ΠΠ΅Π»ΠΊΠΎΠ²ΠΎ-Π»ΠΈΠΏΠΈΠ΄Π½Π°Ρ ΠΏΠΎΡΠ°, ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌΠ°Ρ ΠΊΠΎΠ»ΠΈΡΠΈΠ½ΠΎΠΌ Π1 Π² Π±ΠΈΡΠ»ΠΎΠΉΠ½ΡΡ Π»ΠΈΠΏΠΈΠ΄Π½ΡΡ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π°Ρ
ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΊΠΎΠ»ΠΈΡΠΈΠ½ Π1 ΠΈΠ½Π΄ΡΡΠΈΡΡΠ΅Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π²ΡΡ ΡΠΈΠΏΠΎΠ² ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² ΠΏΠ»ΠΎΡΠΊΠΈΡ Π±ΠΈΡΠ»ΠΎΠΉΠ½ΡΡ Π»ΠΈΠΏΠΈΠ΄Π½ΡΡ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π°Ρ . ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ, ΠΏΡΠΎΡΠ²Π»ΡΡΡΠ΅Π΅ΡΡ Π² ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π°Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΠΎΠ»ΡΠΈΠ½Ρ. ΠΡΡΠ²Π»Π΅Π½ΠΎ Π°Π½ΠΎΠΌΠ°Π»ΡΠ½ΠΎ ΡΠΈΠ»ΡΠ½ΠΎΠ΅ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΊΠΎΠ»ΠΈΡΠΈΠ½Π° Ρ ΡΠΎΡΡΠΎΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ Π·Π°ΡΡΠΆΠ΅Π½Π½ΡΡ Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² Π² ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π΅. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΡΠ°Π΄ΠΈΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΊΠΎΠ»ΠΈΡΠΈΠ½Π° Π1. ΠΠΈΠΏΠΈΠ΄Π½ΡΠΉ ΡΠΎΡΡΠ°Π²… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- ΠΠ΅Π½Π½ΠΈΡ Π . 1997. ΠΠΈΠΎΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ ΡΡΡΡΠΊΡΡΡΠ° ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ. «ΠΠΈΡ», ΠΠΎΡΠΊΠ²Π°. Ρ 2. Haque, M.E., B.R.Lentz. (2004) Roles of curvature and hydrophobic intersticeenergy in fusion: studies of lipid perturbant effects. Biochemistry, 43, 3507−3517.
- Chernomordik, L.V., G.B.Melikyan, Y.A.Chizmadzhev. (1987) Biomembranefusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim. Biophys. Acta, 906, 309−352.
- Allende, D., S.A.Simon, T.J.Mcintosh. (2005) Melittin-induced bilayer leakagedepends on lipid material properties: evidence for toroidal pores. Biophys. J., 88, 1828−1837.
- Ramsammy, L.S., H.Brockerhoff. (1982) Lysophosphatidylcholine-cholesterolcomplex. J. Biol. Chem., 257, 3570−3574.
- ΠΠ°ΡΠΏΡΠ½ΠΈΠ½, Π.Π., Π‘. Π. ΠΠΊΠΈΠΌΠΎΠ², Π. Π. Π€ΡΠΎΠ»ΠΎΠ². (2005) Π€ΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡ Π²ΠΏΠ»ΠΎΡΠΊΠΈΡ Π»ΠΈΠΏΠΈΠ΄Π½ΡΡ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π°Ρ , ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ Π»ΠΈΠ·ΠΎΠ»ΠΈΠΏΠΈΠ΄Ρ ΠΈ Ρ ΠΎΠ»Π΅ΡΡΠ΅ΡΠΈΠ½. ΠΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ, 22, 429−432.
- Fuller, N., C.R.Benatti, R.P.Rand. (2003) Curvature and bending constants for ^ phosphatidylserine-containing membranes. Biophys. J., 85, 1667−1674.
- Chernomordik, L.V., E. Lekina, V. Frolov, P. Bronk, J.Zimmerberg. (1997) Anearly stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell. Biol, 136,81−93.
- Hamill, O.P., B.Martinac. (2001) Molecular basis of mechanotransduction inliving cells. Physiol. Rev., 81, 685−740.
