Помощь в написании студенческих работ
Антистрессовый сервис

Одномерная математическая модель динамики кровотока в русле артериальной системы человека и вариант ее практического применения

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Наиболее частая причина нарушения кровоснабжения атеросклероз (атеротромбоз) — отложение холестерина в сосудистой стенке. Это приводит к образованию так называемых бляшек, суживающих или полностью закрывающих просвет сосуда. Подобные бляшки могут образовываться и в артериях нижних конечностей (бедренных, подколенных и берцовых артериях), суживая и в итоге закупоривая их. При сужении или окклюзии… Читать ещё >

Одномерная математическая модель динамики кровотока в русле артериальной системы человека и вариант ее практического применения (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. ОБЗОР
    • 1. 1. СОСУДИСТАЯ СИСТЕМА ЧЕЛОВЕКА
    • 1. 2. АТЕРОСКЛЕРОЗ
    • 1. 3. ОБЗОР МОДЕЛЕЙ И РАСЧЕТНЫХ СХЕМ ДЛЯ ОПИСАНИЯ ТОКА КРОВИ И МЕХАНИЧЕСКОГО ПОВЕДЕНИЯ СОСУДОВ
  • Классические модели кровеносных сосудов
  • Модель для асимптотического анализа
  • Модель, использующая метод сосредоточенных параметров
  • Квазиодномерное приближение
  • Модель, учитывающая винтовую анизотропию
  • Модель сужающихся сосудов
  • ГЛАВА 2. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
    • 2. 1. ОСНОВНАЯ СИСТЕМА УРАВНЕНИЙ ДИНАМИКИ КРОВОТОКА В ЧАСТИ АРТЕРИАЛЬНОЙ СИСТЕМЫ
    • 2. 2. ПОСТРОЕНИЕ АНАЛИТИЧЕСКОГО РЕШЕНИЯ СИСТЕМЫ УРАВНЕНИЙ ДИНАМИКИ КРОВОТОКА
    • 2. 3. КРАЕВЫЕ И КОНТАКТНЫЕ УСЛОВИЯ
    • 2. 4. УПРОЩЕНИЯ ПОСТРОЕННОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПУЛЬСАЦИИ КРОВОТОКА
    • 2. 5. ОПРЕДЕЛЕНИЕ СРЕДНЕГО КРОВОТОКА С УЧЕТОМ УГЛОВ РАЗВЕТВЛЕНИЙ
    • 2. 6. ОПРЕДЕЛЕНИЕ ИЗБЫТОЧНОГО ОБЪЕМА КРОВИ В СОСУДАХ
  • ГЛАВА 3. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ
    • 3. 1. ОПИСАНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
    • 3. 2. МОДУЛИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
    • 3. 3. ТЕХНОЛОГИИ И СРЕДСТВА РАЗРАБОТКИ
    • 3. 4. АРХИТЕКТУРА
    • 3. 5. АЛГОРИТМЫ
    • 3. 6. ФУНКЦИОНАЛЬНАЯ СПЕЦИФИКАЦИЯ
  • ГЛАВА 4. РАВНЕНИЕ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ
    • 4. 1. МОДЕЛИРОВАНИЕ С ПОМОЩЬЮ КОНЕЧНО ЭЛЕМЕНТНОГО ПАКЕТА ADINA
    • 4. 2. СРАВНЕНИЕ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИ С ПОМОЩЬЮ РАЗРАБОТАННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ С IN VIVO ДАННЫМИ

Проведенное исследование направлено па решеиие медицинской и социальной проблемы, связанной с оптимизацией хирургического лечения расстройств кровообращения в целом и как частный случай кровообращения нижних конечностей.

