ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ?-аминокислот, содСрТащиС Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ ΠΈΠΎΠ½Π½ΠΎΠΉ Тидкости β€” Ρ€Π΅Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ ΠΎΡ€Π³Π°Π½ΠΎΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Ρ‹ асиммСтричСской альдольной Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ ΡΠΎΠ·Π΄Π°Π½ΠΈΡŽ Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Ρ€Π΅Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΎΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² асиммСтричСской альдольной Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС, содСрТащих Π² ΡΠ²ΠΎΠ΅ΠΌ составС Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈΠΎΠ½Π½Ρ‹Ρ… ТидкостСй (Π˜Π–). На ΠΈΡ… ΠΎΡΠ½ΠΎΠ²Π΅ синтСзированы ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ (411)-4-гидрокси-(8)-ΠΏΡ€ΠΎΠ»ΠΈΠ½Π°, (8)-сСрина, (8)-Ρ‚Ρ€Π΅ΠΎΠ½ΠΈΠ½Π° со ΡΠ²ΠΎΠ±ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΊΠ°Ρ€Π±ΠΎΠΊΡΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ, Π° Ρ‚Π°ΡŽΠΊΠ΅ Π°ΠΌΠΈΠ΄Ρ‹ (4К.)-4-гидрокси-(8)-ΠΏΡ€ΠΎΠ»ΠΈΠ½Π° с Π°, Π°-Π΄ΠΈΡ„Π΅Π½ΠΈΠ»-(8)-Π²Π°Π»ΠΈΠ½ΠΎΠ»ΠΎΠΌ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ?-аминокислот, содСрТащиС Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ ΠΈΠΎΠ½Π½ΠΎΠΉ Тидкости β€” Ρ€Π΅Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ ΠΎΡ€Π³Π°Π½ΠΎΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Ρ‹ асиммСтричСской альдольной Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок сокращСний
  • I. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅
  • II. ΠΠ»ΡŒΠ΄ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии Π²ΠΎΠ΄Ρ‹ (Π»ΠΈΡ‚ΡƒΡ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΎΠ±Π·ΠΎΡ€)
    • 11. 1. ΠΠ»ΡŒΠ΄ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Π²ΠΎΠ΄Π½Ρ‹Ρ… растворах
    • 11. 2. ΠΠ»ΡŒΠ΄ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Π²ΠΎΠ΄Π½Ρ‹Ρ… органичСских растворитСлях
    • 11. 3. ΠΠ»ΡŒΠ΄ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² 2-Ρ… Ρ„Π°Π·Π½Ρ‹Ρ… систСмах: Ρ€Π΅Π°Π³Π΅Π½Ρ‚Ρ‹ — Π²ΠΎΠ΄Π° 25 П. 3.1. АсиммСтричСскиС Π°Π»ΡŒΠ΄ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии растворимых Π² Π²ΠΎΠ΄Π΅ ΠΎΡ€Π³Π°Π½ΠΎΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ²
      • 11. 3. 2. АсиммСтричСскиС Π°Π»ΡŒΠ΄ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΎΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ², содСрТащих ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Ρ†ΠΈΠΊΠ»
      • 11. 3. 3. АсиммСтричСскиС Π°Π»ΡŒΠ΄ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΎΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ², ΠΏΠ΅ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΠΈΡ… ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΈΠ΄ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Ρ†ΠΈΠΊΠ»

V. Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ ΡΠΎΠ·Π΄Π°Π½ΠΈΡŽ Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Ρ€Π΅Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΎΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² асиммСтричСской альдольной Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС, содСрТащих Π² ΡΠ²ΠΎΠ΅ΠΌ составС Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈΠΎΠ½Π½Ρ‹Ρ… ТидкостСй (Π˜Π–). На ΠΈΡ… ΠΎΡΠ½ΠΎΠ²Π΅ синтСзированы ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ (411)-4-гидрокси-(8)-ΠΏΡ€ΠΎΠ»ΠΈΠ½Π°, (8)-сСрина, (8)-Ρ‚Ρ€Π΅ΠΎΠ½ΠΈΠ½Π° со ΡΠ²ΠΎΠ±ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΊΠ°Ρ€Π±ΠΎΠΊΡΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ, Π° Ρ‚Π°ΡŽΠΊΠ΅ Π°ΠΌΠΈΠ΄Ρ‹ (4К.)-4-гидрокси-(8)-ΠΏΡ€ΠΎΠ»ΠΈΠ½Π° с Π°, Π°-Π΄ΠΈΡ„Π΅Π½ΠΈΠ»-(8)-Π²Π°Π»ΠΈΠ½ΠΎΠ»ΠΎΠΌ, содСрТащиС Π°Π»ΠΊΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅ΠΏΠ½Ρ‹Π΅ ΠΊΠ°Ρ‚ΠΈΠΎΠ½Ρ‹ имидазолия ΠΈΠ»ΠΈ пиридиния ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅, Π² Ρ‚ΠΎΠΌ числС фторсодСрТащиС, Π°Π½ΠΈΠΎΠ½Ρ‹.

