ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΠΉ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ BstF5I ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ структуры Π”ΠΠš-мСтилтрансфСраз этой систСмы

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π”Π¬Π–-мСтилтрансфСразы ΠΈ ΡΠ½Π΄ΠΎΠ½ΡƒΠΊΠ»Π΅Π°Π·Ρ‹ рСстрикции ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΠ½Π΅ΠΉΡˆΠΈΡ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² для исслСдования ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² взаимодСйствия Π±Π΅Π»ΠΊΠΎΠ² с Π”ΠΠš, высокоспСцифичного узнавания Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π”ΠΠš. БистСматичСский поиск ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ этих Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², Π½Π°Ρ‡Π°Ρ‚Ρ‹Π΅ Π±ΠΎΠ»Π΅Π΅ Π΄Π²Π°Π΄Ρ†Π°Ρ‚ΠΈ Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄, ΠΏΡ€ΠΈΠ²Π΅Π»ΠΈ ΠΊ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ прогрСссу Π² ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² мСтилирования… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΠΉ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ BstF5I ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ структуры Π”ΠΠš-мСтилтрансфСраз этой систСмы (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • I. Π’Π’Π•Π”Π•ΠΠ˜Π•,
  • II. Π‘Π’Π ΠžΠ•ΠΠ˜Π• И Π‘Π’ΠžΠ™Π‘Π’Π’Π Π‘ΠΠšΠ’Π•Π Π˜ΠΠ›Π¬ΠΠ«Π₯ Π”ΠΠš-ΠœΠ•Π’Π˜Π›-ВРАНБЀЕР ΠΠ— (ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹)
  • 2. Π›. РаспространСниС систСм рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ Π”ΠΠšΠΌΠ΅Ρ‚ΠΈΠ»Ρ‚Ρ€Π°Π½ΡΡ„Π΅Ρ€Π°Π· Ρƒ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚
    • 2. 2. ΠšΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ систСм РМ
      • 2. 2. 1. Π’ΠΈΠΏ II
      • 2. 2. 2. Π’ΠΈΠΏ
      • 2. 2. 3. Π’ΠΈΠΏ ПО
      • 2. 2. 4. Π’ΠΈΠΏ I
      • 2. 2. 5. Π’ΠΈΠΏ I 1/
      • 2. 2. 6. Π’ΠΈΠΏ Π’Π΅Ρ€I
      • 2. 2. 7. Π’ΠΈΠΏ III
      • 2. 2. 8. Π’ΠΈΠΏ IV
    • 2. 3. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π”ΠΠš-мСтилтрансфСраз
      • 2. 3. 1. Π—Π°Ρ‰ΠΈΡ‚Π° ΠΎΡ‚ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° изоспСцифичными эндонуклСазами
        • 2. 3. 1. 1. УчастиС Π² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… систСмах РМ
        • 2. 3. 1. 2. ΠžΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½ΠΈΠ΅ трансфСкции ΠΈ Ρ‚рансдукции
      • 2. 3. 2. ΠœΠ°Ρ€ΠΊΠΈΡ€ΠΎΠ²ΠΊΠ° Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΡΠΊΠΎΠΉ Ρ†Π΅ΠΏΠΈ Π² ΠΏΠΈ^Π•Πž-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… систСмах Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ
      • 2. 3. 3. Π”Ρ€ΡƒΠ³ΠΈΠ΅ извСстныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
    • 2. 4. ΠšΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π”ΠΠš-мСтилтрансфСраз ΠΏΠΎ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ структурС
    • 2. 5. " ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ структура Π”ΠΠš-мСтилтрансфСраз
      • 2. 5. 1. А<1оМС1--ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ Π΄ΠΎΠΌΠ΅Π½
      • 2. 5. 2. МишСнь-ΡƒΠ·Π½Π°ΡŽΡ‰ΠΈΠΉ Π΄ΠΎΠΌΠ΅Π½
    • 2. 6. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ связывания субстрата ΠΈ ΡƒΠ·Π½Π°Π²Π°Π½ΠΈΡ спСцифичной ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π”ΠΠš
      • 2. 6. 1. БвязываниС с ΡΠ°ΠΉΡ‚ΠΎΠΌ узнавания
      • 2. 6. 2. ΠšΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ измСнСния участков ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΠΉ Ρ†Π΅ΠΏΠΈ ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π· ΠΏΡ€ΠΈ связывании субстрата
    • 2. 7. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ
      • 2. 7. 1. «Π’Ρ‹Π²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅» ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ основания
      • 2. 7. 2. ΠŸΠ΅Ρ€Π΅Π½ΠΎΡ ΠΌΠ΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ Π”ΠΠš3 Π±
        • 2. 7. 2. 1. 5шБ ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
        • 2. 7. 2. 2. N4mC ΠΈ N6mA ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
  • III. РЕЗУЛЬВАВЫ И ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π•
    • 3. 1. Π₯арактСризация эндонуклСазы рСстрикции BstF5I
      • 3. 1. 1. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ эндонуклСазы рСстрикции ifafF5I ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условий Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° Π”ΠΠš
      • 3. 1. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ субстратной спСцифичности эндонуклСазы рСстрикции Bst?5l
      • 3. 1. 3. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΉ расщСплСния
      • 3. 1. 4. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ родствСнныС связи эндонуклСазы рСстрикции ifafF5I с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ эндонуклСазами рСстрикции
      • 3. 1. 5. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠ°Ρ схСма практичСского использования Π½ΠΎΠ²ΠΎΠΉ эндонуклСазы рСстрикции
    • 3. 2. НуклСотидная ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π³Π΅Π½ΠΎΠ² Π”ΠΠš-мСтилтрансфСраз систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ
      • 3. 2. 1. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² Π”ΠΠš-мСтилтрансфСраз систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ
      • 3. 2. 2. ОбъСдинСниС Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡΠΌ Ρ‚Ρ€Π΅Ρ… вставок5 О
      • 3. 2. 3. ВыявлСниС ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… Ρ€Π°ΠΌΠΎΠΊ трансляции ΠΈ ΠΈΡ… Π°Π½Π°Π»ΠΈΠ·
      • 3. 2. 3. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° спСйсСрного участка ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Π΅Π½Π°ΠΌΠΈ
  • Πͺstf51M-l ΠΈ bstf5IM
    • 3. 2. 4. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΈΡ… Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ‚Π½ΠΎΠ³ΠΎ состава
    • 3. 3. Π₯арактСризация Π”ΠΠš-мСтилтрансфСраз систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ВдА?
    • 3. 3. 1. Π”ΠΠš-мСтилтрансфСраза 5^
      • 3. 3. 1. 1. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΎΠΏΡ‚имизация
      • 3. 3. 1. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ основания
      • 3. 3. 2. Π”ΠΠš-мСтилтрансфСраза?^
      • 3. 3. 2. 1. БопоставлСниС с ΠΏΡ€ΠΎΡΡ‚ранствСнной структурой М. ΠžΡ€ΠΏΠœ
      • 3. 3. 2. 2. Анализ участков ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π· Π³Ρ€ΡƒΠΏΠΏΡ‹ М. Π’Ρ€ΠΏΠœ, ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… с Π”ΠΠš
      • 3. 3. 3. Π”ΠΠš-мСтилтрансфСразаВ${Π 
      • 3. 3. 3. 1. ЭкспрСссия Π³Π΅Π½Π° ΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π”ΠΠš-мСтилтрансфСразы М.Β£^
      • 3. 3. 3. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ†Π΅ΠΏΠΈ
    • 3. 4. Π˜Π·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ Π”ΠΠš-мСтилтрансфСраз Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ 55^
  • IV. ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
  • V. Π’Π«Π’ΠžΠ”Π«

