ΠΡΠΎΡΠ΅ΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ B-ΡΡΡΡΠΊΡΡΡΡ Π² ΡΠΈΠ±ΡΠΈΠ»Π»ΡΡΠ½ΡΡ ΠΈ Π³Π»ΠΎΠ±ΡΠ»ΡΡΠ½ΡΡ Π±Π΅Π»ΠΊΠ°Ρ
ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·ΡΠ²Π°Π΅ΠΌΡΠ΅ ΠΏΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ Π²ΡΠΎΡΠΈΡΠ½ΡΠ΅ ΡΡΡΡΠΊΡΡΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΠΎΡΠ΅Π½Ρ ΠΌΠ°Π»ΠΎ ΡΡΠ°ΡΡΠΊΠΎΠ² (3-ΡΡΡΡΠΊΡΡΡΡ. Π ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΠΎΠ½ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠ΅ Π°-ΡΠΏΠΈΡΠ°Π»Π΅ΠΉ ΠΈ Π»Π΅Π²ΡΡ ΡΠΏΠΈΡΠ°Π»Π΅ΠΉ ΡΠΈΠΏΠ° ΠΏΠΎΠ»ΠΈ-1-ΠΏΡΠΎΠ»ΠΈΠ½ II. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ΄Π½ΡΡ ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² ΡΠΏΠΈΠ΄ΡΠΎΠΈΠ½Π° 1 ΠΈ Π΅Π³ΠΎ Π³Π΅Π½Π½ΠΎ-ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΡ. ΠΠ½ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΡΠ΄Π΅Π»Π°ΡΡ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Π€ΡΠΈΡ Π€ΠΎΠ»ΡΡΠ°Ρ. ΠΠ°ΡΡΡΠΈ ΡΠ΅ΡΠΈ ΠΈ ΡΠ΅Π»ΠΊ. // Π. Π ΠΌΠΈΡΠ΅ Π½Π°ΡΠΊΠΈ 1992- 5,46−53.
- S. Tasman, P. R. Shewry. Elastomeric proteins: biologycal roles, structure andmecanisms. // TIBS 2000.
- M. Berenbaum. Spin control. //Science 1995- Sept./Oct.: 13−15.
- Gosline J. M., et al. The mechanical design of spider silk: from fibroin sequence to mechanical function. // J. Exp. Biol. 1999- 202: 3295 3303.
- Cheryl Y. and a.e. Hypotheses that correlate thesequence, structure, and mechanical properties of spider silk protein. //J. Biol. Macromol. 1999- 24: 271−275.
- Z. Shao, F. Vollrath. Surprising strength of silkworm silk. // Nature 2002- 418: 741.
- Bo Madsen and a.e. Variability in the mechanical properties of spider silks on three levels: interspecific, inttraspecific and intraindividual. // J. Biol. Macromol. 1999- 24: 301−306.
- Anne M. F. Moore, Kimly Tran. Material properties of cobweb silk from the black widow spider Latrodectus hesperus. // J. Biol. Macromol. 1999- 24: 277−282.
- Denny, M., et al. The physical properties of spider’s silk and their role in the design of orb webs. // J. Exp. Biol. 1976- 65:483 — 506.
- Fritz Vollrath. Biology of spider silk. // J. Biol. Macromol. 1999- 24: 81−88.
- Work R. W. Dimensions, birefringence and force elongation behaviour of major and minor ampullate silk fibres from orb — web spinning spiders. // Text. Res. J. 1977- 47: 650 -662.
- Lynn W. Jelinski et al. Orientation, structure, wet spinning, and molecular basis for supercontraction of spider dragline silk. // J. Biol. Macromol. 1999- 24: 197 — 201.
- Michael, Π., et al. Synthetic spider silk: a modular fiber. // J. Science 2000- 18: 374 379.
- J. Gatesy and a.e. Extreme diversity, conservatin, and convergence of spider silk fibroin sequences. // Science 2001- 291: 2603−2605.