Актуальность темы

Статистика утверждает, что сердечнососудистые заболевания (ССЗ) — это одна из основных причин инвалидности и преждевременной смерти жителей экономически развитых стран. На сегодняшний день доля ССЗ в структуре смертности является основной [40] и составляет от сорока до шестидесяти процентов от общей смертности [53- 3- 4]. При этом продолжается рост заболеваемости и поражение людей всё более молодого возраста, что делает сердечно-сосудистые заболевания важнейшей медико-социальной проблемой здравоохранения [9]. В наше время появление современных методов диагностики в кардиологии (ЭКГ — электрокардиография, ФКГ — фонокардиография, ангиокардиография, эхокардиография или ЭхоКГ — ультразвуковое зондирование полостей сердца, биохимические методики и др.) позволяют успешно выявлять многочисленные болезни сердца и сосудов на ранних стадиях и проводить эффективную профилактику и лечение этих заболеваний.

Наиболее частая причина нарушения кровоснабжения атеросклероз (атеротромбоз) — отложение холестерина в сосудистой стенке. Это приводит к образованию так называемых бляшек, суживающих или полностью закрывающих просвет сосуда. Подобные бляшки могут образовываться и в артериях нижних конечностей (бедренных, подколенных и берцовых артериях), суживая и в итоге закупоривая их. При сужении или окклюзии подвздошных, бедренных артерий кровь и кислород в нижние конечности поступают в недостаточном количестве, что вызывает боль. Нехватку кислорода в тканях называют ишемией. В тяжелых случаях, могут развиться трофические язвы и гангрена, что может привести к ампутации коиечпости.

Сосудистые заболевания конечностей — лидирующая причина ампутаций у людей в возрасте 50 лет и старше, и занимает 90% всех ампутаций. Кроме того, повреждение сосудов может встречаться и при тяжелых (размозженных, раздробленных) травмах, глубоких ожогах и других случаях. В результате этого также наблюдается отсутствие кровоснабжения тканей конечности и их некроз. Если не удалить некротизированпую ткапь, то это чревато распространением по всему организму продуктов гниения и инфекции.

Наиболее изучены показатели смертности от сердечно-сосудистых заболеваний как проявление генерализованного атеросклероза. В Российской Федерации в 2000 г. стандартизованный показатель смертности от болезней системы кровообращения составил 800,9 на 100 000 населения. Для сравнения во Франции этот показатель 182,8 (самый низкий в Европе), в Японии — 187,4. Доказано, что снижение риска сердечно-сосудистых заболеваний в этих странах связано не столько с качеством медицинской помощи, сколько с образом жизни и особенностями диеты [2].

Заболевания артерий нижних конечностей, помимо болей при ходьбе нередко приводят к развитию критической ишемии. Обычно лечение сосудистых заболеваний состоит в назначении антибиотиков, удалении инфицированных тканей, назначение сосудистых препаратов (например, антикоагулянтов), но нередко приходится выполнять реконструктивные сосудистые операции, чтобы восстановить кровообращение в пораженной конечности. Однако, когда перечисленные мероприятия не могут помочь достичь требуемого результата, хирургу приходится прибегать к ампутации в качестве спасительной меры.

Для восстановления кровообращения нижних конечностей применяют следующие хирургические реконструктивные операции:

• Эндартерэктомия — вскрытие просвета артерии и удаление атероматозной бляшки вместе с интимой. Существуют открытый, полузакрытый и закрытый способы эндартерэктомии. Метод может быть использован при ограниченных по протяжению поражениях аорты и крупных артерий.

• Аортобедрениое шунтирование при окклюзии бифуркации аорты и подвздошных артерий (синдром Лериша) дает 85—90% хороших результатов на протяжении 5 лет со средней послеоперациоппой летальностью 1—5%.

• Подвздоишо-бедренное, бедренно-подколеиное, бедреиио-болыиеберцовое одностороннее шунтирование применяют при одностороннем поражении соответствующего сегмента.

• Профундопластика (восстановление проходимости глубокой артерии бедра) приводит к уменьшению болей, заживлению язв, сохранению конечности при облитерации бедренной артерии и сохранении проходимости артерий голени.

