Новый белок, локализованный на межсубъединичной поверхности рибосом Escherichia coli
Диссертация
Рибосома представляет собой крупный макромолекулярный комплекс со сложной асимметричной четвертичной структурой, построенной из рибонуклеиновых кислот и белков III. Для рибосомы характерно подразделение на две неравные и разделяемые субъединицы. При определенных условиях (например, при понижении концентрации Mg2+ в среде до 1мМ) рибосома обратимо диссоциирует на две субъединицы, по коэффициентам… Читать ещё >
Список литературы
- Спирин А.С. Структура рибосом и биосинтез белка. Изд. «Научный центр биологических исследований Пугцино», 1984, с. 11.
- Tissieres A., Watson J.D. Ribonucleoprotein particles from Escherichia coli.- Nature, 1958, v. 182, p.778−780.
- Lake J.A. Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. -J. Mol. Biol, 1976, v.105, p.131−159.
- Vasiliev V.D., Selivanova O.M., Baranov V.I., Spirin A.S. Structural study of translating 70 S ribosomes from Escherichia coli. I. Electron microscopy.- FEBSLett., 1983, v.155, p.167−172.
- Vasiliev V.D., Selivanova O.M., Koteliansky V.E. Specific selfpacking of the ribosomal 16 S RNA. FEBSLett., 1978, v.95, p.273−276.
- Vasiliev V.D., Zalite O.M., Specific compact selfpacking of the ribosomal 23 S RNA. FEBS Lett., 1980, v.121, p.101−104
- Спирин А.С. Структура рибосом и биосинтез белка. Изд. «Научный центр биологических исследований Пущино», 1984, с. 156.
- Burma D.P., Nag., Tewari D.S. Association of 16S and 23S ribosomal RNAs to form a bimolecular complex. Proc. Nat. Acad. Sci. USA, 1983, v.80, p.4875−4878.
- Kaltschmidt E., Wittmann H.G. Ribosomal proteins. XII. Number of proteins in small and large ribosomal subunits of Escherichia coli as determined by two-dimensional gel electrophoresis. Proc. Nat. Acad. Sci. USA, 1970, v.67, p.1276−1282.
- Wada A. Analysis of Escherichia coli ribosomal proteins by an improved two dimensional gel electrophoresis. I. Detection of four new proteins. J. Biochem. 1986, v. 100, p. 1583−1594.
- Wada A. Analysis of Escherichia coli ribosomal proteins by an improved two dimensional gel electrophoresis. II. Characterization of four new proteins. J. Biochem. 1986, v. 100, p. 1595−1605.
- Wada A., Sako T. Primary structures of and genes for new ribosomal proteins A and В in Escherichia coli. J. Biochem., 1987, v. 101, pp. 817 820.
- Wittmann H.G. Components of bacterial ribosomes. Ann. Rev. Biochem., 1982, v.51, p.155−183.
- Спирин A.C., Киселев H.A., Шакулов P.C., Богданов А. А. Изучение структуры рибосом: обратимое разворачивание рибосомных частиц в рибонуклеопротеидные тяжи и модель укладки. Биохимия, 1963, т. 28 (№ 5), с. 920−930.
- Gavrilova L.P., Ivanov D.A., Spirin A.S. Studies on the structure of ribosomes. 3. Stepwise unfolding of the 50 s particles without loss of ribosomal protein. J. Mol. Biol., 1966, v. 16, p. 473−489.
- Gesteland R.F. Unfolding of Escherichia coli ribosomes by removal of magnesium. J. Mol. Biol, 1966, v. 18, p. 356−371.
- Спирин A.C. Структура рибосом и биосинтез белка. Изд. «Научный центр биологических исследований Пущино», 1984, с. 160−162.
- Spirin A.S., Belitsina N.V., Lerman M.I. Use of formaldehyde fixation for studies of ribonucleoprotein particles by caesium chloride density-gradient centrifugation. J. Mol. Biol., 1965, v. 14, p. 611−615.