2. УстановлСно, Ρ‡Ρ‚ΠΎ синтСзированныС Π°-амипокислоты, содСрТащиС Π°Π½ΠΈΠΎΠ½Ρ‹ Ply, ΠΈ NTf2″ наряду с Π΄Π»ΡˆΡˆΠΎΡ†Π΅ΠΏΠ½Ρ‹ΠΌΠΈ Π°Π»ΠΊΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ замСститСлями, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΡ€ΠΎΠ»ΠΈΠ½Π°, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Π˜Π–, эффСктивно ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ асиммСтричСскиС Π°Π»ΡŒΠ΄ΠΎΠ»ΡŒΠΈΡ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΈΡ‚ΡŒ Π½Π° ΠΈΡ… ΠΎΡΠ½ΠΎΠ²Π΅ диастСрСои энантиосСлСктивный синтСз ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ ΠΊΡ€ΡƒΠ³Π° Ρ…ΠΈΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π -Π³ΠΈΠ΄Ρ€ΠΎΠΊΡΠΈΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ»ΡŒΠ½Ρ‹Ρ… соСдинСний Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ строСния.

3. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Ρ‹ Π»Π΅Π³ΠΊΠΎ Ρ€Π΅Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… рСакциях ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎ (Π΄ΠΎ 8 Ρ€Π°Π·) Π±Π΅Π· ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ ΠΈΡ… Π΄ΠΈΠ°ΡΡ‚Π΅Ρ€Π΅ΠΎΠΈ энантиосСлСктивности.

4. На ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… высказано ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… условиях Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ΄ дСйствиСм ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ², содСрТащих Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ Π˜Π–, ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‚ прСимущСствСнно Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Ρ€Π°Π·Π΄Π΅Π»Π° Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΎΡ€Π³Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠΉ Ρ„Π°Π· (Ρ„Π°Π·Ρ‹ Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ²), Π³Π΄Π΅, благодаря своСй Π°ΠΌΡ„ΠΈΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ структурС, располагаСтся ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π˜Π– ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€.

1. Handbook of Green Chemistry and Technology (Eds.: J. Clark, D. Macquarrie). Blackwell Science Ltd., Oxford, 2002.

2. P. Wasserscheid, T. Welton. Ionic liquids in Synthesis, Willey-VCH, 2003. P. 363.

3. J. Durand, E. Teuma, M. Gomez. Ionic liquids as a medium for enantioselective catalysis. C. R. Chimie, 10, 152, (2007).

4. H. Xuc, R. Verma, J.M. Shreevc. Review of ionic liquids with fluorine-containing anions. J. Fluor. Chem., 127, 159, (2006).

5. J.M. Harris, S. Zalipsky, Poly (ethylene glycol): Chemistry and Biological Application, ACS Books, Washington, DC, 1977.

6. U.M. Lindstrom. Stereoselective Organic Reactions in Water. Chem. Rev., 102, 2751, (2002).

7. S. Narayan, J. Muldoon, M.G. Finn, V.V. Fokin, H.C. Kolb, K.B. Sharpless. «On Water»: Unique Reactivity of Organic Compounds in Aqueous Suspension. Angew. Chem. Int. Ed., 44, 3275, (2005).

8. Organic Synthesis in Water (Ed.: P.A. Grieco), Blacrie A&P, London, 1998.

9. C. J. Li. Organic Reactions in Aqueous Media with a Focus on Carbon-Carbon Bond Formations: A Decade Update. Chem. Rev., 195, 3095, (2005).

10. M.C. Pirrung. Acceleration of Organic Reactions through Aqueous Solvent Effects. Chem. Eur. J., 12, 1312, (2006).

11. C. Marquez, J.O. Metzger. ESI-MS study on the aldol reaction catalyzed by L-proline. Chem. Commun., 1539, (2006).

12. F.J.S. Duarte, E.J. Cabrita. G. Frenking. A. Gil Santos. Mechanistic Study of Intramolecular Aldol Reactions of Dialdchydes. Eur. J. Org. Chem. 3397. (2008).