• Внеанатолшческое шунтирование — создание анастомозов между разными артериальными бассейнами: бедреппо-бедренпое шунтирование применяют при одностороннем поражении подвздошной артерии с хорошими результатами у 70—75% больных на протяжении 5 летподмышечно-бедренное шунтирование показано после удаления ипфицироваиного бифуркационного или иного протеза, когда реваскуляризация может быть выполнена только альтернативным путем.

• Протезирование с использованием аутологичных вен, аллогеппых консервированных артерий и вен, сосудистых эксплантатов применяют в артериях среднего и мелкого калибра [74].

• Артериализация венозного русла, т. е. переключение артериального кровотока в венозное русло in situ после клапанной деструкции, используется при лечении облитерирующего эндартериита.

• При невозможности выполнить реконструктивную операцию или дезоблитерацию (часто как дополнение к этим вмешательствам) выполняют поясничную симпатэктомию (операция Диеца).

Эти реконструктивные операции выполняются достаточно часто в наше время, однако на данный момент не существует объективных показаний к применению того или иного типа материала шунта и выбора его геометрических параметров. Часто невозможно также объективно предсказать результат операции, а именно, насколько близок будет кровоток после реконструируемого участка к нормальному или какой тип реконструкции будет оптимальным для каждого конкретного случая.

Таким образом, необходимым является построение математической модели, которая должна достаточно полно описывать реальное взаимодействие тока крови с сосудистой стенкой, должна быть быстродействующей и многопараметрической, легко приспосабливаемой к конкретному пациенту. Кроме того, необходимо разработать простой удобный инструмент, в данном случае это программное обеспечение (ПО) для персонального компьютера (ПК), который позволит быстро создавать и просчитывать результаты различных реконструктивных операций на сосудистом русле. ПО должно иметь простой, настраиваемый, интуитивно понятный интерфейс, обладать высокой производительностью и потреблять минимальное количество системных ресурсов компьютера.

Цель работы. Основной целью диссертационной работы является разработка математической модели и программного комплекса, удовлетворяющего выше обозначенным критериям. Для достижения цели исследования рассмотрены следующие задачи:

• выполнить сравнительный анализ существующих на данный момент математических моделей и расчетных схем течения ' крови в артериальной системе человека.

• построить быстродействующую, многопараметрическую математическую модель течения крови в артериальном русле, применимую к сосудистому дереву произвольной конфигурации.

• разработать па базе построенной математической модели пакет прикладных программ, позволяющий моделировать различные сосудистые деревья и рассчитывать параметры течения крови в любой их части и в любой момент времени периода пульсации.

• сравнить in vivo данные с результатами моделирования исследованного участка артериальной системы.

Положения, выносимые на защиту:

1. Одномерная, линейная математическая модель периодического течения крови, учитывающая углы разветвления.

2. ПО, построенное па основе одномерной математической модели, является быстродействующим, требующим мало системных ресурсов, простое в обращении, способное моделировать широкий спектр конфигураций сосудистых систем и легко настраивается под конкретный случай. Разработанная система может служить прототипом для промышленного производства такого рода программ, их внедрения в медицинские учреждения РФ или даже интеграции их в УЗ аппараты.

3. Моделирование течения крови с помощью разработанного пакета прикладных программ показывает результаты, близкие как к результатам полученным на базе трехмерной модели, так и к экспериментальным данным. Однако, в силу того, что уравнения трехмерной модели требуют численного решения, а уравнения одномерной модели решаются аналитически, время вычисления для последней на несколько порядков меньше.

4. Моделирование тока крови в сосудистых системах может быть осуществлено па основе in vivo данных ультразвуковой допплерографии и анализа крови пациента (анализ крови на вязкость и плотность).

Научная новизна:

1. Разработана одномерная линейная математическая модель, позволяющая получить аналитическое решение, многопараметрическая в силу этого адаптируемая к большому множеству кровеносных систем, быстродействующая при ее реализации на компьютере. Данная модель показывает результаты, мало отличающиеся от соответствующих осредиеппых результатов полученных с помощью трехмерной модели динамики кровотока.