- Peter, B.J., H.M.Kent, I.G.Mills, Y. Vallis, P.J.Butler, P.R.Evans, H.T.McMahon. (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science, 303, 495−499.
- Matsuzaki, K. (1999) Why and how are peptide-lipid interactions utilized forself-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta, 1462, 1−10.
- Matsuzaki, K., O. Murase, N. Fujii, K.Miyajima. (1996) An antimicrobialpeptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry, 35, 1 136 111 368.
- Ludtke, S.J., K. He, W.T.Heller, T.A.Harroun, L. Yang, H.W.Huang. (1996)
- Membrane pores induced by magainin. Biochemistry, 35,13 723−13 728.
- Matsuzaki, K., K. Sugishita, N. Ishibe, M. Ueha, S. Nalcata, K. Miyajima,
- R.M.Epand. (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry, 37, 11 856−11 863.
- Valcarcel, C.A., S.M.Dalla, C. Potrich, I. Bernhart, M. Tejuca, D. Martinez,
- F.Pazos, M.E.Lanio, G.Menestrina. (2001) Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Biophys. J., 80, 2761−2774.
- Yang, L., T.A.Harroun, T.M.Weiss, L. Ding, H.W.Huang. (2001) Barrel-stavemodel or toroidal model? A case study on melittin pores. Biophys. J., 81, 1475−1485.
- Basanez, G., A.E.Shinnar, J.Zimmerberg. (2002) Interaction of hagfishcathelicidin antimicrobial peptides with model lipid membranes. FEBS Lett., 532, 115−120.
- Malev, V.V., L.V.Schagina, P.A.Gurnev, J.Y.Talcemoto, E.M.Nestorovich,
- S.M.Bezrukov. (2002) Syringomycin E channel: a lipidic pore stabilized by lipopeptide? Biophys. J., 82, 1985−1994.
- Saint, N., H. Cadiou, Y. Bessin, G.Molle. (2002) Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers. Biochim. Biophys. Acta, 1564, 359−364.
- Henzler Wildman, K.A., D.K.Lee, A.Ramamoorthy. (2003) Mechanism of lipidbilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry, 42, 6545−6558.
- Kristan, K., Z. Podlesek, V. Hojnik, I. Gutierrez-Aguirre, G. Guncar, D. Turk,
- J.M.Gonzalez-Manas, J.H.Lakey, P. Macek, G.Anderluh. (2004) Pore formation by equinatoxin, a eulcaryotic pore-forming toxin, requires a flexible N-terminal region and a stable beta-sandwich. J. Biol. Chem., 279, 46 509−46 517.
- Bezrukov, S.M., R.P.Rand, I. Vodyanoy, V.A.Parsegian. (1998) Lipid packingstress and polypeptide aggregation: alamethicin channel probed by proton titration of lipid charge. Faraday Discuss., Ill, 173−183.
- Lewis, J.R., D.S.Cafiso. (1999) Correlation between the free energy of achannel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids. Biochemistry, 38, 5932−5938.
- Lundbaek, J.A., O.S.Andersen. (1994) Lysophospholipids modulate channelfunction by altering the mechanical properties of lipid bilayers. J. Gen. Physiol., 104, 645−73.
- Bruno, M.J., R.E.Koeppe, O.S.Andersen. (2004) Modification of gramicidinchannel function by poly-unsaturated fatty acids. Biophys. J. 48th Annual Meeting Biophysical Society, 1988-Pos.
- Lundbaek, J.A., P. Birn, A.J.Hansen, R. Sogaard, C. Nielsen, J. Girshman,
- Epand, R.F., J.C.Martinou, S. Montessuit, R.M.Epand, C.M.Yip. (2002) Directevidence for membrane pore formation by the apoptotic protein Bax. Biochem. Biophys. Res. Commun., 298, 744−749.
- Basanez, G., J.C.Sharpe, J. Galanis, T.B.Brandt, J.M.Hardwiclc, J.Zimmerberg.2002) Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J. Biol. Chem., 277,49 360−49 365.
- Terrones, 0., B. Antonsson, H. Yamaguchi, H.G.Wang, J. Liu, R.M.Lee,
- A.Herrmann, G.Basanez. (2004) Lipidic pore formation by the concerted action of proapoptotic BAX and tBID. J. Biol. Chem., 279, 3 008 130 091.