13. N. Zotova, A. Franzke, A. Armstrong, D.G. Blackmond. Clarification of the Role of Water in Proline-Mediated Aldol Reactions. J. Am. Chem. Soc., 129, 15 100, (2007).

14. S. Yamabc. K. Hirahara, S. Yamazaki. Flow Many Elementary Processes Are Involved in Baseand Acid-Promoted Aldol Condensations? Eur. J. Org. Chem., 6070, (2007).

15. L.J. Whalen, C.H. Wong. Enzymes in Organic Synthesis: Aldolase-Medialed Synthesis of Iminocyclitols and Novel Ileterocycles. Aldrichimica Acta., 39, 63, (2006).

16. A. Heine, G. DeSantis. J.G. Luz, M. Mitchell, C.H. Wong. I.A. Wilson. Observation of Covalent Intermediates in an Enzyme Mechanism at Atomic Resolution. Science., 294, 369, (2001).

17. H. D. Dakin. The catalytic action of amino-acids, peptones and proteins in effecting certain syntheses. J. Biol. Chem., 1, 49. (1909).

18. J.-L. Reymond, Y. Chen. Catalytic, Enantioselectivc Aldol Reaction with an Artificial Aldolase Assembled from a Primary Amine and an Antibody. J. Org. Chem., 60, 6970, (1995).

19. J.-L. Reymond, Y. Chen. Catalytic, enantioselective aldol reaction using antibodies against a quaternary ammonium ion with a primary amine cofactor. Tetrahedron Lett., 36,2575,(1995).

20. M. Oberhuber, G.F. Joyce. A DNA-Templated Aldol Reaction as a Model for the Formation of Pentose Sugars in the RNA World. Angew. Chem., Int. Ed., 44, 7580,2005).

21. T. J. Dickerson, K.D. Janda. Aqueous Aldol Catalysis by a Nicotine Metabolite. J. Am. Chem. Soc., 124, 3220, (2002).

22. C. J. Rogers, T. J. Dickerson, K. D. Janda. Kinetic isotope and thermodynamic analysis of the nornicotine-catalyzed aqueous aldol reaction. Tetrahedron, 62, 352,2006).

23. T. J. Dickerson, K. D. Janda. A previously undescribed chemical link between smoking and metabolic disease. Proc. Natl. Acad. Sci. USA, 99, 15 084, (2002).

24. T. J. Dickerson, K. D. Janda. Glycation of the amyloid Ρ€-protein by a nicotine metabolite: A fortuitous chemical dynamic between smoking and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 100, 8182, (2003).

25. T. J. Dickerson, T. Lovell, M. Meijler, L. Noodlen, K. D. Janda. Nornicotine Aqueous Aldol Reactions: Synthetic and Theoretical Investigations into the Origins of Catalysis. J. Org. Chem., 69, 6603, (2004).

26. Π‘. J. Rogers. Π’. J. Dickerson, A. P. Brogan. K. D. Janda. Hammett Correlation of Nornicotine Analogues in the Aqueous Aldol Reaction: Implications for Green Organocatalysis. J. Org. Chem., 70, 3705, (2005).

27. S. Aratake. T. Itoh. Π’. Okano, T. Usui, M. Shoji. Y. Hayashi. Small organic molecule in cnantioselcctive. dircct aldol reaction «in water». Chem. Commun. 2524, (2007).

28. K. Sakthivel, W. Notz, T. Bui, C. F., Barbas III. Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic Approach to Catalytic Asymmetric Carbon-Carbon Bond-Forming Reactions. J. Am. Chem. Soc., 123. 5260, (2001).

29. W. Notz, F. Tanaka, C.F. Barbas III. Enamine-Based Organocatalysis with Proline and Diamines: The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels-Aldcr Reactions. Acc. Chem. Res., 37, 580, (2004).

30. Y.-S. Wu, Y. Chen, D.-S. Deng, J. Cai. Proline-Catalyzed Asymmetric Direct Aldol Reaction Assisted by 5-Camphorsulfonic Acid in Aqueous Media. Synlett, 1627, (2005).

31. A. I. Nyberg, A. Usano, P. M. Pikho. Proline-Catalyzed Ketone-Aldehyde Aldol Reactions are Accelerated by Water. Synlett, 1891, (2004).

32. P. M. Pikho, К. M. Laurikainen, A. Usano, A. I. Nyberg, J. A. Kaavi. Effect of additives on the proline-catalyzed ketone-aldehyde aldol reactions. Tetrahedron, 62, 317, (2006).