2. Разработано ПО, позволяющее быстро графически строить модели артериальных систем и вычислять параметры течения крови в ней. ПО имеет высокую производительность и простой удобный интерфейс.

3. Приведены in vivo данные и их сравнение с результатами компьютерного моделирования. Компьютерное моделирование на основе разработанного ПО показало результаты, близкие к эксперименту.

Теоретическая и практическая ценность работы. Пакет прикладных программ и математическая модель, описанные в данной диссертации, могут служить инструментом для выбора наиболее удачного 'варианта реконструктивной операции, наиболее подходящего по геометрическим размерам шунта и его материала. Одномерная математическая модель показывает результаты, мало отличающиеся от результатов трехмерного моделирования кровотока всюду, за исключением локальных участков сосудистой системы, где имеется достаточно выраженная физическая и геометрическая неоднородность.

Апробация работы. Основные положения диссертации докладывались и обсуждались на международной научно-технической конференции «Вычислительная мехаиика деформируемого твердого тела» (Москва, 2006) — Всероссийской научной школе-семинаре «Методы компьютерной диагностики в биологии и медицине — 2007» (Саратов, 2007) — Всероссийской школе семинаре «Математическое моделирование и биомеханика в современном университете» (Дивноморск, 2007, 2008) — Международной конференции «XVIII сессия Международной школы по моделям механики сплошной среды» (Саратов, 2007) — XIII Всероссийском съезде сердечнососудистых хирургов в НЦССХ им. А. Н. Бакулева РАМИ (Москва, 2007) — IX всероссийской конференции по биомеханике «Биомеханика — 2008» (Нижний Новгород, 2008).

В целом работа докладывалась на научных семинарах кафедры математической теории упругости и биомеханики Саратовского государственного университета имени Н. Г. Чернышевского.

Публикации по теме диссертации. Основное содержание диссертационной работы отражено в 7-и печатных работах [14−20]. В том числе 1 статья в журнале [14], входящем в перечень ведущих рецензируемых научных журналов и изданий ВАК.

Структура и объем диссертации

Диссертация состоит из введения, четырех глав, выводов, списка литературы. Работа содержит 142 страницы машинописного текста, 66 иллюстраций, 2 таблицы и библиографический список из 133 наименований.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ.

1. Построена одномерная, линейная математическая модель периодического течения крови. Модель применима к сосудистому дереву произвольной конфигурации. Система уравнений модели допускает аналитическое решение, в силу чего построенная на ее базе вычислительная система является быстродействующей.

2. Показано, что одномерная математическая модель в результате вычислений дает значения, мало отклоняющиеся от результатов вычислений, произведенных для трехмерной модели. Однако в силу того, что математическая модель является одномерной, она не позволяет анализировать распределение того или иного параметра в достаточно узкой области с ярко выраженной геометрической и физической неоднородностью, например в близи области ветвления или возле атеросклеротических бляшек. Также модель не позволяет анализировать распределение скорости по сечению и пе учитывает изгибы русла.

3. На основе одномерной математической модели разработано простое в обращении программное обеспечение, способное моделировать широкий спектр конфигураций сосудистых систем и легко настраиваемое под конкретный случай. ПО позволяет графически строить артериальное русло, имеет высокую скорость вычислений, настраиваемый пользовательский интерфейс.

4. Показано, что моделирование тока крови в сосудистых системах может быть осуществлено на основе in vivo данных ультразвуковой допплерографии и анализа крови пациента (анализ крови на вязкость и плотность).

5. На сравнительных графиках продемонстрировано, что моделирование течения крови с помощью разработанного пакета прикладных программ показывает результаты, близкие к экспериментальным данным.

6. Приведенные в диссертации математическая модель и ПО могут служить основанием для дальнейшего клинического исследования с целью обоснования выбора метода и варианта реконструкции, типа и формы пластического материала с учетом индивидуальных особенностей артерий каждого пациента.