Π”Π¬Π–-мСтилтрансфСразы ΠΈ ΡΠ½Π΄ΠΎΠ½ΡƒΠΊΠ»Π΅Π°Π·Ρ‹ рСстрикции ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΠ½Π΅ΠΉΡˆΠΈΡ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² для исслСдования ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² взаимодСйствия Π±Π΅Π»ΠΊΠΎΠ² с Π”ΠΠš, высокоспСцифичного узнавания Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π”ΠΠš. БистСматичСский поиск ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ этих Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², Π½Π°Ρ‡Π°Ρ‚Ρ‹Π΅ Π±ΠΎΠ»Π΅Π΅ Π΄Π²Π°Π΄Ρ†Π°Ρ‚ΠΈ Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄, ΠΏΡ€ΠΈΠ²Π΅Π»ΠΈ ΠΊ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ прогрСссу Π² ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² мСтилирования ΠΈ Ρ€Π°ΡΡ‰Π΅ΠΏΠ»Π΅Π½ΠΈΡ Π”ΠΠš ΠΈ Ρ€ΠΎΠ»ΠΈ этих процСссов для ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². Анализ Π½Π΅Π΄Π°Π²Π½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»Π½Ρ‹Ρ… Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π³Π΅Π½ΠΎΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ» Π²Ρ‹Π²ΠΎΠ΄ ΠΎ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ распространСнии систСм рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π· Ρƒ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСских ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², сдСланный Ρ€Π°Π½Π΅Π΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ биохимичСских исслСдований.

Π’ Π½Π°ΡΡ‚оящСС врСмя большоС Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ извСстных аминокислотных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π”ΠΠš-мСтилтрансфСраз ΠΈ ΡΠ½Π΄ΠΎΠ½ΡƒΠΊΠ»Π΅Π°Π· рСстрикции позволяСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΠΉ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· для выявлСния ΠΎΠ±Ρ‰ΠΈΡ… ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² строСния ΠΈ Π΄Π΅ΠΉΡΡ‚вия Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² этих классов. Π’ Π½Π΅ΠΌΠ°Π»ΠΎΠΉ стСпСни этому ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Π²Π΅Ρ€Π½ΡƒΡ‚Ρ‹Π΅ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ‹ кристаллографичСскиС исслСдования.

Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹, ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΈ Ρ€Π°ΡΡ‰Π΅ΠΏΠ»ΡΡŽΡ‰ΠΈΠ΅ спСцифичСскиС ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π”ΠΠš ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΈΠΌΠΈ ΠΈΠ· ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… инструмСнтов молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π³Π΅Π½Π½ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Π½ΠΎΠ²Ρ‹Ρ… систСм рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ, ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ свойств Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², входящих Π² ΠΈΡ… ΡΠΎΡΡ‚Π°Π², Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ получСния ΠΎΡ‡ΠΈΡ‰Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ.

ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ явилось ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ AstF5I ΠΈΠ· Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Bacillus stearothermophilus F5. 7.

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ полоТСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ выносятся Π½Π° Π·Π°Ρ‰ΠΈΡ‚Ρƒ:

— ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΡƒΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ спСцифичности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ 551.

— Π£ΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΉ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° Π”ΠΠš эндонуклСазой рСстрикции.

— ΠΠ½Π°Π»ΠΈΠ· Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Ρ‚Ρ€Π΅Ρ… ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π”ΠΠš-мСтилтрансфСраз ΠΈΠ· ΡΠΈΡΡ‚Π΅ΠΌΡ‹ рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ.

— ΠΠ½Π°Π»ΠΈΠ· ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… структур Π”ΠΠš-мСтилтрансфСраз ΠΈΠ· ΡΠΈΡΡ‚Π΅ΠΌΡ‹ рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ?^51.

— Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ выявлСно Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ Π΄Π²ΡƒΡ… Π”ΠΠš-мСтилтрансфСраз Π² ΠΎΠ΄Π½ΠΎΠΉ систСмС рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ.

II. Π‘Π’Π ΠžΠ•ΠΠ˜Π• И Π‘Π’ΠžΠ™Π‘Π’Π’Π Π‘ΠΠšΠ’Π•Π Π˜ΠΠ›Π¬ΠΠ«Π₯ Π”ΠΠš-ΠœΠ•Π’Π˜Π›-ВРАНБЀЕР A3 (ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹).

2.1. РаспространСниС систСм рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ Π”ΠΠš-мСтилтрансфСраз Ρƒ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚.

Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹, ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π”ΠΠš, ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСны срСди прокариотичСских ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². Π­Ρ‚ΠΈ Π±Π΅Π»ΠΊΠΈ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ ΡƒΠ·Π½Π°Π²Π°Ρ‚ΡŒ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠ΅ (2−8 ΠΏ.ΠΎ.) Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎ ΠΈΠ· Π²Ρ…одящих Π² Π΄Π°Π½Π½ΡƒΡŽ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ оснований ΠΏΡƒΡ‚Π΅ΠΌ присоСдинСния ΠΊ Π½Π΅ΠΉ ΠΌΠ΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв, Ρƒ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ Π”ΠΠš-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Π΅ сопутствуСт эндонуклСаза рСстрикции Ρ‚ΠΎΠΉ ΠΆΠ΅ спСцифичности. Π­Ρ‚ΠΈ Π΄Π²Π° Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ систСму рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ (РМ), ΡΠ²Π»ΡΡŽΡ‰Π΅ΠΉΡΡ своСобразной «ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмой» Π½ΠΈΠ·ΡˆΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². Π’ ΡΠΈΡΡ‚Π΅ΠΌΠ΅ Π Πœ Ρ€ΠΎΠ»ΡŒ ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Ρ‹ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π²ΠΎ Π²Π½Π΅ΡΠ΅Π½ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΊΠΈ Π² Π”ΠΠš хозяина, Ρ‡Ρ‚ΠΎ обСспСчиваСт распознаваниС ΠΈ Ρ€Π°ΡΡ‰Π΅ΠΏΠ»Π΅Π½ΠΈΠ΅ эндонуклСазой рСстрикции Ρ‡ΡƒΠΆΠ΅Ρ€ΠΎΠ΄Π½ΠΎΠΉ, ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ опасной Π”ΠΠš (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π²Π½Π΅Π΄Ρ€ΡΡŽΡ‰Π΅ΠΉΡΡ Π² ΠΊΠ»Π΅Ρ‚ΠΊΡƒ Π”ΠΠš Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²).