- Itoh Т., Otaka E., Osawa S. Release of ribosomal proteins from Escherichia coli ribosomes with high concentrations of lithium chloride. J. Mol. Biol., 1968, v. 33, p. 109−122.
- Spirin A.S., Belitsina N.V. Biological activity of the re-assembled ribosome-like particles. J. Mol. Biol., 1966, v. 15, p. 282−283.
- Hosokawa K., Fudjimura R., Nomura M. Reconstitution of functionally active ribosomes from inactive subparticles and proteins. Proc. Nat. Acad. Sci. USA, 1966, v.55, p. 198−204.
- Staehelin Т., Meselson M. In vitro recovery о ribosomes and of synthetic activity from synthetically inactive ribosomal subunits. J. Mol. Biol., 1966, v. 16, p. 245−249.
- Traub P., Nomura M. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc. Nat. Acad. Sci. USA, 1968, v.59, p. 777−784.
- Nomura M., Erdmann V. Reconstitution of 50S ribosomal subunits from dissociated molecular components. Nature, 1970, v.228, p. 744−748.
- Klein R., Scheer M.D. The reaction of hydrogen atoms with solid olefins at 195°. — J. Phys. Chem., 1958, v.62, p.1011−1014.
- Шишков A.B., Нейман JI.A., Смоляков B.C. Получение меченых органических соеденений действием атомарного трития. Успехи химии, 1984, т. 7, с.1125−1151.
- Гедрович А.В., Юсупов М. М., Шишков А. В., Гольданский В. И., Спирин А. С. Мечение белков 30S субчастицы рибосомы Е. coli in situ атомарным тритием. Доклады АН СССР, 1982, т. 267, № 5, с.1255−1257.
- Lengmuir I. J. Amer. Chem. Soc., 1912, v.34, p.1310.
- Brennan D., Fletcher P.C. Proc. Roy. Soc., 1959, v. A 250, p.389. Цит. По /26/.
- Moser H.C., Nordin P., Senne J.K. Labeling carbohydrates by exposure to energetic tritium atoms. Int. J. Appl. Radiat. Isotop., 1964, v. 15, p.557.
- Кондратьев B.H. Константы скорости газофазных реакций. Спр. М.: Наука, 1970, с. 36.
- Макаров В.А., Филатов Е. С., Несмеянов Ан.Н. Реакции атомов водорода с замороженными углеводородами. III. Циклогексилциклогексены. Химия высоких энергий, 1970, т. 4, с. 465.
- Филатов Е.С., Орлова М. А., Симонов Е. Ф. Вестн. МГУ, Химия, 1980, т. 21, с. 49.
- Филатов Е.С., Симонов Е. Ф., Орлова М. А. Реакционная способность атомов водорода. Успехи химии, 1981, т. L, с. 2167−2197.
- Дубинская A.M. Реакция атомов водорода с твердыми органическими веществами. Успехи химии, 1978, т. 47(7), с. 1169−1199.
- Шишков А.В., Филатов Е. С., Симонов Е. Ф., Ункович М. С., Гольданский В. И., Несмеянов А. Н. Получение меченых тритием биологически активных соеденений. Доклады АН СССР, 1976, т. 228, № 5, с. 1237−1239.
- Каширин И.А., Гедрович А. В., Шишков А. В., Каграманова В. К., Баратова JI.A. Использование метода термической активации трития для введения радиоактивной метки в РНК Биоорган. Химия, 1983, 9, с. 1531−1534.
- Филатов И.А., Кулиш И.А, Миронов А. Ф., Кожевникова Е. В., Нейман Л. А. Тезисы докладов 1 Всесоюзного совещания по проблеме «Биологически активные соеденения, меченные радиоактивными изотопами». Звенигород, 1985.
- Baratova L.A., Grebenshchikov N.I., Shishkov A.V., Kashirin I.A., Radavsky Y.L., Jarvekulg L., Saarma M. J. The topography of the surface of potato virus X: tritium planigraphy and immunological analysis. Gen. Virol., 1992, v. 73, p. 229−235.
