Thermus thermophilus RNA polymerase. Effects of GreA and anti-GreA factors. J Biol Chem., 277- 967−75.
- Hoard D.E., Ott D.G. (1964) The conversion of mono- and olygodeoxyribonucleotides to their 5'-triphosphates. LA-3132-MS. LA Rep., 127- 242−4.
- Hsu L.M., Vo N.V., Chamberlin M.J. (1995) Escherichia coli transcript cleavage factors GreA and GreB stimulate promoter escape and gene expression in vivo and in vitro. Proc Natl Acad Sci USA, 92- 11 588−92.
- Jairajpuri M.A., Azam N., Baburaj K., Bulliraju E., Durani S. (1998) Charge and solvation effects in anion recognition centers: an inquiry exploiting reactive arginines. Biochemistry, 37- 10 780−91.
- Jeon C., Yoon H., Agarwal K. (1994) The transcription factor TFIIS zinc ribbon dipeptide Asp-Glu is critical for stimulation of elongation and RNA cleavage by RNA polymerase II. Proc Natl Acad Sci USA, 91- 9106−10.
- Jeon C., Agarwal K. (1996) Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc Natl Acad Sci USA, 93- 13 677−82.
- Jensen G.J., Meredith G., Bushnell D.A., Kornberg R.D. (1998) Structure of wild-type yeast RNA polymerase II and location of Rpb4 and Rpb7. EMBOJ., 17- 2353−8.
- Kashlev M., Nudler E., Severinov K., Borukhov S., Komissarova N., Goldfarb A. (1998) Histidine-tagged RNA polymerase of Escherichia coli and transcription in solid phase. Methods EnzymoL, 274- 326−34.
- Kassavetis G.A., Geiduschek E.P. (1993) RNA polymerase marching backward. Science, 259- 944−5.
- Kettenberger H., Armache K.J., Cramer P. (2003) Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell, 114- 347−57.
- Kim E.E., and Wyckoff H.W. (1991) Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol., 218(2) — 449−64.
- Komarnitsky P.B., Cho E-J., Buratowski S. (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev., 14- 2452−60.
- Korzheva N., Mustaev A., Nudler E., Nikiforov V., Goldfarb A. (1998)Mechanistic model of the elongation complex of Escherichia coli RNA polymerase. Cold Spring Harb Symp Quant Biol., 63- 337−45.
- Korzheva N., Mustaev A., Kozlov M., Malhotra A., Nikiforov V., Goldfarb A., Darst S.A. (2000) A structural model of transcription elongation. Science. 289- 619−25.
- Korzheva N., Mustaev A. (2001) Transcription elongation complex: structure and function. Curr Opin Microbiol., 4- 119−25.
- Koulich D., Orlova M., Malhotra A., Sali A., Darst S.A., Borukhov S. (1997) Domain organization of Escherichia coli transcript cleavage factors GreA and GreB .J Biol Chem., 272- 7201−10.
- Koulish D., Nikiforov V., Borukhov S. (1998) Distinct functions of N and C-terminal domains of GreA, an Escherichia coli transcript cleavage factor. J Mol Biol., 276- 379−89.
- Kulish D., Lee J., Lomakin I., Nowicka В., Das A., Darst S., Normet K., Borukhov S. (2000) The functional role of basic patch, a structural element of Escherichia coli transcript cleavage factors GreA and GreB. J Biol Chem., 275- 12 789−98.
- Kulish D., Struhl K. (2001) TFIIS enhances transcriptional elongation through an artificial arrest site in vivo. Mo I Cell Biol., 13- 4162−8.
- Kravchuk A.V., Zhao L., Kubiak R.J., Bruzik K.S., Tsai M.D. (2001) Mechanism of phosphatidylinositol-specific phospholipase C: origin of unusually high nonbridging thio effects. Biochemistry, 40: 5433−9.
- Markovtsov V., Mustaev A., Goldfarb A. (1996) Protein-RNA interactions in the active center of transcription elongation complex. Proc. Natl. Acad. Sci. US, 93- 3221−3226.
- Marr M.T., Roberts J.W. (2000) Function of transcription cleavage factors GreA and GreB at a regulatory pause site. Mol Cell., 6- 1275−85.
- Martin F.H., Castro M.M., Aboul-ela F., Tinoco I Jr. (1985) Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res., 13- 8927−38.
- McClure W.R. (1985) Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem., 54- 171−204.
- McClure W.R. (1980) On the mechanism of streptolydigin inhibition of Escherichia coli RNA polymerase. J Biol Chem., 255- 1610−6.