- Epand, R.F., J.C.Martinou, S. Montessuit, R.M.Epand. (2002) Membraneperturbations induced by the apoptotic Bax protein. Biochem. J., 367, 849−855.
- Epand, R.F., J.C.Martinou, M. Fornallaz-Mulhauser, D.W.Hughes, R.M.Epand.2002) The apoptotic protein tBid promotes leakage by altering membrane curvature. J. Biol. Chem., 277, 32 632−32 639.
- Yuan, C., RJ. O'Connell, P.L.Feinberg-Zadek, L.J.Johnston, S.N.Treistman.2004) Bilayer thickness modulates the conductance of the BK channel in model membranes. Biophys. J., 86, 3620−3633.
- Williamson, I.M., S.J.Alvis, J.M.East, A.G.Lee. (2002) Interactions ofphospholipids with the potassium channel KcsA. Biophys. J., 83, 20 262 038.
- Powl, A.M., J.M.East, A.G.Lee. (2003) Lipid-protein interactions studied byintroduction of a tryptophan residue: the mechanosensitive channel MscL. Biochemistry, 42, 14 306−14 317.
- Perozo, E., A. Kloda, D.M.Cortes, B.Martinac. (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol., 9, 696−703.
- Garavaglia, M., S. Dopinto, M. Ritter, J. Furst, S. Saino, F. Guizzardi, M. Jakab,
- C.Bazzini, V. Vezzoli, S. Dossena, S. Rodighiero, C. Sironi, G. Botta, G. Meyer, R.M.Henderson, M.Paulmichl. (2004) Membrane thickness changes ion-selectivity of channel-proteins. Cell. Physiol. Biochem., 14, 231−240.
- White, S.H. (2003) Translocons, thermodynamics, and the folding of membraneproteins. FEBSLett., 555, 116−121.
- Lewis, B.A., D.M.Engelman. (1983) Lipid bilayer thickness varies linearly withacyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol., 166,211−217.
- Montal, M., P.Mueller. (1972) Formation of bimolecular membranes from lipidmonolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA, 69,3561−3566.
- Mueller, P., D.O.Rudin, H.T.Tien, W.C.Wescott. (1963) Methods for theformation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem., 67, 534−535.
- White, S.H. (1978) Formation of «solvent-free» black lipid bilayer membranesfrom glyceryl monooleate dispersed in squalene. Biophys. J., 23, 337 347.
- Benz, R., O. Frohlich, P. Lauger, M.Montal. (1975) Electrical capacity of blacklipid films and of lipid bilayers made from monolayers. Biochim. Biophys. Acta, 394, 323−334.
- Uhrikova, D., N. Kucerka, A. Islamov, A. Kuklin, V. Gordeliy, P.Balgavy. (2003)
- Small-angle neutron scattering study of the lipid bilayer thickness inunilamellar dioleoylphosphatidyleholine vesicles prepared by the cholate dilution method: n-decane effect. Biochim. Biophys. Acta, 1611, 31−34.
- Uhrikova, D., P. Balgavy, N. Kucerka, A. Islamov, V. Gordeliy, A.Kuklin. (2000)
- Small-angle neutron scattering study of the n-decane effect on the bilayer thickness in extruded unilamellar dioleoylphosphatidyleholine liposomes. Biophys. Chem., 88, 165−170.
- Chernyshev, A., K.M.Armstrong, S.Cukierman. (2003) Proton transfer ingramicidin channels is modulated by the thickness of monoglyceride bilayers. Biophys. J., 84, 238−250.
- Mobashery, N., C. Nielsen, O.S.Andersen. (1997) The conformational preferenceof gramicidin channels is a function of lipid bilayer thickness. FEBS Lett., 412, 15−20.
- Arndt, H.D., A. Knoll, U.Koert. (2001) Synthesis of minigramicidin ion channelsand test of their hydrophobic match with the membrane. Chembiochem., 2,221−223.
- Weber, M.E., P.H.Schlesinger, G.W.Gokel. (2005) Dynamic assessment ofbilayer thickness by varying phospholipid and hydraphile synthetic channel chain lengths. J. Am. Chem. Soc., 127, 636−642.