- Tsetlin V.I., Alyonicheva T.N., Shemyakin V.V., Neiman L.A., Ivanov V.T. Tritium thermal activation study of bacteriorhodopsin topography. Eur. J. Biochem., 1988, v. 178, p. 123−129.
- Юсупов M.M., Спирин A.C. Исследование поверхности рибосом и рибосомных субчастиц Escherichia coli методом тритиевой бомбардировки. Биохимия, 1986, т. 51, с. 1858−1867.
- Yusupov М.М., Spirin A.S. Are there proteins between the ribosomal subunits? Hot tritium bombardment experiments. FEBS Lett., 1986, v. 197, p. 229−233.
- Yusupov M.M., Spirin A.S. Hot tritium bombardment technique for ribosome surface topography. Methods in Enzymol., 1988, v. 164, p.426−439.
- Malkin L.I., Rich A. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J. Mol. Biol., 1967, v. 26, c. 329−346.
- Blobel G., Sabatini D.D. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes. J. Cell Biol., 1970, v. 45, p. 130−145.
- Smith W.P., Tai P.-C., Davis B.D. Interaction of secreted nascent chains with surrounding membrane in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 1978, v. 75, p. 5922−5925.
- Bernabeu С., Lake, J.A. Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain. -Proc. Natl. Acad. Sci. USA, 1982, v. 79, p. 3111−3115.
- Колб B.A., Спирин A.C. Рибосомный канал для растущего пептида -Успехи Биологической Химии, 1993, т. 33, с. 3−12.
- Колб В.А., Коммер А. А., Спирин, А.С. Существует ли канал для синтезируемого на рибосоме пептида? Мечение транслирующих рибосом атомарным тритием. Доклады. АН СССР, 1987, т. 296, с. 1497−1501.
- Гордеева JI.B., Баратова J1.A., Марголис Л. Б., Шишков А. В. О возможности изучения топографии мембран клеток методом тритиевой планиграфии. Биофизика, 1989, т. 36, с. 971−975.
- Островский Д.Н., Капрельянц А. С., Лукьянова Л. А. Прикладные аспекты биохимии мембран. Прикл. биохимия и микробиология, 1983, т. 19, с. 60−65.
- Das Н.К., Goldstein A. Limited capacity for protein synthesis at zero degrees centigrade in Escherichia coli. J. Mol. Biol., 1968, v. 31, p. 209 226.
- Friedman H., Lu P., Rich A. Ribosomal subunits produced by cold sensitive initiation of protein synthesis. Nature, 1969, v. 223, p. 909−913.
- Broeze R.J., Solomon C.J., Pope D.H. Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J. Bacteriol., 1978, v. 134, p. 861−874.
- Farewell A., Neidhardt F.C. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol., 1998, v. 180, p. 47 044 710.
- Herendeen S.L., VanBogelen R.A., Neidhard F.C. Levels of major proteins of Escherichia coli during growth at different temperatures. J. Bacteriol., 1979, v. 139, p. 185−194.
- Jones P.G., VanBogelen R.A., Neidhard F.C. Induction of proteins in response to low temperature. J.Bacteriol., 1979, v. 169, p. 2092−2095.
- Thieringer H.A., Jones P.G., Inouye M. Cold shock and adaptation. -BioEssays, 1998, v. 20, p. 49−57.
- VanBogelen R.A., Neidhard F.C. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA, 1990, v. 87, p. 55 895 593.
- Graumann P., Marahiel M.A. Some like it cold: response of microorganisms to cold shock. Arch. Microbiol., 1996, v. 166, p. 293−300.
- Jones P.G., Inouye M. The cold-shock response a hot topic. — Mol. Microbiol., 1994, v. 11, p. 811−818.
- Yamanaka K., Fang L., Inouye M. The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol. Microbiol., 1998, v. 27, p. 247−255
- LaTeana A., Brandi A., Falconi M., Spurio R., Pon C. L., Gualerzi C.O. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc. Natl. Acad. Sci. USA, 1991, v. 88, p. 10 907−10 911.