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ Π”ΠΠš-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Ρ‹ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ Π²Ρ…одят Π² ΡΠΈΡΡ‚Π΅ΠΌΡƒ РМ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Dam ΠΈ Dem ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Ρ‹ E.coli. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Ρ‹ Dam Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ для пострСпликативной Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ спарСнных оснований Π”ΠΠš систСмой MutHLS. Π’ ΡΡ‚ΠΎΠΌ случаС ΠΌΠ΅Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΌΠ΅Ρ‚ΠΊΠ° ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Π΄ΠΈΡΠΊΡ€ΠΈΠΌΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΡΠΊΡƒΡŽ ΠΈ Π΄ΠΎΡ‡Π΅Ρ€Π½ΡŽΡŽ Ρ†Π΅ΠΏΠΈ Π”ΠΠš. Роль ΠΆΠ΅ Dem ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΠ΄ΠΈΠ½ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π· всС Π΅Ρ‰Π΅ Π½Π΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½Π°.

Π Π°Π½Π΅Π΅ ΠΏΡƒΡ‚Π΅ΠΌ биохимичСской Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ Π±Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ 2050% всСх исслСдованных ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² эубактСрий нСсут ΠΎΠ΄Π½Ρƒ ΠΈΠ»ΠΈ Π±ΠΎΠ»Π΅Π΅ систСм Π Πœ [1]. Однако, Π°Π½Π°Π»ΠΈΠ· послСдних Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ ΠΏΠΎΠ»Π½Ρ‹ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡΠΌ Π³Π΅Π½ΠΎΠΌΠΎΠ² ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π³Π΅Π½Ρ‹ Π”ΠΠš-мСтилтрансфСраз, Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‡Π°Ρ‰Π΅. Π’ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π³Π΅Π½ΠΎΠΌΠ°Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°ΡŽΡ‚ΡΡ Π³Π΅Π½Ρ‹ Π”ΠΠš-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·, ΠΊΠ°ΠΊ входящих Π² ΡΠΎΡΡ‚Π°Π² систСм РМ, Ρ‚Π°ΠΊ ΠΈ ΠΎΠ΄ΠΈΠ½ΠΎΡ‡Π½Ρ‹Ρ…, ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ€Π°Π½Π΅Π΅ Π½Π΅ Π±Ρ‹Π»ΠΎ извСстно. НаиболСС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π² ΡΡ‚ΠΎΠΌ смыслС являСтся Π³Π΅Π½ΠΎΠΌ Helicobacter pylori [2, 3], содСрТащий 23 Π³Π΅Π½Π° Π±Π΅Π»ΠΊΠΎΠ² с ΠΎΡ‚Ρ‡Π΅Ρ‚Π»ΠΈΠ²ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌΠΈ консСрвативными ΠΌΠΎΡ‚ΠΈΠ²Π°ΠΌΠΈ, свойствСнными Π”ΠΠš-мСтилтрансфСразам. На ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ биохимичСских Ρ€Π°Π±ΠΎΡ‚ Ρƒ ΡΡ‚ΠΎΠ³ΠΎ ΡˆΡ‚Π°ΠΌΠΌΠ° Π±Ρ‹Π»ΠΈ Ρ€Π°Π½Π΅Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ лишь Π΄Π²Π΅ систСмы Π Πœ ΠΈ ΠΎΠ΄Π½Π° одиночная Π”ΠΠš-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Π°. Π£ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Haemophilus influenzae Rd, довольно Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΏΡ€Π΅ΠΆΠ΄Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ классичСской Π³Π΅Π½Π΅Ρ‚ΠΈΠΊΠΈ ΠΈ Π±ΠΈΠΎΡ…ΠΈΠΌΠΈΠΈ, ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΡ€ΠΎΠΌΠ΅ 4-Ρ… извСстных Ρ€Π°Π½Π΅Π΅ Π±Ρ‹Π»ΠΈ выявлСны Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ 3 Π½ΠΎΠ²Ρ‹Ρ… Π³Π΅Π½Π° Π”ΠΠš-мСтилтрансфСраз [3]. Π“Π΅Π½Ρ‹ Π”ΠΠš-мСтилтрансфСраз Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π΄Π°ΠΆΠ΅ Π² Π½Π΅Π±ΠΎΠ»ΡŒΡˆΠΈΡ… Π³Π΅Π½ΠΎΠΌΠ°Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Ρ€ΠΎΠ΄Π° Mycoplasma, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅, ΠΊΠ°ΠΊ считаСтся, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π½Π°Π±ΠΎΡ€ΠΎΠΌ Π³Π΅Π½ΠΎΠ², Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… для ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ [4, 88].

НСсмотря Π½Π° ΠΎΡ‡Π΅Π½ΡŒ большоС число ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π”ΠΠš, распознаваСмых ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Π°ΠΌΠΈ (извСстно Π±ΠΎΠ»Π΅Π΅ 250 Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сайтов узнавания систСм Π Πœ [5]), сущСствуСт ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎΠ΅ сходство ΠΌΠ΅ΠΆΠ΄Ρƒ этими Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ ΠΊΠ°ΠΊ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ…, Ρ‚Π°ΠΊ ΠΈ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ Ρ‚Ρ€Π΅Ρ‚ΠΈΡ‡Π½Ρ‹Ρ… структур. Π­Ρ‚ΠΎ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ± ΠΎΠ±Ρ‰Π΅ΠΌ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎΠΌ происхоТдСнии, Π½ΠΎ ΠΈ ΠΎΠ± интСнсивном Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌ пСрСносС Π³Π΅Π½ΠΎΠ² этих Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΡˆΡ‚Π°ΠΌΠΌΠ°ΠΌΠΈ ΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ [6−10].

Π’Π«Π’ΠžΠ”Π«.

1. Π’ Ρ…ΠΎΠ΄Π΅ изучСния ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… изолятов Π² ΡˆΡ‚Π°ΠΌΠΌΠ΅ Bacillus stearothermophilus F5 ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° новая систСма рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Bst?5l, ΡƒΠ·Π½Π°ΡŽΡ‰Π°Ρ Ρ‚Π°ΠΊΡƒΡŽ ΠΆΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π”ΠΠš 5'-GGATG-3 Ρ‡Ρ‚ΠΎ ΠΈ ΡΠΈΡΡ‚Π΅ΠΌΡ‹ рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Fokl ΠΈ Stsl.

2. Показано, Ρ‡Ρ‚ΠΎ эндонуклСаза рСстрикции BstF5l Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΡƒΠ΅Ρ‚ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π”ΠΠš Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 5'-GGATG-3'(2/0), Ρ‡Ρ‚ΠΎ сущСствСнно отличаСтся ΠΎΡ‚ ΠΌΠ΅ΡΡ‚Π° Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° Π”ΠΠš Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ R. Fokl ΠΈ R.Stsl. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚, Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠΉ Π”ΠΠš Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅.

3. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° нуклСотидная ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ участка Π³Π΅Π½ΠΎΠΌΠ° Bacillus stearothermophilus F5, содСрТащая Π³Π΅Π½Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π”ΠΠšΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π² ΡΠΎΡΡ‚Π°Π²Π΅ ΠΎΠ΄Π½ΠΎΠΉ систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ… Π”ΠΠš-мСтилтрансфСраз BstF5l-1, BstF5l-2 ΠΈ.