- Lee, A.G. (2004) How lipids affect the activities of integral membrane proteins.
- Biochim. Biophys. Acta, 1666, 62−87.
- Lee, M.T., F.Y.Chen, H.W.Huang. (2004) Energetics of pore formation inducedby membrane active peptides. Biochemistry, 43, 3590−3599.
- Apell, H.J., E. Bamberg, P.Lauger. (1979) Effects of surface charge on theconductance of the gramicidin channel. Biochim. Biophys. Acta, 552, 369−378.
- Zakharov, S.D., J.B.Heymann, Y.L.Zhang, W.A.Cramer. (1996) Membranebinding of the colicin El channel: activity requires an electrostatic interaction of intermediate magnitude. Biophys. J., 70, 2774−2783.
- Lundbaek, J.A., A.M.Maer, O.S.Andersen. (1997) Lipid bilayer electrostaticenergy, curvature stress, and assembly of gramicidin channels. Biochemistry, 36, 5695−5701.
- Martin, S.J., C.P.Reutelingsperger, A.J.McGahon, J.A.Rader, R.C.van Schie,
- D.M.LaFace, D.R.Green. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med., 182, 1545−1556.
- Kagan, V.E., G.G.Borisenko, B.F.Serinkan, Y.Y.Tyurina, V.A.Tyurin, J. Jiang,
- S.X.Liu, A.A.Shvedova, J.P.Fabisiak, W. Uthaisang, B.Fadeel. (2003) Appetizing rancidity of apoptotic cells for macrophages: oxidation, externalization, and recognition of phosphatidylserine. Am. J. Physiol. Lung Cell Mol. Physiol., 285, LI-17.
- Mcintyre, J.C., R.G.Sleight. (1991) Fluorescence assay for phospholipidmembrane asymmetry. Biochemistry, 30, 11 819−11 827.
- Muller, P., S. Schiller, T. Wieprecht, M. Dathe, A.Herrmann. (2000) Continuousmeasurement of rapid transbilayer movement of a pyrene-labeled phospholipid analogue. Chem. Phys. Lipids, 106, 89−99.
- Epand, R.F., J.C.Martinou, S. Montessuit, R.M.Epand. (2003) Transbilayer lipiddiffusion promoted by Bax: implications for apoptosis. Biochemistry, 42, 14 576−14 582.
- Kol, M.A., A.N.van Laak, D.T.Rijkers, J.A.Killian, A.I.de Kroon, B. de Kruijff.2003) Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition. Biochemistry, 42, 231 237.
- Valiyaveetil, F.I., Y. Zhou, R.MacKinnon. (2002) Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry, 41, 1 077 110 777.
- Cramer, W.A., J.B.Heymann, S.L.Schendel, B.N.Deriy, F.S.Cohen, P.A.Elkins,
- C.V.Stauffacher. (1995) Structure-function of the channel-forming colicins. Annual Review of Biophysics & Biomolecular Structure, 24, 611−641.
- Lakey, J.H., S.L.Slatin. (2001) Pore-forming colicins and their relatives. Curr
- Top Microbiol. Immunol., 257, 131−161.
- Bullock, J.O., F.S.Cohen, J.R.Dankert, W.A.Cramer. (1983) Comparison of themacroscopic and single channel conductance properties of colicin El and its COOH-terminal tryptic peptide. J. Biol. Chem., 258, 9908−9912.
- Musse, A.A., J. Wang, G.P.Deleon, G.A.Prentice, E. London, A.R.Merrill. (2006)
- Scanning the membrane-bound conformation of helix 1 in the colicin El channel domain by site-directed fluorescence labeling. J. Biol. Chem., 281, 885−95.
- Elkins, P.A., H.Y.Song, W.A.Cramer, C.V.Stauffacher. (1994) Crystallizationand characterization of colicin El channel-forming polypeptides. Proteins, 19, 150−157.
- Elkins, P., A. Bunker, W.A.Cramer, C.V.Stauffacher. (1997) A mechanism fortoxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin El. Structure, 5, 443−458.
- Heymann, J.B., S.D.Zakharov, Y.L.Zhang, W.A.Cramer. (1996)
- Characterization of electrostatic and nonelectrostatic components of protein—membrane binding interactions. Biochemistry, 35, 2717−2725.