- Miller M.D., Cai J., Krause K.L. (1999) The active site of Serratia endonuclease contains a conserved magnesium-water cluster. J Mol Biol., 288- 975−87.
- Morin P.E., Awrey D.E., Edwards A.M., Arrowsmith C.H. (1996) Elongation factor TFIIS contains three structural domains: solution structure of domain II. Proc Natl Acad Sci USA, 93−10 604−8.
- Mote J Jr., Ghanouni P., Reines D. (1994) A DNA minor groove-binding ligand both potentiates and arrests transcription by RNA polymerase II. Elongation factor SII enables readthrough at arrest sites. J Mol Biol., 236- 725−37.
- Mote J Jr., Reines D. (1998) Recognition of a human arrest site is conserved between RNA polymerase II and prokaryotic RNA polymerases. J Biol Chem., 273- 16 843−52.
- Murakami K.S., Masuda S., Campbell E.A., Muzzin O., Darst S.A. (2002) Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science, 296- 1285−90
- Murray J.B., Seyhan A.A., Walter N.G., Burke J.M., Scott W.G. (1998) The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem Biol., 5- 587−95.
- Murray S., Udupa R., Yao S., Hartzog G., Prelich G. (2001) Phosphorylation of the RNA polymerase II carboxy-terminal domain by the Burl cyclin-dependent kinase. Mol Cell Biol. 21- 4089−96.
- Mustaev A., Kozlov M., Markovtsov V., Zaychikov E., Denissova L., Goldfarb A. (1997) Modular organization of the catalytic center of RNA polymerase. Proc Natl Acad Sci U S A, 94- 6641−5.
- Nakanishi Т., Nakano A., Nomura K., Sekimizu K., Natori S. (1992) Purification, gene cloning, and gene disruption of the transcription elongation factor S-II in Saccharomyces cerevisiae. J Biol Chem., 267- 13 200−4.
- Nakanishi Т., Shimoaraiso M., Kubo Т., Natori S. (1995) Structure-function relationship of yeast S-II in terms of stimulation of RNA polymerase II, arrest relief, and suppression of 6-azauracil sensitivity. J Biol Chem., 270- 8991−5.
- Nechaev S., Chlenov M., Severinov K. (2000) Dissection of two hallmarks of the open promoter complex by mutation in an RNA polymerase core subunit. J Biol Chem., 275- 2 551 622.
- Neuman K.C., Abbondanzieri E.A., Landick R., Gelles J., Block S.M. (2003) Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell, 115- 437−47.
- Nudler E., Avetissova E., Markovtsov V., Goldfarb A. (1996) Protein-DNA interactions holding together the elongation complex. Science, 273- 211−7.
- Nudler E., Mustaev A., Lukhtanov E., Goldfarb A. (1997) The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell, 89- 33−41.
- Orphanides G., LeRoy G., Chang C.H., Luse D.S., Reinberg D. (1998) FACT, a factor that facilitates transcript elongation through nucleosomes. Cell, 92- 105−16.
- Orlova M., Newlands J., Das A., Goldfarb A., Borukhov S. (1995) Intrinsic transcript cleavage activity of RNA polymerase. Proc Natl Acad Sci U SA, 92- 4596−600.
- Opalka N., Chlenov M., Chacon P., Rice W.J., Wriggers W., Darst S.A. (2003) Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell, 114- 335−45.
- Pan G., Aso Т., Greenblatt J. (1997) Interaction of elongation factors TFIIS and elongin A with a human RNA polymerase II holoenzyme capable of promoter-specific initiation and responsive to transcriptional activators. J Biol Chem., 272- 24 563−71.
- Pelletier H., Sawaya M.R., Wolfle W., Wilson S.H., Kraut J. (1996) Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity. Biochemistry, 35- 12 742−61.
- Huang H., Chopra R., Verdine G.L., Harrison S.C. (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science, 282- 1669−75.
- Pecoraro V.L., Hermes J.D., Cleland W.W. (1984) Stability constants of Mg2+ and Cd2+ complexes of adenine nucleotides and thionucleotides and rate constants for formation and dissociation of MgATP and MgADP. Biochemistry, 23- 5262−71.
- Pokholok D.K., Hannett N.M., Young R.A. (2002) Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol Cell, 9- 799−809.
- Polyakov A., Richter C., Malhotra A., Koulich D., Borukhov S., Darst S.A. (1998) Visualization of the binding site for the transcript cleavage factor GreB on Escherichia coli RNA polymerase. J Mol Biol., 281- 465−73.
- Polyakov A., Nikiforov V., Goldfarb A. (1999) Disruption of substrate binding site in E. coli RNA polymerase by lethal alanine substitutions in carboxy terminal domain of the beta subunit. FEBSLett., 444- 189−94.