33. K. Nishide, Y. Shigeta. K. Obata, T. Inoue. M. Node. Reductive desulfurization using the raney nickel — Sodium hypophosphite combination system without racemization of a secondary alcohol. Tetrahedron Lett., 37, 2271, (1996).

34. D. E. Ward, V. Jheengut. Proline-catalyzed asymmetric aldol reactions of tetrahydro-4H-thiopyran-4-one with aldehydes. Tetrahedron Lett., 45. 8347, (2004).

35. M. Majewski, I. Niewczas, N. Dalyam. Acids as Proline Co-catalysts in the Aldol Reaction of l, 3-Dioxan-5-ones. Synlett, 2387, (2006).

36. I. Ibrahem, A. Cordova. Amino acid catalyzed direct enantioselective formation of carbohydrates: one-step de novo synthesis of ketoses. Tetrahedron Lett., 46, 3363, (2005).

37. I. Ibrahem, W. Zou, Y. Xu, A. Cordova. Amino Acid-Catalyzed Asymmetric Carbohydrate Formation: Organocatalytic One-Step De Novo Synthesis of Keto and Amino Sugars. Adv. Synth. Catai, 348, 211, (2006).

38. D. E. Ward, V. Jheengut, О. T. Akinnusi. Enantioselective Direct Intermolecular Aldol Reactions with Enantiotopic Group Selectivity and Dynamic Kinetic Resolution. Org. Lett., 7, 1181, (2005).

39. H. Torii, M. Nakadai, K. Ishihara, S. Saito, H. Yamamoto. Asymmetric Direct Aldol Reaction Assisted by Water and a Proline-Derived Tetrazole Catalyst. Angew. Chem., Int. Ed., 43, 1983, (2004).

40. S.S. Chimni, D. Mahajan. Small organic molecule catalyzed enantioselective direct aldol reaction in water. Tetrahedron: Asymmetry, 17, 2108, (2006).

41. G. L. Puleo, A. lulianob. Methyl 12-D-prolinoylamino.cholate as a versatile organocatalyst for the asymmetric aldol reaction of cyclic ketones. Tetrahedron: Asymmetry, 18, 2894, (2007).

42. S. Doherty, J.G. Knight, A. McRae, R.W. Harrington, W. Clegg. Oxazoline-substituted Prolinamide-Based Organocatalysts for the Direct Intermolecular Aldol Reaction between Cyclohexanone and Aromatic Aldehydes. Eur. J. Org. Chem., 1759, (2008).

43. T. Hoffmann, G. Zhong, B. List, D. Shabat, J. Anderson, S. Gramatikova, R.A. Lerner, C.F. Barbas III. Aldolase Antibodies of Remarkable Scope. J. Am. Chem. Soc., 120, 2768,(1998).

44. B. List, D. Shabat, C.F. Barbas III, R.A. Lerner. Enantioselective Total Synthesis of Some Brevicomins Using Aldolase Antibody 38C2. Chem. Eur. 4, 881, (1998).

45. W. Notz, B. List. Catalytic Asymmetric Synthesis of anti-l, 2-Diols. J. Am. Chem. Soc., 122, 7386, (2000).

46. Z. Tang, Z.H. Yang, L.F. Cun, L.Z. Gong, A.Q. Mi, Y.Z. Jiang. Small Peptides Catalyze Highly Enantioselective Direct Aldol Reactions of Aldehydes with.

47. Flydroxyacetone: Unprecedented Regiocontrol in Aqueous Media. Org. Lett., 6, 2285, (2004).

48. X.-Y. Xu, Y.-Z. Wang, L.-F. Cun, L.-Z. Gong. L-Proline amides catalyze direct asymmetric aldol reactions of aldehydes with methylthioacetone and fluoroacetone. Tetrahedron: Asymmetry, 18, 237, (2007).

49. G. Guillena, M. C. Hita, C. Najera. High acceleration of the direct aldol reaction cocatalyzed by BTNAM-prolinamides and benzoic acid in aqueous media. Tetrahedron: Asymmetry, 17, 1493, (2006).

50. Z. Tang, F. Jiang, L.-T. Yu, X. Cui, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang, Y.-D. Yu. A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones with Aldedydes. J. Am. Chem. Soc., 127. 9285, (2005).

51. W. Miao, В.Н. Chan. Ionic-Liquid-Supported Organocatalyst: Efficient and Recyclable Ionic-Liquid-Anchored Proline for Asymmetric Aldol Reaction. Adv. Synth. Catal., 348, 1711, (2006).