Показать весь текст

Список литературы

  1. Сосудистая хирургия и микрохирургия Электронный ресурс. // сайт. URL: www. angio-surgerv.ru (дата обращения 09.06.2008)
  2. Википедиа Электронный ресурс. // свободная энциклопедия. URL: www.wikipedia.org (дата обращения 09.06.2008)
  3. Социальное положение и уровень жизни населения России. / Госкомстат России. Официальное издание. Статистический сборник. -М., 2003.
  4. Смертность населения Российской Федерации 2002 г. / Статистические материалы Минздрава России. — М., 2003.
  5. М.В.Абакумов, И. В. Аишетков, Н. Б. Есикова, В. Б. Кошелев, С. И. Мухин, Н. В. Соснин, В. Ф. Тшикин, А. П. Фаворский, А. Б. Хруленко Методика математического моделирования сердечно-сосудистой системы // Математическое моделирование. М., 2000. — Т. 12, № 2, 106−117с.
  6. А. И., С тру ко в А. И. Патологическая анатомия Т. 2. М., 1954.
  7. Н. Н. Общие основы учения об атеросклерозе артерий // Центр. Мед. Журнал. 1928. — Т. 1. № 1. — С. 10.
  8. П. К, Шукейло Ю. А. Био Механика. М., 2005.
  9. Я. А., Гудкова Р. Г. Здоровье населения Российской Федерации и хирургическое лечение болезней сердца и сосудов в 1998 году. М.: Изд-во НЦССХ им. А. Н. Бакулева РАМН, 1999.
  10. М.В., Гуляев Ю.77. Низкочастотные осесимметричные волны в кровеносных сосудах постоянного сечения: ассимптотический подход. // Известия РАН. Серия Механика твердого тела. — Москва, 2009. (в печати).
  11. А. С., Герштейн М. С. Проблемы динамики оболочек кровеносных сосудов // Механика полимеров. 1970. — № 2. — С. 373 379.
  12. Э., Хелм Р., Джонсон Р., Влнссидес До/с. Приемы объектпо-ориентироваиного проектирования. Паттерны проектирования. — С.-Пб.: Питер, 2001.
  13. Ю.П., Коссович Л. Ю. Математические модели биомеханики в медицине. Саратов: Изд. Саратовского университета, 2001.
  14. М.А., Гуляев Ю. П. Постановка и решение задачи определения динамики кровотока в крупных артериях по одномерной теории. // Известия Саратовского университета. Серия Математика. Механика. Информатика. Саратов, 2007. — Т. 7. — Вып. 1. — С. 45−48.
  15. М. А. Основные уравнения одномерной теории динамики кровотока в системах крупных артерий. // Международная научно-техническая конференция «Вычислительная механика деформируемого твердого тела». Т. 1. М.: МИИТ, 2006. 152с.
  16. М.А. Программное обеспечение для вычисления параметров кровотока в части артериальной системы. // Тезисы докладов. IX Всероссийская конференция по биомеханике «Биомеханика — 2008». Нижний Новгород, 2008. Нижний Новгород, 2008. — С. 180−182.
  17. А. В. Математическое моделирование поведения бифуркации сонной артерии человека на различных стадиях атеросклеротического поражения и после операционного вмешательства. — Саратов: Изд. Саратовского университета. 2007.
  18. А. В., Салъковский Ю. Е. Моделирование кровотока в сонной артерии с податливыми стенками методом конечного элемента // Математическое Моделирование и Краевые Задачи: Труды Всероссийской Научной Конференции. Самара, 2004. — Т. 1. -С. 103−106.
  19. А. В., Салъковский Ю. Е. Практическое применение конечно-элементного пакета ANSYS к задачам биомеханики кровеносных сосудов. Саратов: Изд. Саратовского университета, 2005.