- Powell W., Bartholomew В., Reines D. (1996) Elongation factor SII contacts the 3'-end of RNA in the RNA polymerase II elongation complex. J Biol Chem. 271- 22 301−4.
- Reinberg D., Roeder R.G. (1987) Factors involved in specific transcription by mammalian RNA polymerase II. Transcription factor IIS stimulates elongation of RNA chains. J Biol Chem., 262- 3331−7.
- Reines D. (1992) Elongation factor-dependent transcript shortening by template-engaged RNA polymerase II. J Biol Chem., 267- 3795−800.
- Reines D., Ghanouni P., Li Q., Mote J. Jr. (1992) The RNA polymerase II elongation complex. Factor-dependent transcription elongation nascent RNA cleavage. J Biol Chem., 267- 15 516−22.
- Reines D., Mote J Jr. (1993) Elongation factor SH-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein. Proc Natl Acad Sci USA, 90- 1917−21.
- Reines D., Conaway R.C., Conaway J.W. (1999) Mechanism and regulation of transcriptional elongation by RNA polymerase II. Curr Opin Cell Biol., 11- 342−6
- Richards F.M. and Wyckoff H.W. (1971) The Enzymes, Boyer PD, Academic, New York, Vol. 4,647−804.
- Rudd M.D., Izban M.G., Luse D.S. (1994) The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. Proc Natl Acad Sci USA, 91- 8057−61.
- Sambrook J., Fritsch E.F., Maniatis T. (1989) Molecular cloning. Cold spring harborpress.
- Sastry S.S., Ross B.M. (1997) Nuclease activity of T7 RNA polymerase and the heterogeneity of transcription elongation complexes. J Biol Chem. 272- 8644−52.
- Shaevitz J.W., Abbondanzieri E.A., Landick R., Block S.M. (2003) Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature, 426- 684−7.
- Scheffzek K., Ahmadian M.R., Kabsch W., Wiesmuller L., Lautwein A., Schmitz F., Wittinghofer A. (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science, 277- 333−8.
- Schnapp G., Graveley B.R., Grummt I. (1996) TFIIS binds to mouse RNA polymerase I and stimulates transcript elongation and hydrolytic cleavage of nascent rRNA. Mol Gen Genet., 252- 412−9.
- Scott W.G., Murray J.B., Arnold J.P., Stoddard B.L., Klug A. (1996) Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science, 274- 2065−69.
- Seibert G., Maidhof A., Zahn R.K., Muller W.E. (1978) Tubercidin metabolism in mouse L5178y cells in vivo and in vitro. Gann., 69- 739−47.
- Sekimizu K., Kobayashi N., Mizuno D., Natori S. (1976) Purification of a factor from Ehrlich ascites tumor cells specifically stimulating RNA polymerase II. Biochemistry, 15- 506 470.
- Sekimizu K., Kubo Y., Segawa K., Natori S. (1981) Difference in phosphorylation of two factors stimulating RNA polymerase II of Ehrlich ascites tumor cells. Biochemistry, 20- 2286−92.
- Sen R., Nagai H., Shimamoto N. (2001) Conformational switching of Escherichia coli RNA polymerase-promoter binary complex is facilitated by elongation factor GreA and GreB. Genes Cells, 6- 389−401.
- Severinov К., Soushko M., Goldfarb A., Nikiforov V. (1993) Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the beta subunit of Escherichia coli RNA polymerase. J. Biol. Chem. 268- 14 820−14 825.
- Shilatifard A., Conaway R.C., Conaway J.W. (2003) The RNA polymerase II elongation complex. Annu Rev Biochem., 72- 693−715.
- Sluder A.E., Greenleaf A.L., Price D.H. (1989) Properties of a Drosophila RNA polymerase II elongation factor. J Biol Chem., 264- 8963−9.
- Sparkowsky J., Das A. (1990) Nucleic acids res., 18 (1990) 6443.
- Stebbins C.E., Borukhov S., Orlova M., Polyakov A., Goldfarb A., Darst S.A. (1995) Crystal structure of the GreA transcript cleavage factor from Escherichia coli. Nature, 373- 63 640.
- Steitz T.A. (1998) A mechanism for all polymerases. Nature, 391- 231−2.
- Steitz T.A. and Steitz J.A. (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA, 90- 6498−6502.
- Stolinski L.A., Eisenmann D.M., Arndt K.M. (1997) Identification of RTF1, a novel gene important for TATA site selection by TATA box-binding protein in Saccharomyces cerevisiae. Mol Cell Biol., 17- 4490−500.