52. G. Guillena, M. C. Hita, C. Najera. BINAM-prolinamides as recoverable catalysts in the direct aldol condensation. Tetrahedron: Asymmetry, 17, 729, (2006).

53. Z.-X. Xu, G.-K. Li, C.-F. Chen, Z.-T. Huang. Inherently chiral calix4. arene-based bifunctional organocatalysts for enantioselective aldol reactions. Tetrahedron, 64, 8668, (2008).

54. A. Tsutsui, H. Takeda, M. Kimura, T. Fujimoto. T. Machinami. Novel enantiocontrol system with aminoacyl derivatives of glucoside as enamine-based organocatalysts for aldol reaction in aqueous media. Tetrahedron Lett., 48, 5213, (2007).

55. J.-R. Chen, X.-Y. Li, X.-N. Xing, W.-J. Xiao. Sterically and Electronically Tunable and Bifunctional Organocatalysts: Design and Application in Asymmetric Aldol Reaction of Cyclic Ketones with Aldehydes. J. Org. Chem., 71, 8198, (2006).

56. F. Silva, M. Sawicki, V. Gouverneur. Enantioselective Organocatalytic Aldol Reaction of Ynones and Its Synthetic Applications. Org. Lett., 8, 5417, (2006).

57. А. Π‘. ΠšΡƒΡ‡Π΅Ρ€Π΅Π½ΠΊΠΎ, Π”. Π•. Π‘ΠΈΡŽΡ‚ΠΊΠΈΠ½, Π‘. Π“. Π—Π»ΠΎΡ‚ΠΈΠ½. ΠšΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠ°Ρ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ (Π—)-ΠΏΡ€ΠΎΠ»ΠΈΠ½Π°ΠΌΠΈΠ΄Π° асиммСтричСская альдольная рСакция Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ионная ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ-Π²ΠΎΠ΄Π°. Изв. АН, сСр. Ρ…ΠΈΠΌ., 578, (2008).

58. М. Amedjkouh. Primary amine catalyzed direct asymmetric aldol reaction assisted by water. Tetrahedron: Asymmetry. 16. 1411, (2005).

59. Y. Hayashi, T. Itoh, N. Nagae, M. Ohkubo, H. Ishikawa. The Effectiveness of Proteinogenic Amino Acids in the Asymmetric Aldol Reaction in DMSO and Aqueous DMSO. Synlett, 1565, (2008).

60. A. Cordova, W. Zou, I. Ibrahem, E. Reyes. M. Engqvist, W.W. Liao. Acyclic amino acid-catalyzed direct asymmetric aldol reactions: alanine, the simplest stereoselective organocatalyst. Chem. Commun., 3586, (2005).

61. G. Guillena, C. Najera, D.J. Ramon. Enantioselective direct aldol reaction: the blossoming of modern organocatalysis. Tetrahedron: Asymmetry, 18, 2249, (2007).

62. W. Zou, 1. Ibrahem, P. Dziedzic, H. Sunden, A. Cordova. Small peptides as modular catalysts for the direct asymmetric aldol reaction: ancient peptides with aldolase enzyme activity. Chem. Commun., 4946, (2005).

63. A. Cordova, W. Zou, P. Dziedzic, I. Ibrahem. E. Reyes, Y. Xu. Direct Asymmetric Intermolecular Aldol Reactions Catalyzed by Amino Acids and Small Peptides. Chem. Eur. J., 12, 5383, (2006).

64. P. Dziedzic, W. Zou, J. Elafren, A. Cordova. The small peptide-catalyzed direct asymmetric aldol reaction in water. Org. Biomol. Chem., 4, 38, (2006).

65. J.R. Cronin, S. Pizzarello. Enantiomeric Excesses in Meteoritic Amino Acids. Science, 275,951, (1997).

66. I.K. Jordan, F.A. Kondrashov, I.A. Adzhubei, Y.I. Wolf, E.V. Koonin,, A.S. Kondrashov, S. Sunyaev. A universal trend of amino acid gain and loss in protein evolution. Nature, 433, 633, (2005).

67. M. Amedjokouh. Aqua-organocatalyzed direct asymmetric aldol reaction with acyclic amino acids and organic bases with control of diastereoand enantioselectivity. Tetrahedron: Asymmetry, 18, 390, (2007).

68. K. Nakayama, K. Maruoka. Complete Switch of Product Selectivity in Asymmetric Direct Aldol Reaction with Two Different Chiral Organocatalysts from a Common Chiral Source. J. Am. Chem. Soc., 130, 17 666, (2008).