BstF5l-3, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΎΠ΄Π½Ρƒ ΠΈ Ρ‚Ρƒ ΠΆΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ Π”ΠΠš:

5' - G G, А Π’ G — 3' 3' - ББВАБ-5'.

4. УстановлСно, Ρ‡Ρ‚ΠΎ M.?siF5I-l ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ ΠΊ ΠΊΠ»Π°ΡΡΡƒ D2i ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΠ΅Ρ‚ Π°Π΄Π΅Π½ΠΈΠ½ΠΎΠ²ΠΎΠ΅ основаниС Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ Ρ†Π΅ΠΏΠΈ ΡƒΠ·Π½Π°Π²Π°Π΅ΠΌΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ (5'-GGATG-3'). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, данная ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Π° являСтся Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ Π°Π½Π°Π»ΠΎΠ³ΠΎΠΌ N-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π· Fokl ΠΈ Stsl, относящихся ΠΊ ΠΊΠ»Π°ΡΡΡƒ Di2 Π”ΠΠš-мСтилтрансфСраз.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Roberts R.J., Halford S.E. Type II restriction endonucleases. In: Nucleases, 2nd edn., ed. Linn S.M., Lloyd R.S., Roberts R.J., Cold Spring Harbor Press, Cold Spring Harbor, 1993, p. 35−88.
  2. Tomb J.F., White O., Kerlavage A.R., Clayton R.A., Sutton G.G. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori.- Nature, 1997, v. 388, p. 539−547.
  3. Π‘.А., Янковский H.K. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° прокариотичСских Π³Π΅Π½ΠΎΠΌΠΎΠ². -ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология, 1999, Ρ‚. 33, с. 941−957.
  4. Fraser Π‘.М., Gocayne J.D., White О., Adams M.D., Clayton R.A. et al. The minimal gene complement of Mycoplasma genitalium. Science, 1995, v. 270, p. 397−403.
  5. Roberts R.J., Macelis D. REBASE restriction enzymes and methylases. -Nucleic Acids Res., 2000, v. 28, p. 306−307.
  6. Jeltsch A., Kroger M., Pingoud A. Evidence for an evolutionary relationship among type-II restriction endonucleases. Gene, 1995, v. 160, p. 7−16.
  7. Jeltsch A., Pingoud A. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems. J. Mol. Evol., 1996, v. 42, p. 91−96.
  8. Lee K.F., Shaw P.C., Picone S.J., Wihon G.G., Lunnen K.D. Sequence comparison of the Π―ΡΠΎΠΠšΠ—ΠŸ and Eael restriction-modification systems suggests an intergenic transfer of genetic material. Biol. Chem., 1998, v. 379, p. 437−441.
  9. Sharp P.M., Kelleher J.E., Daniel A.S., Cowan G.M., Murray N.E. Roles of selection and recombination in the evolution of type I restriction-modificationsystems in enterobacteria. Proc. Natl. Acad. Sei. U.S.A., 1992, v. 89, p. 98 369 840.
  10. Meselson M., Yuan R., Heywood J. Restriction and modification of DNA. -Ann. Rev. Biochem., 1972, v. 41, p. 447−466.
  11. Webb J.L., King G., Tement D., Titheradge A.J.B., Murray N.E. Restriction by EcoKI is enhanced by cooperative interactions between target sequences and is dependent on DEAD box motifs. EMBO J., 1996, v. 15, p. 2003−2009.
  12. Wilson G.G., Murray N.E. Restriction and modification systems. Annu. Rev. -Genet., 1991, v. 25, p. 585−627.
  13. Price C., Bickle T.A. A possible role for DNA restriction in bacterial evolution. Microbiol. Sei., 1986, v. 3, p. 296−299.
  14. Marinus M.G. Methylation of DNA. In Escherichia coli and Salmonella lyphimurium, 2nd edn, ed. F.C. Neidhardt, ASM Press, Washington, 1996, p. 782−791.
  15. Miner Z., Hattman S. Molecular cloning, sequencing, and mapping of the bacteriophage T2 dam gene. J. Bacteriol., 1988, v. 170, p. 5177−5184.
  16. Behrens B., Noyer-Weidner M., Pawiek B., Lauster R., Balganesh T.S., Trautner T.A. Organization of multispecific DNA methyltransferases encoded by temperate Bacillus subtilis phages. EMBO J., 1987, v. 6, p. 1137−1142.
  17. Trautner T.A., Pawiek B., Behrens B., Willert J. Exact size and organization of DNA target-recognizing domains of multispecific DNA-(cytosine-C5)-methyltransferases. EMBO J., 1996, v. 15, p. 1434−1442.
  18. Modrich P. Methyl-directed DNA mismatch correction. J. Biol. Chem., 1989, v. 264, p. 6597−6600.
  19. Takamatsu S., Kato R., Kuramitsu S. Mismatch DNA recognition protein from an extremely thermophilic bacterium, Thermus thermophilics HB 8. Nucleic Acids Res., 1996, v. 24, 640−647.
  20. Ginetti F., Perego M., Albertini A.M., Galizzi A. Bacillus subtilis mutS-mutL operon: identification, nucleotide sequence and mutagenesis. Microbiology, 1996, v. 142,2021−2029.
  21. Polaczek P., Kwan K., Liberies D.A., Campbell J.L. Role of architectural elements in combinatorial regulation of initiation of DNA replication in Escherichia coli. Mol. Microbiol., 1997, v. 26, 261−275.
  22. Palmer B.R., Marinus M.G. The dam and dem strains of Escherichia coli a review. — Gene, 1994, v. 143, 1−12.
  23. Bird A.P. Functions for DNA methylation in vertebrates. Cold Spring Harb. Symp. Quant. Biol., 1993, v. 58, P.281−285.
  24. Kakutani T., Jeddeloh J.A., Flowers S.K., Munakata K., Richards E.J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc. Natl. Acad. Sei. USA, 1996, v. 93, p. 1 240 612 411.
  25. Gant T.M., Wilson K.L. Nuclear assembly. Annu. Rev. Cell Dev. Biol., 1997, v. 13, p. 669−695.
  26. Karreman C., de Waard A. Agmenellum quadruplicatum Vl. Aqul^ a novel modification methylase. J. Bacterid., 1990, p. v. 172, 266−272.
  27. Lee K.P., Kam K.M., Shaw, P.C. A bacterial methyltransferase M, EcoUK311 requires two proteins for in vitro methylation. Nucleic Acids Res., 1995, v. 23, p. 103−108.
  28. Szybalski W., Kim S.C., Hasan N., Podhajska A.J. Class-IIS restriction enzymes a review. — Gene, 1991, v. 100, p. 13−26.
  29. Kita K., Kotani H., Sugisaki H., Takanami M. The Fokl restriction-modification system. I. Organization and nucleotide sequences of the restriction and modification genes. J. Biol. Chem., 1989, v. 264, p. 5751−5756.
  30. Kita K., Suisha M., Kotani H., Yanase H., Kato N. Cloning and sequence analysis of the Stsl restriction-modification gene: presence of homology to Fokl restriction-modification enzymes. Nucleic Acids Res., 1992, v. 20, p. 41 674 172.