- Zakharov, S.D., M. Lindeberg, Y. Griko, Z. Salamon, G. Tollin, F.G.Prendergast,
- W.A.Cramer. (1998) Membrane-bound state of the colicin El channel domain as an extended two-dimensional helical array. Proc. Natl. Acad. Sci. USA, 95, 4282−4287.
- Zakharov, S.D., M. Lindeberg, W.A.Cramer. (1999) Kinetic description ofstructural changes linked to membrane import of the colicin El channel protein. Biochemistry, 38, 11 325−11 332.
- Lindeberg, M., S.D.Zakharov, W.A.Cramer. (2000) Unfolding pathway of thecolicin El channel protein on a membrane surface. J. Mol. Biol, 295, 679−692.
- Slatin, S.L., X.Q.Qiu, K.S.Jakes, A.Finkelstein. (1994) Identification of atranslocated protein segment in a voltage-dependent channel. Nature, 371, 158−161.
- Jakes, K.S., P.K.Kienker, A.Finkelstein. (1999) Channel-forming colicins: translocation (and other deviant behaviour) associated with colicin la channel gating. Q. Rev. Biophys., 32, 189−205.
- Tory, M.C., A.R.Merrill. (1999) Adventures in membrane protein topology. Astudy of the membrane-bound state of colicin El .J. Biol. Chem., 274, 24 539−24 549.
- Kienker, P.K., X. Qiu, S.L.Slatin, A. Finkelstein, K.S.Jakes. (1997)
- Transmembrane insertion of the colicin la hydrophobic hairpin. J. Membr. Biol., 157, 27−37.
- Zakharov, S.D., T.I.Rokitskaya, V.L.Shapovalov, Y.N.Antonenko,
- W.A.Cramer. (2002) Tuning the membrane surface potential for efficient toxin import. Proc. Natl. Acad. Sci. USA, 99, 8654−8659.
- Shirabe, K., F.S.Cohen, S. Xu, A.A.Peterson, J.W.Shiver, A. Nakazawa,
- W.A.Cramer. (1989) Decrease of anion selectivity caused by mutation of Thr501 and Gly502 to Glu in the hydrophobic domain of the colicin El channel. J. Biol. Chem., 264, 1951−1957.
- Bullock, J.O., E.R.Kolen, J.L.Shear. (1992) Ion selectivity of colicin El: II.
- Permeability to organic cations. J. Membr. Biol, 128, 1−16.
- Raymond, L., S.L.Slatin, A.Finkelstein. (1985) Channels formed by colicin Elin planar lipid bilayers are large and exhibit pH-dependent ion selectivity. J. Membr. Biol., 84, 173−181.
- Uratani, Y., W.A.Cramer. (1981) Reconstitution of colicin El intodimyristoylphosphatidylcholine membrane vesicles. J. Biol. Chem., 256, 4017−4023.
- Kayalar, C., N.Duzgunes. (1986) Membrane action of colicin El: detection bythe release of carboxyfluorescein and calcein from liposomes. Biochim. Biophys. Acta, 860, 51−56.
- Merrill, A.R., W.A.Cramer. (1990) Identification of a voltage-responsivesegment of the potential-gated colicin El ion channel. Biochemistry, 29, 8529−8534.
- Bruggemann, E.P., C.Kayalar. (1986) Determination of the molecularity of thecolicin El channel by stopped-flow ion flux kinetics. Proc. Natl. Acad. Set USA, 83, 4273−4276.
- Peterson, A.A., W.A.Cramer. (1987) Voltage-dependent, monomeric channelactivity of colicin El in artificial membrane vesicles. J. Membrane. Biol., 99, 197−204.
- Slatin, S.L. (1988) Colicin El in planar lipid bilayers. Int. J. Biochem., 20, 737 744.
- Levinthal, F., A.P.Todd, W.L.Hubbell, C.Levinthal. (1991) A single trypticfragment of colicin El can form an ion channel: stoichiometry confirms kinetics. Proteins, 11, 254−262.
- Bullock, J.O. (1992) Ion selectivity of colicin El: modulation by pH andmembrane composition. J. Membr. Biol., 125, 255−271.