- Simmons, A. H. et al. Molecular orientation and two component nature of the crystalline fraction of spider dragline silk. // J. Science 1996- 271: 84 — 87.
- D. A. Tirrell. Putting a new on spider silk. // Science 1996- 271:39−40.
- E. Oroudjev and a.e. Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy. // Natl. Acad. Sci. USA 2002- 199: 6460−6465.
- J. D. Van Beek and a.e. The molecula structure of spider dragline silk: folding and oroentation of the protein backbone. // PNAS 2002- vol 99, no. 16,10 266−10 271.
- Michael, Π., et al. Synthetic spider silk: a modular fiber. // J. Science 2000- 18: 374 379.
- Rathore Π. and Sogah D. Self-assembly of -sheets into nanostructures by poly (alanine) segments incorporated in multiblock copolymers inspired by spider. // J. Am. Chem. Soc. 2001- 123:5231 -5239.
- Cheril Y., Randolph V. L. Evidence from flagelleform silk cDNA for the structural basia of elasticity and modular nature of spider silk. // J. Mol. Biol. 1998- 275: 773−784.
- Liang Ding, Cang Chen and a.e. The pentapeptide GGAGG has P|| conformation. // J. Am. Chem. 2003- 125: 8092 8093.
- Hyoung-Joon Jin, David L. Caplan. Mechanism of silk processing in insects and spiders. //Nature 2003- 424:1057−1061.
- Fritz Vollrath, David P.Kinght. Liquid crystalline spinning of spider silk. //Nature 2001- 1410: 541−548.
- E. K. Tillinghast, M. A. Townley. Silk glands of Araneid spiders. Selected morfological and Physiological aspects. // Silk polymers: materials science and biotechnology 1994- 29−44.
- M. Elices. (2000) Structural Biological Materials Design and structure-property relationships.
- Makeev, V. Ju. and Tumanyan, V.G. Search of periodicities in primary structure of biopolymers: ageneral Fourier approach. //J. Cabios 1996- 12:49 54.
- A. Lazaris and a.e. Spider silk fibers spun from soluble recombinant silk produced in Mammalian cells. // Science 2002- 295:472−476.
- S.R. Fahnestock & L. A. Bedzyk. Production of sinthetic spider dragline silk protein in Pichia pastoris. //Mocrobiol. Biotecnol. 1997- 47: 33−39.
- Vollrath F., Kinght D.P. Liquid crystalline spinning of spider silk. // Nature. 2001. V. 410. P.541.
- Xu M., Lewis R.V. Structure of a protein superfiber: spider dragline silk. //Proc Natl Acad Sci USA. 1990. V. 87(18). P. 7120.
- Π€ΠΈΠ½ΠΊΠ΅Π»ΡΡΡΠ΅ΠΉΠ½ A.B. ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΠΈΠ·ΠΈΠΊΡ Π±Π΅Π»ΠΊΠ°. 2002.
- Pedersen J.T. & Moult J. Protein folding simulation with genetic algorithms and a detailed molecular description. // J. Mol. Biol. 1997. V. 269. P. 240.
- Mohanty D., Elber R. Kinetics of peptide folding: computer simulations of SYPFDV and peptide varians in water. // J.Mol. Biol. 1997. V. 272. P.423.
- Koehl P. & Levitt M. De novo protein design. I. In search of stability and specificity. // J. Mol. Biol. 1999. V. 293. P.1161.
- Chipot C. Free energy calculation in biological systems. How useful are they in practice? // Free energy calculation. P. 183.
- Kollman P.A. Free energy calculations: Applications to chemical and biochemical phenomena // Chem. Rev. 1993. V. 93. P. 2395.
- Gosline J.M., DeMont M.E., Denny M.W. The structure and properties of spider silk. // Endeavour 1986−10:37−43.
- Blackledge T.A., Hayashi C.Y. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). // J Exp Biol 2006- 209:2452−2461.
- Hayashi C.Y., Shipley N.H., Lewis R.V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. // Int J Biol Macromol 1999- 24:271−275.