  20. Кватрани Т. Rational Rose 2000 и UML. Визуальное моделирование. — М.: ДМК, 2001.
  21. Киммел 77. UML. Основы визуального анализа и проектирования. -М.: ИТ Пресс, 2008.
  22. И. В., Морозов К. М., Каменский А. В. Биомеханика бифуркаций сонных артерий // Регионарное кровообращение и микроциркуляция. 2007. Т. 1. № 21. — С. 156.
  23. Ю. Я. Статические свойства пассивных сосудов артериального типа//Биофизика. 1971. Т. 16. — № 6. — С. 1093−1099.
  24. Д. Дэю., Уингоу С., Шеферд Дою. Visual С++ 6.0 для профессионалов. — С.-Пб.: Питер, 2004.
  25. Л.Д., Лифишц Е. М. Гидродинамика. М., Наука, 1988.
  26. К. Применение UML 2.0 и шаблонов проектирования. Введение в объектно-ориентированный анализ, проектирование и итеративную разработку. — М.: Вилиамс, 2007.
  27. А. В. Объектно-ориентированный анализ и проектирование с использованием UML и IBM Rational Rose. M.: Бином. Лаборатория знаний, 2006.
  28. С. Г. Теория упругости анизотропного тела. М.: Наука, 1977.
  29. В.А., Амосов Г. Г., Амосов (мл.) Г. Г., Фролов C.B. Математическая модель сосуда в частных производных // Клиническая физиология кровообращения. 2006. — Ч. 1, № 1. — С. 1 — 10.
  30. С.Н. Модель сердечно-сосудистой системы // Труды ТГТУ. Выпуск № 20 / Тамбов. Издательство ТГТУ / 2007.
  31. С. Эффективное использование С++. 55 верных советов улучшить структуру и код ваших программ. М.: ДМК пресс, 2006.
  32. Л. И., Балуева Т. В., Сергеев И. В. Эндотелийзависимый механизм формирования реакций системной гемодинамики // Рос. физиол. Жури. Им. И. М. Сеченова. 2003. — Т. 89, № 7.- С. 810−816.
  33. Т. Гидродинамика крупных кровеносных сосудов. М: Мир, 1983.
  34. А. В. Что могут сегодня сосудистые хирурги // 50 лекций по хирургии М.: Media-Medica, 2003.
  35. В. А. Программирование на С++/С# в Visual Studio .NET 2003. С.-Пб.: БХВ-Петербург, 2004.
  36. А. М. Большая Советская Энциклопедия. 2-е издание, 1949−1960.
  37. . Я., Касьянов В. А. Биомеханика крупных кровеносных сосудов человека. — Рига: Зинатне, 1980.
  38. Г., Александреску А. Стандарты программирования на С++. -М.: Вилиамс, 2005.
  39. Л. Применение метода конечных элементов. М.: Мир, 1979.
  40. Л.И. Методы подобия и размерности в механике. М.: Наука, 1987.
  41. Р. Д., Синельников Я. Р. Атлас анатомии человека. —2-е издание, Т. 3, М: Медицина, 1996.
  42. H. А., Клепер С. Дж. С++ для профессионалов. М.: Вилиамс, 2006.
  43. . Дизайн и эволюция языка С++. С.-Пб.: Питер, 2006.
  44. Ю.А. Модель винтового пульсового движения крови в артериальных сосудах. // Доклады академии наук, 2004, Т. 398, № 3, с. 1−5.
  45. Фаулер M. UML. Основы. М.: Символ-Плюс, 2006.
  46. ХарченкоВ. И. Смертность от болезней системы кровообращения в России и экономически развитых странах // Российский кардиологический журнал.-2005.-№ 2
  47. О. А. Атеросклероз аорты и периферических артерий: современные представления о патогенезе и методах лечения. — Саратов, 2001.
  48. A., Tpomm Дж. Р. Шаблоны проектирования. Новый подход к объектно-ориентированному анализу и проектированию. — М.: Вилиамс, 2002.
  49. Г. Полный справочник по С++. М.: Вилиамс, 2007.
  50. Ю. А. Win32 API. Эффективная разработка приложений. С.-Пб.: Питер, 2007.
  51. Theory and Modeling Guide / ADINA. Report ARD 06−07. 2006.