69. Y.Y. Peng, Q.P. Ding, Z. Li, P.G. Wang, J.P. Cheng. Proline catalyzed aldol reactions in aqueous micclles: an environmentally friendly reaction system. Tetrahedron Lett., 44, 3871, (2003).

70. J.H. Fendler, E.J. Fendler. Catalysis in Miceller and Macromolecidar System. Academic Press: London, 1975, pp 86−103.

71. A. Cordova, W. Notz, C.F. Barbas HI. Direct organocatalytic aldol reactions in buffered aqueous media. Chem. Comm., 3024, (2002).

72. Y. Hayashi, S. Aratake, T. Itoh, Π’. Okano. T. Sumiya M. Shoji. Dry and wet prolines for asymmetric organic solvent-free aldehyde-aldehyde and aldehydc-ketone aldol reactions. Chem. Comm., 957. (2007).

73. S. Luo, X. Mi, L. Zhang. S. Liu, II. Xu, J.-P. Cheng. Functionalized ionic liquids catalyzed direct aldol reactions. Tetrahedron, 63, 1923, (2007).

74. S. Aratake, I. Itoh, T. Okano, N. Nagac, T. Sumiji. M. Shoji, Y. Hayashi. Highly Diastereoand Enantioselective Direct Aldol Reactions of Aldehydes and Ketones Catalyzed by Siloxyproline in the Presence of Water. Chem. Eur. J., 13, 10 246, (2007).

75. Y. Hayashi, T. Sumiya, J. Takahashi, H. Gotoh. T. Urushima, M. Shoji. Highly Diastereoand Enantioselective Direct Aldol Reactions in Water. Angew. Chem., Int. Ed. 45, 958, (2006).

76. C. Zheng, Y. Wu, X. Wang, G. Zhao. Highly Enantioselective Organocatalyzed Construction of Quaternary Carbon Centers via Cross-Aldol Reaction of Ketones in Water. Adv. Synth. Catal., 350, 2690, (2008).

77. Y. Hayashi, S. Aratake, T. Okano, J. Takahashi, T. Sumiya, M. Shoji. Combined Proline-Surfactant Organocatalyst for the Highly Diastereoand Enantioselective Aqueous Direct Cross-Aldol Reaction of Aldehydes. Angew. Chem., Int. Ed., 45, 5527, (2006).

78. L. Zhong, Q. Gao a, J. Gao, J. Xiao, Can Li. Direct catalytic asymmetric aldol reactions on chiral catalysts assembled in the interface of emulsion droplets. Journal of Catalysis, 250, 360, (2007).

79. J. Huang, X. Zhang, D.W. Armstrong. Highly Efficient Asymmetric Direct Stoichiometric Aldol Reactions on/in Water. Angew. Chem., Int. Ed., 46, 9073, (2007).

80. F. Trotta, D. Cantamessa, M.Zanetti. The Haloform Reaction in the Presence of Cyclodextrins. J. Inclusion Phenom. Macrocyclic. Chem., 37, 83, (2000).

81. F. Giacalone, M. Gruttadauria, P.L. Meo, S. Riela. R. Noto. New Simple Hydrophobic Proline Derivatives as Highly Active and Stereoselective Catalysts for the Direct Asymmetric Aldol Reaction in Aqueous Medium. Adv. Synth. Catal., 350, 2747, (2008).

82. D. Font, C. Jimeno, M.A. Pericas. Polystyrene-Supported Hydroxyproline: An Insoluble, Recyclable Organocatalyst for the Asymmetric Aldol Reaction in Water. Org. Lett., 8, 4653, (2006).

83. D. Font, S. Sayalero, A. Bastero, C. Jimeno, M.A. Pericas. Toward an Artificial Aldolase. Org. Lett., 10, 337, (2008).

84. M. Lombardo, S. Easwar, A. De Marco, F. Pasi, C. Trombini. A modular approach to catalyst hydrophobicity for an asymmetric aldol reaction in a biphasic aqueous environment. Org. Biomol. Chem., 6, 4224, (2008).

85. C. Wang, Y. Jiang, X.X. Zhang, Y. Huang, B.G. Li, G. Zhang. Rationally designed organocatalyst for direct asymmetric aldol reaction in the presence of water. Tetrahedron Lett., 48, 4281, (2007).

86. S. Guizetti, M. Benaglia, L. Raimondi, G. Celentano. Enantioselective Direct Aldol Reaction «on Water» Promoted by Chiral Organic Catalysts. Org. Lett., 9, 1247, (2007)f.