  31. Sugusaki H., Kita K., Takanami M. The Fokl restriction-modification system. II. Presence of two domains in Fokl methylase responsible for modification of different DNA strands. J. Biol. Chem., 1989, v. 264, p. 5757−5761.
  32. Sugisaki H., Yamamoto K., Takanami M. The Hgal restriction-modification system contains 2 cytosine methylase genes responsible for modification of different DNA strands. J. Biol. Chem., 1991, v. 266, p. 13 952−13 957.
  33. Degtyarev S.Kh., Rechkunova NX, Kolyhalov A.A., Dedkov V. S, Zhilkin P.A. II-Q restriction endonucleases new class of type II enzymes. — Nucleic Acids Res, 1990, v. 18, p. 5807−5810.
  34. ДСгтярСв C. X, Π–ΠΈΠ»ΠΊΠΈΠ½ П. А, ΠŸΡ€ΠΈΡ…ΠΎΠ΄ΡŒΠΊΠΎ Π“. Π“, Π Π΅ΠΏΠΈΠ½ Π’. Π•, Π Π΅Ρ‡ΠΊΡƒΠ½ΠΎΠ²Π° Н. И. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ субстратной спСцифичности рСстриктазы Π’Ρ€ΠΈ 01 с Π½Π΅ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΌ сайтом узнавания. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология, 1989, Ρ‚. 23, с. 1051−1056.
  35. Stankevicius К, Lubys A., Timinskas A, Vaitkevicius D, Janulaitis А. Cloning and analysis of the four genes coding for BpulOl restriction-modification enzymes. Nucleic Acids Res, 1998, v. 26, p. 1084−1091.
  36. Degtyarev S. Kh, Belichenko O. A, Lebedeva N. A, Dedkov V. S, Abdurashitov M.A. Btrl, a novel restriction endonuclease, recognizing the non-palindromic sequence 5'-CACGTC (-3/-3)-3'. Nucleic Acids Res, 2000, v. 28, e56.
  37. Bickle T.A. The ATP-dependent restriction endonucleases. In: Nucleases, ed. Linn S. M, Lloyd R. S, Roberts R. J, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993, p. 89−109.
  38. Bickle T. A, Kruger D.H. Biology of DNA restriction. Microbiol. Rev, 1993, v. 57, p. 434−450.
  39. Modrich P. Structure, functions and mechanisms of DNA restriction and modification enzymes. — Q. Rev. Biophys, 1979, v. 12, p. 315−369.
  40. Dryden D.T.F, Cooper L. P, Thorpe P. H, Byron O. The in vitro assembly of the EcoKl type I DNA restriction/modificaton enzyme and its in vivo implications. Biochemistry, 1997, v. 36, p. 1065−1076.
  41. Cowan G. M, Gann A.A.F, Murray N.E. Conservation of complex DNA recognition domains between families of restriction enzymes. Cell, 1989, v. 56, p. 103−109.
  42. Gubler M., Braguglia D., Meyer J., Piekarowicz A., Bickle T.A. Recombination of constant and variable modules alters DNA sequence recognition by type IC restriction-modification enzymes. EMBO J., 1992, v. 11, p. 233−240.
  43. Murray N.E., Daniel A.S., Cowan G.M., Sharp, P.M. Conservation of motifs within the unusually variable polypeptide sequences of type I restriction and modification enzymes. Mol. Microbiol., 1993, v. 9, p. 133−143.
  44. Cooper L.P., Dryden D.T.F. The domains of a type I DNA methyltransferase: interactions and role in recognition of DNA methylation. J. Mol. Biol., v. 236, 1994, p. 1011−1021.
  45. Kong H., Roemer S.E., Waiterees P.A., Benner J.S., Wilson G.G., Nwankwo D.O. Characterization of Bcgl, a new kind of restriction-modification system. -J. Biol. Chem., 1994, v. 269, p. 683−690.
  46. Kong H.M., Morgan R.D., Maunus R.E., Schildkraut I. A unique restriction endonuclease, Bcgl, from Bacillus coagulans. Nucleic Acids Res., 1993, v. 21, p. 987−991.
  47. Degtyarev S.K., Rechkunova N.I., Zernov Y.P., Dedkov V.S., Chizikov V.E., Van Calligan M., Williams R., Murray E. Bsp24l, a new unusual restriction endonuclease. Gene, 1993, v. 131, p. 93−95.
  48. Vitor J.M.B., Morgan R.D. Two novel restriction endonucleases from Campylobacter jejuni. Gene, 1995, v. 157, p. 109−110.
  49. Dryden D.T.F. Bacterial DNA MTases. In: S-adenosylmethionine-dependent methyltransferases: structures and functions, ed. X. Cheng and R.M. Blumenthal, World Scientific, Singapore, 1999, p. 283−340.
  50. Ahmad I., Rao D.N. Chemistry and biology of DNA methyltransferases. CRC Rev. Biochem. Mol. Biol., 1996, v. 31, p. 361−380.
  51. Ahmad I., Rao D.N. Interaction of Eco?5l DNA methyltransferase with oligonucleotides containing the asymmetric sequence 5-CAGCAG-3'. J. Mol. Biol., 1994, v. 242, p. 378−388.
  52. Meisel A. Mackeldanz P., Bickle T.A. Kruger D.H., Schroeder C. Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis. EMBO J., 1995, v. 14, p. 2958−2966.
  53. Meisel A., Bickle T.A., Kruger D.H., Schroeder C. Type-Ill restriction enzymes need two inversely oriented recognition sites for DNA cleavage. Nature, 1992, v. 355, p. 467−469
  54. Janulaitis A., Vaisvila R., Timinskas A., Klimasauskas S., Butkus V. Cloning and sequence analysis of the genes coding for EcoSll type IV restriction-modification enzymes. Nucleic Acids Res., 1992, v. 20, p. 6051−6056.
  55. Janulaitis A., Petrusyte M., Maneliene Z., Klimasauskas S., Butkus V. Purification and properties of the Eco51 restriction endonuclease and methylase-prototypes of a new class (type IV). Nucleic Acids Res., 1992, v. 20, p. 6043−6049.
  56. Hotchkiss R.D. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem., 1948, v. 168, p. 315 332.
  57. Janulaitis A., Klimasauskas S., Petrusyte M., Butkus V. Cytosine modification in DNA by Bcnl methylase yields N4-methylcytosine. FEBS Lett., 1983, v. 161, p. 131−134.
  58. Dunn D.B., Smith J.D. Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coll-Nature, 1955, v. 175, p. 336−337.
  59. Neidle S. DNA structure and recognition. IRL Press, New York, 1994.
  60. Kumar S., Cheng X., Klimasauskas S., Sha M., Posfai J., Roberts R.J., Wilson G.G. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res., 1994, v. 22, p. 1−10.
  61. Wilson G.G. Amino acid sequence arrangements of DNA-methyltransferases. -Methods Emymol., 1992, v. 216, p. 259−279.
  62. Malone T., Blumenthal R.M., Cheng X. Structure, -guided analysis reveals nine sequence motifs conserved among DNA amino-methyl-transferases and suggests a catalytic mechanism for these enzymes. — J. Mol. Biol., 1995, v. 253, p. 618−632.