- Brandi A., Pon C. L., Gualerzi C.O. Interaction of the main cold shock protein CS7.4 (CspA) of Escherichia coli with the promoter region of hns. -Biochimie, 1994, v. 76, p. 1090−1098.
- Etchegaray J.P., Jones P.G., Inouye M. Differential thermoregulation of two highly homologous cold-shock genes, cspA and cspB, of Escherichia coli. -Genes Cells, 1996, v. 1, p. 171−178.
- Wang N., Yamanaka K., Inouye M. Cspl, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J. Bacteriol., 1999, v. 181, p. 1603−1609.
- Mitta M., Fang L., Inouye M. Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and thedownstream box in the coding region for its cold shock induction. Mol. Microbiol., 1997, v. 26, p. 321−335.
- Sprengart M.L., Fuchs E., Porter A.G. The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J., 1996, v. 15, p. 665−674.
- Etchegaray J.P., P.G., Inouye M. Translational enhancement by an elementm downstream of the initiation codon in Escherichia coli. J. Biol. Chem., 1999, v. 274, p. 10 079−10 085
- Tanabe H., Goldstein J., Yang M. Inouye M. Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. J.Bacteriol., 1992, v. 174, p. 3867−3873.
- Brandi A., Pietroni P., Gualerzi C.O., Pon C.L. Post-transcriptional regulation of CspA expression in Escherichia coli. Mol. Microbiol., 1996, v. 19, p. 231−240.
- Goldenberg D., Azar I., Oppenheim A.B. Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol. Microbiol., 1996, v. 19, p. 241−248.
- Fang L., Jiang W., Bae W., Inouye M. Promoter-independent cold-shock induction of cspA and its derepression at 37 degrees С by mRNA stabilization. Mol. Microbiol, 1997, v. 23, p. 355−364.
- Goldstein J., Pollitt N.S., Inouye M. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA, 1990, v. 87, p. 283−287.
- Jiang W., Hou Y., Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem., 1997, v. 272, p. 196−202.
- Jones P.G., Mitta M., Kim Y., Jiang W., Inouye M. Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc. Natl. Acad. Sci. USA, 1996, v. 93, p. 76−80.
- Jones P.G., Inouye M. RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol. Microbiol, 1996, v. 21, p. l207−1218.
- Dammel C. S., Noller H. F. Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes & Dev., 1995, v. 9, p. 626−637.
- Lelivelt M.J., Kawula Т.Н. Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J. Bacteriol, 1995, v. 177, p. 4900−4907.
- Kandror O., Goldberg A.L. Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc. Natl. Acad. Sci. USA, 1997, v. 94, p. 4978−4981.
- Scholz C., Stoller G., Zarnt Т., Fischer G., Schmid F.X. Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding. EMBO J., 1997, v. 16, p. 54−58.
- Stoller G., Rucknagel K.P., Nierhaus K.H., Schmid F.X., Fischer G., Rahfeld J.U. A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J., 1995, v. 14, p. 4939−4948.
- Goldstein E., Drlica K. Regulation of bacterial DNA supercoiling: plasmid linking numbers vary with growth temperature. Proc. Natl. Acad. Sci. USA, 1984, v. 81, p. 4046−4050.
- Mizushima Т., Kataoka K., Ogata Y., Inoue R., Sekimizu K. Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol Microbiol, 1997, v. 23, p. 381−386.
- Jones P.G., Krah R., Tafuri S.R., Wolffe A.P. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J.Bacteriol., 1992, v. 174, p. 57 985 802.
- Гаврилова JI. П., Смолянинов В. В. Изучение механизма транслокации в рибосомах. I. Синтез полифенилаланина в рибосомах Е. coli безучастия гуанозин-5'-трифосфата и белковых факторов трансляции. -Мол. биол. 1971, т. 5, с. 883−891.