87. S. Sathapornvajana, Π’. Vilaivan. Prolinamides derived from aminophenols as organocatalysts for asymmetric direct aldol reactions. Tetrahedron, 63, 10 253,2007).

88. J.N. Moorthy, S. Saha. Highly Diastereoand Enantioselective Aldol Reactions in Common Organic Solvents Using N-Arylprolinamides as Organocatalysts with Enhanced Acidity. Eur. J. Org. Chem., 739, (2009).

89. Y.-Q. Fu, Z.-C. Li, L.-N. Ding, J.-C. Tao, S.-H. Zhang, M.-S. Tang. Direct asymmetric aldol reaction catalyzed by simple prolinamide phenols. Tetrahedron: Asymmetry, 17, 3351, (2006).

90. S.-P. Zhang, X.-K. Fu, S.-D. Fu. Rationally designed 4-phenoxy substituted prolinamide phenols organocatalyst for the direct aldol reaction in water. Tetrahedron Lett., 50, 1173, (2009).

91. V. Maya, M. Raj, V.K. Singh. Flighly Enantioselective Organocatajytic Direct Aldol Reaction in an Aqueous Medium. Org. Lett., 9, 2593, (2007).

92. M. Raj, V. Maya, S.K. Ginotra, V.K. Singh. Highly Enantioselective Direct Aldol Reaction Catalyzed by Organic Molecules Org. Lett., 8, 4097, (2006).

93. J.-F. Zhao, L. He, J. Jiang, Z. Tang, L.-F. Cun, L.-Z. Gong. Organo-catalyzed highly diastereoand enantio-selective direct aldol reactions in water. Tetrahedron Lett., 49, 3372, (2008).

94. S. Gandhi, V.K. Singh. Synthesis of Chiral Organocatalysts derived from Aziridines: Application in Asymmetric Aldol Reaction. J. Org. Chem., 73, 9411,2008).

95. Z.-H. Tzeng, H.-Y. Chen, C.-T. Huang, K. Chen. Camphor containing organocatalysts in asymmetric aldol reaction on water. Tetrahedron Lett., 49, 4134, (2008).

96. M. Lei, L. Shi, G. Li, S. Chen, W. Fang, Z. Ge, T. Cheng, R. Li. Dipeptide-catalyzed direct asymmetric aldol reactions in the presence of water. Tetrahedron, 63, 7892, (2007).

97. Y. Wu, Y. Zhang, M. Yu, G. Zhao, S. Wang. Highly Efficient and Reusable Dendritic Catalysts Derived from N-Prolylsulfonamide for the Asymmetric Direct Aldol Reaction in Water. Org. Lett., 8, 4417, (2006).

98. S.-P. Zhang, X.-K. Fu, S.-D. Fu, J.-F. Pan. Highly efficient 4-phenoxy substituted organocatalysts derived from N-prolylsulfonamidc for the asymmetric direct aldol reaction on water. Catal. Commim. 10, 401, (2009).

99. D. Gryko, W.J. Saletra. Organocatalytic asymmetric aldol reaction in the presence of water. Org. Biomol. Chem., 5, 2148, (2007).

100. N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka, C.F. Barbas 111. Organocatalytic Direct Asymmetric Aldol Reactions in Water. J. Am. Chem. Soc., 128, 734, (2006).

101. L. Zu, H. Xie, FI. Li, J. Wang. Highly Enantioselective Aldol Reactions Catalyzed by a Recyclable Fluorous (S)-Pyrrolidine Sulfonamide on Water. Org. Lett., 10, 1211, (2008).

102. M.R. Vishnumaya, V.K. Singh. Highly Efficient Small Organic Molecules for Enantioselective Direct Aldol Reaction in Organic and Aqueous Media. J. Org. Chem., 74, 4289, (2009).

103. Z. Jiang, Z. Liang, X. Wu, Y. Lu. Asymmetric aldol reactions catalyzed by tryptophan in water. Chem. Comm., 2801, (2006).

104. Y. C. Teo. Direct asymmetric aldol reactions catalyzed by a siloxy serine organocatalyst in water. Tetrahedron: Asymmetry, 18, 1155, (2007).

105. X. Wu, Z. Jiang, H. M. Shen, Y. Lu. Highly Efficient Threonine-Derived Organocatalysts for Direct Asymmetric Aldol Reactions in Water. Adv. Synth. Catal., 349, 812, (2007).