- Hayashi C.Y., Blackledge T.A., Lewis R.V. Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. // Mol Biol Evol 2004- 21: 1950−1959.
- Sponner A., Schlott Π., Vollrath F., Unger E., Grosse F., et al. Characterization of the protein components of Nephila clavipes dragline silk. // Biochemistry 2005- 44: 47 274 736.
- Zhao A., Zhao Π’., Nakagaki K., Zhang Y-S, SiMa Y., et al. Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi. // Biochemistry-US 2006- 45: 3348−3356.
- Nadia A. Ayoub, Jessica E. Garb, Robin M. Tinghitella, Matthew A. Collin, Cheryl Y. Hayashi. Blueprint for a High-Performance Biomaterial: Full- Length Spider Dragline Silk Genes. // PLoS ONE 2007- Issue 6, e 514.
- Blackledge T.A., Hayashi C.Y. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). // J Exp Biol 2006- 209:2452−2461.
- O’Brien J.P., Fahnestock S.R., Termonia Y., Gardner K.H. Nylons from nature: synthetic analogs to spider silk. // Adv Mater 1998- 10:1185−1195.
- Scheller J., Henggeler D., Viviani A., Conrad U. Purification of spider silkelastin from transgenic plants and application for human chondrocyte proliferation. // Transgenic Res. 2004- 13: 51−57.
- Bini E., Foo C.W.P., Huang J., Karageorgiou V., Kitchel Π., et al. RGDfunctionalized bioengineered spider dragline silk biomaterial // Biomacromolecules 2006- 7: 3139— 3145.
- Scheller J., Gu’hrs K-H, Grosse F., Conrad U. Production of spider silk proteins in tobacco and potato. // Nat Biotechnol 2001- 19: 573−577.
- Foo C.W.P., Bini E., Huang J., Lee S.Y., Kaplan D.L. Solution behavior of synthetic silk peptides and modified recombinant silk proteins. // Appl. Phys. 2006- 82: 193−203.
- Ittah S., Cohen S., Garty S., Cohn D., Gat U. An essential role for the Cterminal domain of a dragline spider silk protein in directing fiber formation. // Biomacromolecules 2006- 7: 1790−1795.
- Sprague K.U. The Bombyx mori silk proteins: characterization of large polypeptides. // Biochemistry 1975- 14: 925−931.
- Sponner A., Vater W., Rommerskirch W., Vollrath F., Unger E., et al. The conserved C-termini contribute to the properties of spider silk fibroins. // Biochem Biophys. Res. Commun. 2005- 338: 897−902.
- Motriuk-Smith D., Smith A., Hayashi C.Y., Lewis R.V. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. // Biomacromolecules 2005- 6: 3152−3159.
- Rising A., Hja" lm G., Engstro’m W., Johansson J. N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. // Biomacromolecules 2006- 7:3120−3124.
- Sakharkar M.K., Kangueane P. Genome SEGE: A database for 'intronless' genes in eukaryotic genomes. // BMC Bioinformatics 2004- 5: 67.
- Guerette P.A., Ginzinger D.G., Weber B.H.F., Gosline J.M. Silk properties determined by gland-specific expression of a spider fibroin gene family. // Science 1996- 272: 112 115.
- Beckwitt R., Arcidiacono S. Sequence conservation in the C-terminal region of spider silk proteins (spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). // J. Biol. Chem. 1994- 269: 6661−6663.
- Garb JE, DiMauro T, Vo V, Hayashi CY Silk genes support the single origin of orb webs. // Science 2006- 312:1762.
- Allmeling C., Jokuszies A., Reimers K., Kail S., Peter M. Vogt Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. // J. Cell. Mol. Med. 2006- Vol 10, No 3, pp. 770−777.
- Murzin A.G., Brenner S.E., Hubbard Π’., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. // J. Mol. Biol. 1995- 247: 536−540.
- Jones D.T. Protein secondary structure prediction based on positionspecific scoring matrices. // J. Mol. Biol. 1999- 292:195−202.