- Hardy S.J.S., Kurland C.G., Vaynow P., Mora G. The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins. -Biochemestry, 1969, v.8, p. 2897−2905.
- Madjar J.-J., Michel S., Cozzone A.J., Reboud J.-P. A method to identify individual proteins in four different two-dimensional gel electrophoresis systems: application to Escherichia coli ribosomal proteins. Anal. Biochem., 1979, v.92, p. 174−182.
- Schagger H., and von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem., 1987, v. 166, p.368−379.
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem., 1987, v. 262, p. 10 035−10 038.
- Flessel C.P., Ralph P., Rich A. Polyribosomes of growing bacteria. -Science, 1967, v. 158, p. 658−660.
- Gold L.M., Schweiger M. Synthesis of bacteriophage-specific enzymes directed by DNA in vitro. Methods Enzymol., 1971, v. 20, p. 537−542.
- Crameri A., Whitehorn E.A., Tate E. Stemmer W.P.C. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol., 1996, v. 14, 315−319.
- Gurevich V.V., Pokrovskaya I.D., Obukhova T.A., Zozulya, S.A. Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. -Anal. Biochem., 1991, v. 195, p. 207−213.
- Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D.C. Green fluorescent protein as a marker for gene expression. Science, 1994, v. 263, p. 802−805.
- Ribeiro S., Nock S. Sprinzl M. Purification of aminoacyl-tRNA by affinity chromatography on immobilized Thermus termophilus EF-Tu-GTP. Anal. Biochem., 1995, v. 228, p. 330−335.
- Kahan L., Winkelmann D.A., Lake, J.A. Ribosomal proteins S3, S6, S8 and S10 of Escherichia coli localized on the external surface of the small subunit by immune electron microscopy. J. Mol. Biol., 1981, v. 145, p. 193−214.
- Lake J.A., Strycharz W.A. Ribosomal proteins LI, L17 and L27 from Escherichia coli localized at single sites on the large subunit by immune electron microscopy. J. Mol. Biol., 1981, v. 153, p. 979−992.
- Stoffler G., Stoffler-Meilicke M. Immunoelectron microscopy of ribosomes. Ann. Rev. Biophys. Bioeng., 1984, v. 13, p. 303−330.
- Stoffler G., Stoffler-Meilicke M. in Structure, Function, and Genetics of Ribosomes (Hardesty, В., and Kramer, G., eds), Springer-Verlag, New-York, 1986, p. 28−37.
- Spirin A.S. Structural transformations of ribosomes (dissociation, unfolding and disassembly). FEBSLett., 1974, v. 40, p. 38−47.
- Noller H.F., in Ribosomes: Structure, function, and Genetics (Chambliss G., Craven G.R., Davies J., Davis K., Kahan L., Nomura M., eds.) Baltimore: University Park Press, 1979, p.3−22.
- Chapman N.N., Noller H.F. Protection of specific sites in 16 S RNA from chemical modification by association of 30 S and 50 S ribosomes. J. Mol. Biol., 1977, v.109, p. 131−149.
- Herr W., Noller H.F. Protection of specific sites in 23 S and 5 S RNA from chemical modification by association of 30 S and 50 S ribosomes. J. Mol. Biol., 1979, v.130, p. 421−432.
- Vassilenko S.K., Carbon P., Ebel J.P., Ehresmann C. Topography of 16 S RNA in 30 S submits and 70 S ribosomes accessibility to cobra venom ribonuclease. J. Mol. Biol., 1981, v. 152, p. 699−721.
- Brow D.A., Noller H.F. Protection of ribosomal RNA from kethoxal in polyribosomes. Implication of specific sites in ribosome function. J. Mol. Biol., 1983, v, 163, p. 27−46.
- Meier N., Wagner R. Effects of the ribosomal subunit association on the chemical modification of the 16S and 23 S RNAs from Escherichia coli. -Eur. J. Biochem., 1985, v. 146, p. 83−87.
- Настоящая работа выполнена в лаборатории механизмов биосинтеза белка Института белка РАН (Пущино).