  63. Kossykh V.G., Schlagman S.L., Hattman S. Conserved sequence motif DPPY in region IV of the phage T4 Dam DNA-N6-ademne.-methytransferase is important for S-adenosyl-L-methionine binding. Nucleic Acids Res., 1993, v. 21, p. 4659−4662.
  64. Bergerat A., Guschlbauer W. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coll Nucleic Acids Res., 1990, v. 18, p. 4369−4375.
  65. Adams G.M., Blumenthal R.M. The Pvull DNA (cytosine-N4> methyltransferase comprises two trypsin-defined domains, each of which binds a molecule of 5-adenosyl-L-methionine. Biochemistry, 1997, v. 36, p. 82 848 292.
  66. Klimasauskas S., Timinskas A., Menkevicius S., Butkiene D., Butkus V., Janulaitis A. Sequence motifs characteristic of DNA cytosine-N4. methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases. -Exp. Biol., 1990, v. 1, p. 4−12.
  67. Cheng X. Structure, and function of DNA methyltransferases. Annu. Rev. Biophys. Biomol. Struct., 1995, v. 124, p. 293−3 18.
  68. Cheng X. DNA modification by methyltransferases. Curr. Opin. Struct. Biol., 1995, v. 5, p. 4−10.
  69. Cheng X., Kumar S., Posfai J., Pflugrath J.W., Roberts R.J. Crystal structure of the Hhal DNA methyltransferase complexed with S-adenosyl-L-methionine. -Cell, 1993, v. 74, p. 299−307.
  70. Reinisch K.M., Ch^n L., Verdine G.L., Lipscomb, W.N. The crystal structure of Haelll methyltransferase covalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell, 1995, v. 82, p. 143−153.
  71. Gong W., O’Gara M., Blumenthal R.M., Cheng X. Structure of Pvull DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. — Nucleic Acids Res., 1997, v. 25, p. 2702−2715.
  72. Vidgren J., Svensson L.A., Liljas A. Crystal structure of catechol-O-methyltransferase. Nature, 1994, v. 368, p. 354−358.
  73. Fu Z., Hu Y., Konishi K., Ogawa H., Gomi T., Fujioka M., Takusagawa F. Crystal structure of glycine N-methyltransferase from rat liver. Biochemistry, 1996, v. 35, p. 11 985−11 993.
  74. Djordjevic S., Stock A.M. Crystal structure of the Chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine. Structure, 1997, v. 5, p. 545−558.
  75. Hodel A.E., Gershon P.D., Quicho F.A. Structural basis for sequence nonspecific recognition of 5'-capped mRNA by a cap modifying enzyme. -Molecular Cell, 1998, v. 1, p. 443−447.
  76. Hubbard T.J.P., Murzin A.G., Brenner S.E., Chothia C. SCOP: a structural classification of proteins database. Nucleic Acids Res., 1997, v. 25, p. 236−239.
  77. Schluckebier G., O’Gara M., Saenger W., Cheng X. Universal catalytic domain structure of AdoMet-dependent methyltransferases. J. Mol. Biol., 1995, v. 247, p. 16−20.
  78. Carugo O., Argos P. NADP-dependent enzymes. II: Evolution of the mono- and dinucleotide binding domains. Proteins, 1997, v. 28, p. 29−40.
  79. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B.C., Herrmann R. et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res., 1996, v. 24, p. 4420−4449.
  80. Sternberg N., Coulby J. Cleavage of the bacteriophage PI packaging site (pac) is regulated by adenine methylation. Proc. Natl. Acad. Sei. USA, 1990, v. 87, p. 8070−8074.
  81. O’Gara M., McCloy K., Malone T., Cheng X. Structure-based alignment of three AdoMet-dependentmethyltransferases. — Gene, 1995, v. 157, p. 135−138.
  82. Klimasauskas S., Kumar S., Roberts R.J., Cheng X. Hhal methyltransferase flips its target base out of the DNA helix. Cell, 1994, v. 76, p. 357−369.
  83. Winkler F.K. DNA totally flipped out by methylase. Structure, 1994, v. 2, p. 79−83.
  84. Cheng X., Blumenthal R.M. Finding a basis for flipping bases. Structure, 1996, v. 4, p. 639−645.
  85. Hornby D.P., Ford G.C. Protein-mediated base flipping. Curr. Op. Biotech., 1998, v. 9, p. 354−358.
  86. Roberts R.J. On base flipping. Cell, 1995, v. 82, p. 9−12.
  87. Roberts R.J., Cheng X. Base flipping. Annu. Rev. Biochem., 1998, v. 67, p. 181−198.
  88. Lauster R., Trautner T.A., Noyer-Weidner M. Cytosine-specific type II DNA methyltransferases: A conserved enzyme core with variable target-recognizing domains. J. Mol. Biol., 1989, v. 206, p. 305−312.
  89. King G., Murray N.E. Restriction enzymes in cells, not eppendorfs. Trends Microbiol., 1994, v. 2, p. 465−469.
  90. Gopal J., Yebra M.J., Bhagwat A.S. DsaV methyltransferase and its isoschizomers contain a conserved segment that is similar to the segment in Hhal methyltransferase that is in contact with DNA bases. Nucleic Acids Res., 1994, v. 22, p. 4482−4488.
  91. Lange C., Wild C., Trautner T.A. Identification of a subdomain within DNA-(cytosine-C5)-methyltransferases responsible for the recognition of the 5' part of their DNA target. EMBO J., 1996, v. 15, p. 1443−1450.
  92. Walter J., Noyer-Weidner ML, Trautner T.A. The amino acid sequence of the CCGG recognizing DNA methyltransferase M. BsuFl: implications for theanalysis of sequence recognition by cytosine DNA methytransferases. EMBO J., 1990, v. 9, p. 1007−1013.
  93. Boye E., Marinus M.G., Lobner-Olesen A. Quantitation of Dam methyltransferase in Escherichia coli. J. Bacteriol., 1992, v. 174, p. 1682−1685.
  94. Kelleher J.E., Raleigh E.A. Response to UV damage by four Escherichia coli K-12 restriction systems. J. Bacteriol., 1994, v. 176, p. 5888−5896.
  95. Goodsell D.S. Inside a living cell. Trends Biochem. Sei., 1991, v. 16, p. 203 206.
  96. Pettijohn D.E. The Nucleoid. In: Escherichia coli and Salmonella typhimurium, 2nd edn., ed. F.C. Neidhardt, ASM Press, Washington, 1996, p. 158−166.
  97. Von Hippel P.H., Berg O.G. Facilitated target location in biological systems. -J. Biol. Chem., 1989, v. 264, p. 675−678.
  98. Nardone G., George J., Chirikjian J.G. Differences in the kinetic properties of BamHI endonuclease and methylase with linear DNA substrates. J. Biol. Chem, 1996, v. 261, p. 12 128−12 133.