106. M.-K. Zhu, X.-Y. Xu, L.-Z. Gong. Organocatalytic Asymmetric syn-Aldol Reactions of Aldehydes with Long-Chain Aliphatic Ketones on Water and with Dihydroxyacetone in Organic Solvents. Adv. Synth. Catal., 350, 1390, (2008).

107. S. S. V. Ramasastry, K. Albertshofer, N. Utsami, C.F. Barbas ITT. Water-Compatible Organoeatalysts for Direct Asymmetric syrc-Aldol Reactions of Dihydroxyacetone and Aldehydes. Org. Lett., 10, 1621, (2008).

108. N. Utsumi, M. Imai, F. Tanaka, S.S.V. Ramasastry, C.F. Barbas III. Mimicking Aldolases through Organocatalysis: sjyn-Selective Aldol Reactions with Protected Dihydroxyacetone. Org. Lett., 9, 3445, (2007).

109. F.-Z. Peng, Z.-H. Shao, X.-W. Pu, H.-B. Zhang. Highly Diastereoand Enantioselective Direct Aldol Reactions Promoted by Water-Compatible Organoeatalysts Bearing Central and Axial Chiral Elements. Adv. Synth. Catal., 350,2199, (2008).

110. A. P. Brogan, T. J. Dickerson, K. D. Janda. Enamine-Based Aldol Organocatalysis in Water: Are They Really «All WAngew. Chem. Int. Ed., 45, 8100, (2006).

111. D.G. Blackmoud, A. Armstrong. Water in Organocatalytic Processes: Debunking the Myths. V. Coonbe, A. Wells, Angew. Chem. Int. Ed., 46, 3798, (2007).

112. Y. Hayashi. In Water or in the Presence of Water? Angew. Chem. Int. Ed. 42, 8103. (2006).

113. A. Lubineaum. Water-promoted organic reactions: aldol reaction under neutral conditions. J. Org. Chem., 51, 2142, (1986).

114. Y. Yamamoto, Y. Maruyama. K. Matsumi. Organometallic high-pressure reactions. 2. Aldol reaction of silyl enol ethers with aldehydes under neutral conditions. J. Am. Chem. Soc., 105, 6963, (1983).

115. D.E. Siyutkin, A.S. Kucherenko, M.I. Struchkova, S.G. Zlotin. A novel (S)-proline-modified task-specific chiral ionic liquid an amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water. Tetrahedron Lett., 49, 1212, (2008).

116. H.L. Ngo, K. LeCompte, L. Hargens, A.B. McEwen. Thermal properties of imidazolium ionic liquids. Thermochim. Acta, 357−358, 97, (2000).

117. Kucherenko A.S., Struchkova M.I., Zlotin S.G. The (S)-Proline/Polyelectrolyte System: An Efficient, Heterogeneous, Reusable Catalyst for Direct Asymmetric Aldol Reactions. Eur. J. Org. Chem., 2000, (2006).

118. Pines H., Oszczapowicz J. Base-Catalyzed Reactions. XXXII. Sodiumand Potassium-Catalyzed Side-Chain Alkenylation of y-Alkylpyridineswith Butadiene. J. Org. Chem., 32, 3183, (1967).

119. D.E. Siyutkin, A.S. Kucherenko, S.G. Zlotin. Hydroxy-a-amino acids modified by ionic liquid moieties: recoverable organocatalysts for asymmetric aldol reactions in the presence of water. Tetrahedron, 65, 1366, (2009).

120. A.S. Kucherenko, D.E. Siyutkin, V.O. Muraviev, M.I. Struchkova, S.G. Zlotin. l (i?), 2(i?)-Bis (5)-prolinamido.cyclohexane/[bmim][BF4] ionic liquid as an efficient catalytic system for direct asymmetric aldol reactions. Mendeleev Commim., 17, 277, (2007).

121. M. Tamaki, G. Han, V.J. Hruby. Practical and Efficient Synthesis of Orthogonally Protected Constrained 4-Guanidinoprolines. J. Org. Chem., 66, 1038, (2001).

122. A. de Savignac, C. Roques, M. Hinedi, G. Michel, A. Lattes. Synthese et proprietes antibacteriennes et antifongiques d’unc scrie de 1-alkylimidazoles. Eur. J. Med. Chem. Chim. Ther., 25, 449, (1990).

123. S. Itsuno, K. Ito. Asymmetric Reduction of Aliphatic Ketones with the Reagent Prepared from (5')-(-)-2-Amino-3-methyl-l, l-diphenylbutan-l-ol and Borane. J. Org. Chem., 49, 555, (1984).

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