- Suck D., Lahm A. and Oefner C. (1988) Structure refined to 2A of a nicked DNA octanucleotide complex with DNase I. Nature, 332- 464−8.
- Surratt C.K., Milan S.C., Chamberlin M.J. (1991) Spontaneous cleavage of RNA in ternary complexes of Escherichia coli RNA polymerase and its significance for the mechanism of transcription. Proc Natl Acad Sci USA, 88- 7983−7.
- Takagi Y., Warashina M., Stec W.J., Yoshinari K., Taira K. (2001) Recent advances in the elucidation of the mechanisms of action of ribozymes. Nucleic Acids Res., 29- 1815−34.
- Tennyson C.N., Klamut H.J., Worton R.G. (1995) The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet., 9- 184−90.
- Thomas M.J., Platas A.A., Hawley D.K. (1998) Transcriptional fidelity and proofreading by RNA polymerase II. Cell, 93- 627−37.
- Toulme F., Guerin M., Robichon N., Leng M., Rahmouni A.R. (1999) In vivo evidence for back and forth oscillations of the transcription elongation complex. EMBOJ., 18- 5052−60.
- Toulme F., Mosrin-Huaman C., Sparkowski J., Das A., Leng M., Rahmouni A.R. (2000) GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBOJ., 19- 6853−9.
- Toulokhonov I., Artsimovitch I., Landick R. (2001). Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292- 730−733.
- Tschochner H. (1996) A novel RNA polymerase I-dependent RNase activity that shortens nascent transcripts from the 3' end. Proc Natl Acad Sci USA, 93- 12 914−9.
- Ubukata Т., Shimizu Т., Adachi N., Sekimizu K., Nakanishi T. (2003) Cleavage, but not read-through, stimulation activity is responsible for three biologic functions of transcription elongation factor S-II. J Biol Chem., 278- 8580−5.
- Ueno K., Sekimizu K., Mizuno D., Natori S. (1979) Antibody against a stimulatory factor of RNA polymerase II inhibits nuclear RNA synthesis. Nature, 277- 145−6.
- Ueno A., Baek K., Jeon C., Agarwal K. (1992) Netropsin specifically enhances RNA polymerase II termination at terminator sites in vitro. Proc Natl Acad Sci USA, 89- 3676−80.
- Vassylyev D.G., Sekine S., Laptenko O., Lee J., Vassylyeva M.N., Borukhov S., Yokoyama S. (2002) Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature, 417- 712−9.
- Zalenskaya K., Lee J., Gujulova C.N., Shin Y.K., Slutsky M., Goldfarb A. (1990) Recombinant RNA polymerase: inducible overexpression, purification and assembly of Escherichia coli rpo gene products. Gene, 89- 7−12.
- Zaychikov E., Martin E., Denissova L., Kozlov M., Markovtsov V., Kashlev M., Heumann H., Nikiforov V., Goldfarb A., Mustaev A. (1996) Mapping of catalytic residues in the RNA polymerase active center. Science, 273- 107−9.
- Zhu Y., Pe’ery Т., Peng J., Ramanathan Y., Marshall N., Marshall Т., Amendt В., Mathews M.B., Price D.H. (1997) Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev., 11- 2622−32
- Zhang G., Campbell E.A., Minakhin L., Richter C., Severinov K., Darst S.A. (1999) Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell, 98- 811 824.
- Wang Y., Severinov K., Loizos N., Fenyo D., Heyduk E., Heyduk Т., Chait B.T., Darst S.A. (1997) Determinants for Escherichia coli RNA polymerase assembly within the beta subunit. JMol Biol, 270- 648−62.
- Wang D., Hawley D.K. (1993) Identification of a 3'—>5' exonuclease activity associated with human RNA polymerase II. Proc Natl Acad Sci USA. 90- 843−7.
- Weilbaecher R.G., Awrey D.E., Edwards A.M., Kane C.M. (2003) Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes. J Biol Chem., 278- 24 189−99.
- Werner F., Weinzierl R.O. (2002) A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol Cell, 10- 635−46.
- Whitehall S.K., Bardeleben C., Kassavetis G.A. (1994) Hydrolytic cleavage of nascent RNA in RNA polymerase III ternary transcription complexes. J Biol Chem., 269- 2299−306.
- Yee D., Armstrong V.W., Eckstein F. (1979) Mechanistic studies on deoxyribonucleic acid dependent ribonucleic acid polymerase from Escherichia coli using phosphorothioate analogues. 1. Initiation and pyrophosphate reactions. Biochemistry, 18- 4116−20.
- Young R.A. (1991) RNA polymerase II. Annu Rev Biochem., 60- 689−715.