  52. Adams P. The Genuine Works of Hippocrates. New York: William Wood, 1886.
  53. Avolio A. Aging and wave reflection. // J. Hypertens. 1992. — V. 10. P. 83−86.
  54. Bassingthwaighte J. B., Liebovitch L. S., West B. J. Fractal Physiology. // The American Physiological Society Methods in Physiology Series. — New York: Oxford University Press, 1994. P. 236−262.
  55. Bathe K.-J. Finite element procedures. Englewood Cliffs, N.J.:Prentice Hall, 1996. Klaus-Jurgen Bathe, ill.- 25 cm. Revision of: Finite element procedures in engineering analysis. 1982.
  56. Berge! D. H. The Static Properties of the Arterial Wall // J. of Physiol. 1961. -V. 156. P. 445−457.
  57. Berger S. A., Jou L. D. Flows in Stenotic Vessels // Annu Rev Fluid Mech. 2000.-V. 32.-P. 347−384.
  58. Brant A.M., ShahS. S., Rogers V. G. J., Hohhmeister J., Herman L. M., Kormos R. L., Borovetz H. S. Biomechanics of the Arterial Wall Under Simulated Conditions //J. Biomechanics. 1988. V. 21. — P. 107 113.
  59. Bnmey A. Professional VSTO 2005: Visual Studio 2005 Tools for Office (Programmer to Programmer). Chichester: Wrox Press Ltd. 2006.
  60. Burton A. C. Physical principles of circulatory phenomena: the physical equilibria of the heart and blood vessels // Handbook of Physiology. Circulation. Amer. Physiol. Soc. 1968. S. 2. — V. 1. — P. 85−106.
  61. Burton A. C. The relation of structure to function of the tissues of the wall of blood vessels // Physiol. Rev. 1954. V. 34. -N 4. — P. 619−642.
  62. Carew T. E., Vaishnav R. N., Pater D. J. Compressibility and Constitutive Equation for Arterial Wall // Circ. Res. 1968. V. 23. — P. 61−68.
  63. Caro C. G., Pedley T. J., Schroter R. C., Seed W. A. The Mechanics of the Circulation. Oxford: Oxford University Press, 1978.
  64. Chen J., LuX.-Y. Numerical Investigation of the non-Newtonian Pulsatile Blood Flow in a Bifurcation Model With a Non-Planar Branch // Journal of Biomechanics. 2006. V. 39. — P. 818−832.
  65. Chorin A. J., Marsden J. E. A Mathematical Introduction to Fluid Mechanics. 3rd ed. — New York: Springer 1998.
  66. Chuong C. J., Fung Y. C. Three-Dimensional Stress Distribution in Arteries //Journal of Biomechanical Engineering. 1983. V. 105. — P. 268 274.
  67. De Bakey M. E., Craford E. S. Patch Graft Angioplasty in Vascular Surgery // Journal of Cardiovascular Surgery. 1962. V. 3. — P. 106−141.
  68. Delfino A. Analysis of stress field in a model of the human carotid bifurcation. Lausanne. PhD thesis #1599, 1996.
  69. Demiray H., Weizsacker H. W., Pascale K., Erbay H. A. A Stress-Strain Relation for a Rat Abdominal Aorta // J. Biomechanics. 1988. V. 21. — P. 369−374.
  70. Deng S. X., Tomioka J., Debes J. C., Fung Y. C. New Experiments on Shear Modulus of Elasticity of arteries // Am. J. Physiol. 1994. V. 266. -P.H1-H10.
  71. Dobrin P. B., Doyle J. M. Vascular Smooth Muscle and Anisotropy of Dog Carotid Artery // Circ. Res. 1970. V. 27. — P. 105−119.
  72. C. Ebner, W. Tkalec, H.J. Nesser Three-dimensional volume measurements of plaques in the arteria carotis and the arteria femoralis // Journal of the American College of Cardiology. February 1996. V. 27. -P. 103−104.
  73. Feinberg A. W., Lax H. Studies of the arterial pulse wave. // Circulation 1958.-V. 18.-P. 1125−1130.