- Schendel, S.L., Z. Xie, M.O.Montal, S. Matsuyama, M. Montal, J.C.Reed. (1997).
- Channel formation by antiapoptotic protein Bcl-2. Proc. Natl. Acad. Sci. USA, 94,5113−5118.
- Chernomordik, L.V., S.S.Vogel, A. Sokoloff, H.O.Onaran, E.A.Leikina,
- J.Zimmerberg. (1993) Lysolipids reversibly inhibit Ca (2+)-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett., 318, 71−76.
- Chizmadzhev, Y.A., D.A.Kumenko, P.I.Kuzmin, L.V.Chernomordik,
- J.Zimmerberg, F.S.Cohen. (1999) Lipid flow through fusion pores connecting membranes of different tensions. Biophys. J., 76, 2951−2965.
- Chizmadzhev, Y.A. (2004) The mechanisms of lipid-protein rearrangementsduring viral infection. Bioelectrochemistry, 63, 129−136.
- Kleinschmidt, J.H., L.K.Tamm. (2002) Structural transitions in short-chain lipidassemblies studied by (31)P-NMR spectroscopy. Biophys. J., 83, 9 941 003.
- Lee, M.T., W.C.Hung, F.Y.Chen, H.W.Huang. (2005) Many-Body Effect of
- Antimicrobial Peptides: On the Correlation Between Lipid’s Spontaneous Curvature and Pore Formation. Biophys. J., 89, 4006−4016.
- Chen, Z. R.P.Rand. (1997) The influence of cholesterol on phospholipidmembrane curvature and bending elasticity. Biophys. J., 73, 267−276.
- Hung, W.C., F.Y.Chen, H.W.Huang. (2000) Order-disorder transition inbilayers of diphytanoyl phosphatidylcholine. Biochim. Biophys. Acta, 1467, 198−206.
- Epand, R.F., N. Umezawa, E.A.Porter, S.H.Gellman, R.M.Epand. (2003)1.teractions of the antimicrobial beta-peptide beta-17 with phospholipid vesicles differ from membrane interactions of magainins. Eur. J. Biochem, 270, 1240−1248.
- Cleveland, M.V., S. Slatin, A. Finkelstein, C.Levinthal. (1983) Structure-functionrelationships for a voltage-dependent ion channel: properties of COOH-terminal fragments of colicin El. Proc. Natl. Acad. Sci. USA, 80, 37 063 710.
- Bishop, L.J., F.S.Cohen, V.L.Davidson, W.A.Cramer. (1986) Chemicalmodification of the two histidine and single cysteine residues in the channel-forming domain of colicin El .J. Membr. Biol., 92, 237−245.
- Liu, Q.R., V. Crozel, F. Levinthal, S. Slatin, A. Finkelstein, C.Levinthal. (1986) Avery short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin El. Proteins, 1, 218−229.
- Krasilnikov, O.V., R.Z.Sabirov, V.I.Ternovsky, P.G.Merzliak,
- J.N.Muratkhodjaev. (1992) A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol. Immunol, 5, 93−100.
- Krasilnikov, O.V., J.B.Da Cruz, L.N.Yuldasheva, W.A.Varanda, R.A.Nogueira.1998) A novel approach to study the geometry of the water lumen of ion channels: colicin la channels in planar lipid bilayers. J. Membr. Biol, 161, 83−92.
- Vodyanoy, I., S.M.Bezrukov. (1992) Sizing of an ion pore by access resistancemeasurements. Biophys. J., 62, 10−11.
- MerzlyakJP.G., L.N.Yuldasheva, C.G.Rodrigues, C.M.Carneiro,
- O.V.Krasilnikov, S.M.Bezrukov. (1999) Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel. Biophys. J., 77, 3023−3033.
- ΠΡΠ°ΡΠΈΠ»ΡΠ½ΠΈΠΊΠΎΠ², Π.Π., Π. Π. ΠΠ΅ ΠΡΡΠ·, Π . Π. ΠΠΎΠ³ΡΠ΅ΠΉΡΠ°. (1998) ΠΠ°ΠΊ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΡΠ΄ΠΈΠ°ΠΌΠ΅ΡΡ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²Ρ ΠΎΠ΄Π° Ρ ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π°, ΡΠ΅Π³ΠΈΡΡΡΠΈΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π΅Π³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ? ΠΠΈΠΎΡΠΈΠ·ΠΈΠΊΠ°, 43, 299−303.