  99. Surby M. A, Reich N.O. Contribution of facilitated diffusion and processive catalysis to enzyme efficiency implications for the EcoRI restriction-modification system. — Biochemistry, 1996, v. 35, p. 2201−2208.
  100. Jeltsch A, Friedrich T, Roth M. Kinetics of methylation and binding of DNA by the EcoRV adenine-N6 methyltransferase. J. Mol. Biol, 1998, v. 275, p. 747−758.
  101. Marzabal S, DuBois S, Thielking V, Cano A, Eritja R, Guschlbauer W. Dam methylase from Escherichia coli: kinetic studies using modified DNA oligomers: hemimethylated substrates. Nucieic Acids Res, 1995, v. 23, p. 3648−3655.
  102. Renbaum P., Razin A. Interaction of M. SssI and M. Hhal with single-base mismatched oligodeoxynucleotide duplexes. Gene, 1995, v. 157, p. 177−179.
  103. Kang Y.K., Lee H.B., Noh M.J., Cho N.-Y., Yoo O.J. Different effects of base analog substitutions in BamHI restriction site on recognition by BamHI endonuclease and BamHI methylase. Biochem. Biophys. Res. Commun., 1995, v. 206, p. 997−1002.
  104. Herman G.E., Modrich P. Escherichia coli dam methylase: physical and catalytic properties of the homogeneous enzyme. J. Biol. Chem., 1982, v. 257, p. 2605−2612.
  105. Kossykh Y.G., Schlagman S.L., Hattman S. Comparative studies of the phage T2 and T4 DNA (N6-adenine) methyltransferases: amino acid changes that affect catalytic activity. J. Bacterid., 1997, v. 179, p. 3239−3243.
  106. Kossykh V.G., Schlagman S.L., Hattman S. Phage T4 DNA N6- adenine. methyltransferase. J. Biol. Chem., 1995, v. 270, p. 14 389−14 393.
  107. Szilak L., Der A., Deak F., Venetianer P. Kinetic characterization of the Ecal methyltransferase. Eur. J. Biochem., 1993, v. 218, p. 727−733.
  108. Winter M. Investigation of de novo meihylation activity in mutants of the EcoKl methyltransferase. Ph.D. thesis, University of Edinburgh, 1998.
  109. Rubin R.A., Modrich P. EcoRl methylase physical and catalytic properties of the homogeneous enzyme. J. Biol. Chem., 1977, v. 252, p. 7265−7272.
  110. Reich N.O., Mashhoon N. Kinetic mechanism of the EcoKL DNA methyltransferase. Biochemistry, 1991, v. 30, p. 2933−2929.
  111. Reich N.O., Danzitz M J. Non-additivity of sequence-specific enzyme-DNA interactions in the Eco91 DNA methyltransferase. Nucleic Acids Res., 1991, v. 19, p. 6587−6594.
  112. Reich N.O., Olsen C., Osti F., Murphy J. In vitro specificity of EcoRl DNA methyltransferase. J. Biol. Chem., 1992, v. 267, p. 15 802−15 807.
  113. Kossykh Y.G., Schlagman S.L., Hattman S. Function of Pro-185 in the ProCys of conserved motif IV in the iscoRII cytosine-C5.-DNA methyltransferase. -FEES Lett., 1995, v. 370, p. 75−77.
  114. Gabbara S., Sheluho D., Bhagwat A.S. Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active. Biochemistry, 1995, v. 34, p. 8914−8923.
  115. Wu J.C., Santi D.V. Kinetic and catalytic mechanism of Hhal methyltransferase. J. Biol. Chem., 1987, v. 262, p. 4778−4786.
  116. Dubey A.K., Roberts R.J. Sequence-specific DNA binding by the Mspl DNA methyltransferase. Nucleic Acids Res., 1992, v. 20, p. 3167−3173.
  117. Szczelkun M.D., Connolly B.A. Sequence-specific binding of DNA by the EcoKV restriction and modification enzymes with nucleic acid and cofactor analogues. Biochemistry, 1995, v. 34, p. 10 724−10 733.
  118. Lohman T.M., Mascotti D.P. Thermodynamics of ligand nucleic-acid interactions. Methods Enzymol., 1992, v. 212, p. 400−424.
  119. Neidhardt F.C., Ingraham J.L., Schaechter M. Physiology of the bacterial cell: a molecular approach. Sinauer Associates Inc. Mass., USA., 1990.
  120. Renbaum P., Razin A. Footprint analysis of M.&sl and M. Hhal methyltransferases reveals extensive interactions with the substrate DNA backbone. J. Mol. Biol., 1995, v. 248, p. 19−26.
  121. Szczelkun M.D., Jones H., Connolly B.A. Probing the protein-DNA interface of the EcoRV modification methyltransferase bound to its recognition sequence, GATATC. Biochemistry, 1995, v. 34, p. 10 734−10 743.
  122. Erskine S.G., Halford S.E. Reactions of the EcoKV restriction endonuclease with fluorescent oligodeoxynucleotides: identical equilibrium constants for binding to specific and non-specific DNA. J. Mol. Biol., 1998, v. 275, p. 759 772.
  123. Som S., Friedman S. Regulation of EcoKLl methyltransferase: effect of mutations on gene expression and in vitro binding to the promoter region. -Nucleic Acids Res., 1994, v. 22, p. 5347−5353.
  124. Cal S., Connolly B.A. The EcoKV modification methylase causes considerable bending of DNA upon binding to its recognition sequence GATATC. J. Biol. Chem., 1996, v. 271, p. 1008−1015.
  125. Garcia R.A., Bustamante C.J., Reich N.O. Sequence-specific recognition by cytosine C5 and adenine N6 DNA methyltransferases requires different deformations of DNA. Proc. Natl. Acad. Sci. USA., 1996, v. 93, p. 7618−7622.
  126. Hornby D.P., Whitmarsh A., Pinarbasi H., Kelly S.M., Price N.C., Shore P., Baldwin G.S., Waltho J. The DNA recognition subunit of a DNA methyltransferase is predominantly a molten globule in the absence of DNA. -FEES Lett, 1994, v. 355, p. 57−60.
  127. Baldwin G.S., Kelly S.M., Price N. C, Wilson G.W., Connolly B. A, Artymiuk P. J, Hornby D.P. Ligand-induced conformational states of the cytosine-specific DNA methyltransferase M. Hgal-2. J. Mol. Biol, 1994, v. 235, p. 545−553.
  128. Powell L. M, Dryden D.T.F, Willcock D. F, Pain R. H, Murray N.E. DNA recognition by the EcoK methyltransferase the influence of DNA methylation and the cofactor S-adenosyl-L-methionine. — J Mol. Biol, 1993, v. 234, p. 60−71.
  129. Reich N. O, Maegley K. A, Shoemaker D. D, Everett E. Structural and functional analysis of EcoR DNA methytransferase by proteolysis. -Biochemistry, 1991, v. 30, p. 2940−2946.
  130. Friedman S, Som S, Yang L.-F. The core element of the EcoRAl methylase as defined by protease digestion and deletion analysis. Nucleic Acids Res, 1991, v. 19, p. 5403−5408.