- Rost B, Sander C. Third generation prediction of secondary structures. // Methods Mol. Biol. 2000−143:71−95.
- Wolf Y.I., Grishin N.V., Koonin E.V. Estimating the number of protein folds and families from complete genome data. // J. Mol. Biol. 2000- 299: 897−905.
- Sternberg M.J., Thornton J.M. On the conformation of proteins: the handedness of the connection between parallel beta-strands. // J. Mol. Biol. 1977−110:269−283.
- Woolfson D.N., Evans P.A., Hutchinson E.G., Thornton J.M. Topological and stereochemical restrictions in beta-sandwich protein structures. // Protein. Eng. 1993- 6: 461−470.
- Salem G.M., Hutchinson E.G., Orengo C.A., Thornton J.M. Correlation of observed fold frequency with the occurrence of local structural motifs. // J. Mol. Biol. 1999- 287: 969 981.
- Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. // Nucleic Acids Res. 2000- 28:235−242.
- Taylor W.R. Towards protein tertiary fold prediction using distance and motif constraints. // Protein Eng. 1991- 4: 853−870.
- Karplus K., Barrett C., Hughey R. Hidden Markov models for detecting remote protein homologies. // Bioinformatics 1998- 14: 846−856.
- Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z. Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. //Nucleic Acids Res. 1997- 25: 3389−3402.
- Shi J., Blundell T.L., Mizuguchi K. Fugue: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. // J. Mol. Biol. 2001- 310:243−257.
- Lindahl E., Elofsson A. Identification of related proteins on family, superfamily and fold level. // J. Mol. Biol. 2000- 295:613−625.
- Robert E. Steward, Janet M. Thornton. Prediction of Strand Pairing in Antiparallel and Parallel P-Sheets Using Information Theory. // PROTEINS: Structure, Function, and Genetics 2002−48:178−191.
- Minor D.L. Jr, Kim P. S. Measurement of the beta-sheet-forming propensities of amino acids. //Nature 1994- 367:660−663.
- Minor D.L. Jr, Kim P. S. Context-dependent secondary structure formation of a designed protein sequence. //Nature 1996- 380: 730−734.
- Cootes A.P., Curmi P.M., Cunningham R., Donnelly C., Torda A.E. The dependence of amino acid pair correlations on structural environment. // Proteins 1998- 32 :175−189.
- Merkel J.S., Regan L. Aromatic rescue of glycine in beta sheets. // Fold. Des. 1998- 3: 449−455.
- Hutchinson E.G., Sessions R.B., Thornton J.M., Woolfson D.N. Determinants of strand register in antiparallel beta-sheets of proteins. //Protein Sci. 1998- 7:2287−2300.
- Mandel-Gutfreund Y., Zaremba S.M., Gregoret L.M. Contributions of residue pairing to beta-sheet formation: conservat // J. Mol. Biol. 2001- 305:1145−1159.
- Merkel J.S., Sturtevant J.M., Regan L. Sidechain interactions in parallel beta sheets: the energetics of cross-strand pairings. // Struct. Fold. Des. 1999- 7:1333−1343.
- Smith C.K., Regan L. Guidelines for protein design: the energetics of beta sheet side chain interactions. // Science 1995- 270: 980−982.
- Zaremba S.M., Gregoret L.M. Context-dependence of amino acid residue pairing in antiparallel beta-sheets. // J. Mol. Biol. 1999- 291:463179.
- Hubbard T.J. Use of beta-strand interaction pseudo-potentials in protein structure prediction and modelling. // In: Lathrop RH, editor. Protein structure prediction minitrack of the 27th HICSS. New York: IEEE Computer Society Press 1994- p 336−354.
- Hubbard T.J., Park J. Fold recognition and ab initio structure predictions using hidden Markov models and beta-strand pair potentials. // Proteins 1995- 23:398−402.
- Bochicchio B, Pepe A, Tamburro AM. On (GGLGY) synthetic repeating sequences of lamprin and analogous sequences. // Matrix Biol. 2001- 20(4):243−250