- Alcaraz, A., E.M.Nestorovich, M. Aguilella-Arzo, V.M.Aguilella, S.M.Bezrukov. (2004) Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF. Biophys. J., 87, 943−957.
- ΠΡΠ°ΡΠΈΠ»ΡΠ½ΠΈΠΊΠΎΠ², Π.Π., Π. Π. Π’Π΅ΡΠ½ΠΎΠ²ΡΠΊΠΈΠΉ, Π. Π. Π‘Π°Π±ΠΈΡΠΎΠ², Π . Π. ΠΠ°ΡΠΈΠΏΠΎΠ²Π°,
- Π.Π.Π’Π°ΡΠΌΡΡ Π°ΠΌΠ΅Π΄ΠΎΠ². (1986) ΠΠ°ΡΠΈΠΎΠ½-Π°Π½ΠΈΠΎΠ½Π½Π°Ρ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΡΠ°ΡΠΈΠ»ΠΎΡΠΎΠΊΡΠΈΠ½ΠΎΠ²ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² Π»ΠΈΠΏΠΈΠ΄Π½ΠΎΠΌ Π±ΠΈΡΠ»ΠΎΠ΅. ΠΠΈΠΎΡΠΈΠ·ΠΈΠΊΠ°, 31, 606−610.
- Borisenko, V., M.S.Sansom, G.A.Woolley. (2000) Protonation of lysineresidues inverts cation/anion selectivity in a model channel. Biophys. J., 78, 1335−1348.
- Starostin, A.V., R. Butan, V. Borisenko, D. AJames, H. Wenschuh, M.S.Sansom,
- G.A.Woolley. (1999) An anion-selective analogue of the channel-forming peptide alamethicin. Biochemistry, 38, 6144−6150.
- Bredin, J., N. Saint, M. Mallea, D E, G. Molle, J.M.Pages, V.Simonet. (2002)
- Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochem. J., 363, 521 528.
- Garcia-Saez, A.J., M. Coraiola, S.M.Dalla, I. Mingarro, G. Menestrina, J.Salgado.2005) Peptides derived from apoptotic Bax and Bid reproduce the poration activity of the parent full-length proteins. Biophys. J., 88, 39 763 990.
- Rostovtseva, T.K., V.M.Aguilella, I. Vodyanoy, S.M.Bezrukov, V.A.Parsegian.1998) Membrane surface-charge titration probed by gramicidin A channel conductance. Biophys. J., 75, 1783−1792.
- Aguilella, V.M., S.M.Bezrukov. (2001) Alamethicin channel conductancemodified by lipid charge. Eur. Biophys. J., 30, 233−241.
- Bezrukov, S.M., I.Vodyanoy. (1993) Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys. J., 64, 16−25.
- Ropele, M., G.Menestrina. (1989) Electrical properties and moleculararchitecture of the channel formed by Escherichia coli hemolysin in planar lipid membranes. Biochim. Biophys. Acta, 985, 9−18.
- Rostovtseva, T.K., E.M.Nestorovich, S.M.Bezrukov. (2002) Partitioning ofdifferently sized poly (ethylene glycol) s into OmpF porin. Biophys. J., 82, 160−169.
- Menestrina, G., S.M.Dalla, M. Comai, M. Coraiola, G. Viero, S. Werner,
- D.A.Colin, H. Monteil, G.Prevost. (2003) Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus. FEBSLett., 552, 54−60.
- Zemel, A., D.R.Fattal, A. Ben Shaul. (2003) Energetics and self-assembly ofamphipathic peptide pores in lipid membranes. Biophys. J., 84, 22 422 255.
- Qiu, X.Q., K. SJakes, P.K.Kienker, A. Finkelstein, S.L.Slatin. (1996) Majortransmembrane movement associated with colicin la channel gating. J. Gen. Physiol., 107, 313−328.
- Qiu, X.Q., K. SJakes, A. Finkelstein, S.L.Slatin. (1994) Site-specificbiotinylation of colicin la. A probe for protein conformation in the membrane. J. Biol. Chem., 269, 7483−7488.