  131. Shapiro S, Almenas A, Thomson J. Biosynthesis of methionine in Saccharomyces serevisiae. J. Biol. Chem, 1985, v. 240, p. 2512−2518.
  132. Allan B. W, Beechem J. M, Lindstrom W. M, Reich N.O. Direct real time observation of base flipping by the ZscoRI DNA methytransferase. J. Biol. Chem, 1998, v. 273, p. 2368−2373.
  133. Reich N. O, Mashhoon N. Presteady state kinetics of an S-adenosylmethionine-dependent enzyme. Evidence for a unique binding orientation requirement for EcoRL DNA methytransferase. J. Biol. Chem, 1993, v. 268, p. 9191−9193.
  134. Leijon M, Graslund A. Effects of sequence and length on imino protonexchange and base pair opening kinetics in DNA oligonucleotide duplexes. -Nucleic Acids Res, 1992, v. 20, p. 5339−5343.
  135. Klimasauskas S, Roberts R.J. M. Hhal binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res, 1995, v. 23, p. 1388−1395.
  136. Yang A. S, Shen J.-C, Zingg J.-M, Mi S, Jones P.A. Hhal and Hpall DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res, 1995, v. 23, p. 1380−1387.
  137. Chen L, MacMillan A.M., Chang W, Ezaz-Nikpay K, Lane W. S, Yerdine G.L. Direct identification of the active-site nucleophile in a DNA (Cytosine-5)-methytransferase. Biochemistry, 1991, v. 30, p. 11 018−11 025.
  138. Verdine G. The flip side of DNA methylation. Cell, 1994, v. 76, p. 197−200.
  139. Ho D.K., Wu J.C., Santi D.V., Floss H.G. Stereochemical studies of the C-methylation of deoxycytidine catalyzed by HhaI methylase and the N-methylation of deoxyadenosine catalyzed by Π•ΡΠΎΠ¨ methylase. Arch. Biochem. Biophys., 1991, v. 284, p. 264−269.
  140. Schluckebier G., Labahn J., Granzin J., Saenger W. M. Taql: Possible catalysis via cation-pi interactions in N-specific DNA methyltransferases. Biol.Chem., 1998, v. 379, p. 389−400.
  141. Restriction endonucleases: Quality controls. In: New England BioLabs 1998/99 Catalogue, p. 14.
  142. П.А., Π”Π΅Π΄ΠΊΠΎΠ² B.C., ДСгтярСв C.X. ΠœΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния эндонуклСаз рСстрикции Π² ΠΊΠΎΠ»ΠΎΠ½ΠΈΡΡ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ. ΠŸΡ€ΠΈΠΊΠ». Π‘ΠΈΠΎΡ…ΠΈΠΌ. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»., 1988, Ρ‚. 24, с. 121−124.
  143. Whitehead P.R., Brown N.L. A simple and rapid method for screening bacteria for type II restriction endonucleases: enzymes in Aphanothece halophytica. -Arch. Microbiol., 1985, v. 141, p. 70−74.
  144. Smith H.O., Nathans D. A suggested nomenclature for bacterial host modification and restriction systems and their enzymes. J. Mol. Biol., 1973, v. 81, p. 419−423.
  145. Brown N.L., Smith M. A general method for defining restriction enzyme cleavage and recognition sites. Methods Enzymol., 1980, v. 65, p. 391−404.
  146. Sugisaki H., Kanazawa S. New restriction endonucleases from Flavobacterium okeanokoites (.Fokl) and Micrococcus luteus (Mlul). Gene, 1981, v. 16, p. 7378.
  147. C.X., Π Π΅Ρ‡ΠΊΡƒΠ½ΠΎΠ²Π° Н. И. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ чистоты ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² эндонуклСаз рСстрикции. Изв. Π‘ΠΈΠ±. ΠžΡ‚Π΄. Акад. Наук Π‘Π‘Π‘Π , 1988, Ρ‚. 14, с. 102−105.
  148. Π’.Π•., ДСгтярСв Π‘. Π₯. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ экспрСсс-ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ активности сайт-спСцифичСских эндонуклСаз рСстрикции. ΠŸΡ€ΠΈΠΊΠ». Π‘ΠΈΠΎΡ…ΠΈΠΌ. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»., 1992, Ρ‚. 28, с. 152−155.
  149. Abdurashitov М.А., Kileva E.V., Shinkarenko N.M., Shevchenko A.V., Dedkov V.S., Degtyarev, S.Kh. BstF5l, an. unusual isoschizomer of Fokl. Gene, 1996, v. 172, p. 49−51.
  150. Zabarovsky E.R., Allikmets R.L. An improved technique for the efficient construction of gene libraries by partial filling-in of cohesive ends. Gene, 1986, v. 42, p. 119−123.
  151. Timinskas A., Butkus V., Janulaitis A. Sequence motifs characteristic for DNA cytosine-N4. and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases. Gene, 1995, v. 157, p. 3−11.
  152. Degtyarev S.Kh., Netesova N.A., Abdurashitov M.A., Shevchenko A.V. Primary structure and strand specificity of DNA methyltransferase which recognizes 5'-GGATG-3'. Gene, 1997, v. 187, p. 217−219.
  153. M.A., НСтСсова H.A., Π“ΠΎΠ»ΠΈΠΊΠΎΠ²Π° Jl.H., Π“ΡƒΡ‚ΠΎΡ€ΠΎΠ² Π’. Π’., Π‘Π΅Π»Π°Π²ΠΈΠ½ П. А., ДСгтярСв Π‘. Π₯. Вторая Π”ΠΠš-мСтилтрансфСраза ΠΈΠ· ΡΠΈΡΡ‚Π΅ΠΌΡ‹ рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ BstF5l Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Π° Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹ΠΌ Π΄ΠΎΠΌΠ΅Π½Π°ΠΌ ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π· Fokl ΠΈ -SM. Мол. Биология, 2000, Ρ‚. 34, с. 87−94.
  154. Chamberts S.P., Prior S.E., Barstow D.A., Minton N.P. The pMTL nic~ cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene, 1988, v. 68, p. 139−149.
  155. Pribnow D. Gene expression. In: Biological regulation and development, v. 1, ed. R.F. Goldenberger, Plenum Press, New York, 1979, p. 219−277.
  156. Guex N., Diemand A., Peitsch M.C. Protein modelling for all. TiBS, 1999, v. 24, p. 364−367.
  157. Meirovitch H., Hendrickson T.F. Backbone entropy of loops as a measure of their flexibility: application to a ras protein simulated by molecular dynamics. -Proteins, 1997, v. 29, p. 127−140.
  158. Posfai G., Szybalski W. A simple method for locating methylated bases in DNA, as applied to detect asymmetric methylation by M.FoklA. Gene, 1988, v. 69, p. 147−151.
  159. Birnboim H.C., Doly Y. A rapid alkaline extraction procedure for screening recombinant DNA. Nucleic Acids Res., 1979, v. 7, p. 1513−1521.
  160. Mandel M., Higa A. Calcium dependent bacteriophage DNA infection. J. Mol. Biol., 1970, v. 53, p. 154−163.
  161. Pearson W.R., Lipman D.J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sei. USA, 1988, v. 85, p. 2444−2448.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