- Kienker, P.K., K.S.Jakes, A.Finkelstein. (2000) Protein translocation acrossplanar bilayers by the colicin la channel-forming domain: where will it end? J. Gen. Physiol., 116, 587−598.
- Zakharov, S.D., W.A.Cramer. (2002) Insertion intermediates of pore-formingcolicins in membrane two- dimensional space. Biochimie, 84, 465−475.
- Schibli, D.J., R.F.Epand, H.J.Vogel, R.M.Epand. (2002) Tryptophan-richantimicrobial peptides: comparative properties and membrane interactions. Biochem. Cell Biol., 80, 667−677.
- Rokitskaya, T.I., M. Block, Y.N.Antonenko, E.A.Kotova, P.Pohl. (2000)
- Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels. Biophys. J., 78, 2572−2580.
- Rokitskaya, T.I., S.D.Zakharov, Y.N.Antonenko, E.A.Kotova, W.A.Cramer.2001) Tryptophan-dependent sensitized photoinactivation of colicin El channels in bilayer lipid membranes. FEBSLett., 505, 147−150.
- Verza, G., L.Bakas. (2000) Location of tryptophan residues in free andmembrane bound Escherichia coli alpha-hemolysin and their role on the lytic membrane properties. Biochim. Biophys. Acta, 1464, 27−34.
- Malovrh, P., A. Barlic, Z. Podlesek, P. Macek, G. Menestrina, G.Anderluh. (2000)
- Structure-function studies of tryptophan mutants of equinatoxin II, a sea anemone pore-forming protein. Biochem. J., 346 Pt 1, 223−232.
- Valenzeno, D.P., M.Tarr. (1991) Membrane Photomodification and its Use to
- Study Reactive Oxygen Effects. In Photochemistry and Photophysics. J.F.Rabek, editor. CRC Press, Boca Raton, Ann Arbor, Boston, 137−191.
- Ehrenberg, B., J.L.Anderson, C.S.Foote. (1998) Kinetics and yield of singletoxygen photosensitized by hypericin in organic and biological media. Photochem. Photobiol., 68, 135−140.
- Krasnovsky, A.A., Jr. (1998) Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies. Membr. Cell Biol, 12, 665−690.1141. Π¦)
- Suga, H., K. Shirabe, T. Yamamoto, M. Tasumi, M. Umeda, C. Nishimura,
- A.Nakazawa, M. Nakanishi, Y.Arata. (1991) Structural analyses of a channel-forming fragment of colicin El incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies. J. Biol. Chem., 266, 13 537−13 543.
- Palmer, L.R., A.R.Merrill. (1994) Mapping the membrane topology of theclosed state of the colicin El channel. J. Biol. Chem., 269, 4187−4193.
- Malenbaum, S.E., A.R.Merrill, E.London. (1998) Membrane-inserted colicin Elchannel domain: a topological survey by fluorescence quenching suggests that model membrane thickness affects membrane penetration. J. Nat. Toxins, 7, 269−290.
- Tory, M, C., A.R.Merrill. (2002) Determination of membrane protein topologyby red-edge excitation shift analysis: application to the membrane-bound colicin El channel peptide. Biochim. Biophys. Acta, 1564, 435−448.
- Savige, W.E., A.Fontana. (1977) Modification of tryptophan to oxindolylalanineby dimethyl sulfoxide- hydrochloric acid. Methods Enzymol., 47, 442 453.
- Lundblad, R.L., C.M.Noyes. (1985) Chemical modification of tryptophan. In
- Chemical reagents for protein modification. CRC Press, Inc., Boca Raton, Florida. 47−71.
- Spande, T.F., B. Witkop, Y. Degani, A.Patchornik. (1970) Selective cleavage andmodification of peptides and proteins. Adv. Protein Chem., 24, 97−260.
- Carr, A.C., C.C.Winterbourn, J.J.van den Berg. (1996) Peroxidase-mediatedbromination of unsaturated fatty acids to form bromohydrins. Arch. Biochem. Biophys., 327, 227−233.
- Panasenko, O.M., H. Spalteholz, J. Schiller, J.Arnhold. (2003) Myeloperoxidaseinduced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines. Free Radic. Biol. Med., 34, 553−562.