  74. Fung Y. C. Biomechanics: Mechanical Properties of Living Tissue. New York: Springer-Verlag, 1993.
  75. Fung Y. C., FronekK., Patitucci P. Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression // American Journal of Physiology. 1979. V. 237. — P. H620-H631.
  76. Guyton A. C. Textbook of Medical Physiology. 9th. ed. Philadelphia: W. B. Saunders Company, 1996.
  77. Hariton I., deBotton G., Gasser T. C., Holzapfel G. A. How to Incorporate Collagen Fibers Orientations in an Arterial Bifurcation // 3rd IASTED Conference on Biomechanics Benidorm, 2005.
  78. Haust M. D. Arterial Endothelium and Its Potentials // Plenum Press. 1977. -P. 34.
  79. Hildenbrandt J. Extension of small-strain theory to finite deformation of cylindrical vessels by internal overpressure // Angiologica. 1970. V. 7 — N 5. — P. 257−272.
  80. Holzapfel G. A., Gasser T. C., Ogden R. W. A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models // Journal of Elasticity. 2000. V. 61. — P. 1−48.
  81. Holzapfel G. A., Ogden R. W. Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability // Journal of Biomechanical Engineering. Transactions of ASME. 2004. -V. 126. P. 264−275.
  82. Howard B, V., Macarak E. I., Guns on D., Kefalides N. A. Characterization of the Collagen Synthesized by Endothelial Cells in Culture // Proc. Nat. Acad. Sei. 1976. V. 73. — P. 2361−2364.
  83. Humphrey J. D. Mechanics of Arterial Wall: Review and Directions // Critical Review in Biomed. Engr. 1995. V. 23. — P. 1−162.
  84. Humphrey J. D., Strumpf R. K., Yin F. C. P. Determination of a Constitutive Relation for Passive Myocardium // Journal of Biomechanical Engineering. 1990. V. 112. — P. 333−346.
  85. Jones R. M. Mechanics of Composite Materials. USA: Taylor & Francis, 1999.
  86. Kannel W. B., Wolf P. A., McGee D. L., Dawber T. R., McNamara P., Castelli W. P. Systolic blood pressure, arterial rigidity, and risk of stroke // J. Am. Med. Assoc. 1981.-V. 245.-P. 1225−1229.
  87. Kaplunov J.D., Kossovich L.Yu., Nolde E. V. Dynamics of thin walled elastic bodies. San Diego: Academic Press, 1998.
  88. Kasyanov V. A., Rachev A. I. Deformation of Blood Vessels Upon Stretching, Internal Pressure, and Torsion // Mech. Comp. Mat. 1980. V. 16x. — P. 76−80.
  89. Kassab G. S., Rider C. A., Tang N. J., Fung Y. C. Morphometry of Pig Coronary Arterial Trees // Am. J. Physiol. 1993. -V. 265. P. 350−365.
  90. Kuchar N. R., Ostrach Biomedical Fluid Mechanics Symposium // Flow in the Entrance Regions of Circular Elastic Tubes New York, 1966.
  91. Lax H., Feinberg A., Cohen B. M. The normal pulse wave and its modification in the presence of human atherosclerosis // J. Chronic. Dis. 1956, -V. 3. -P. 618−631.
  92. LighthillJ. Matematical Biofluiddynamics. Philadelphia: SIAM, 1975.
  93. MalekA. M., Alper S. L., Izumo S. Hemodynamics Shear Stress and Its Role in Atherosclerosis // JAMA. 1999. V. 282:21. — P. 2035−2042.101 .McDonaldD. A. Blood flow in arteries. 2nd. ed., London: Arnold, 1974.
  94. MelvinJ. W., Mohan D., Wineman A. S. Mechanical characteristics of soft tissues at high strain rates // Biomechanics Symposium New York, 1975. -V. 10.-P. 75−78.
  95. Meyer W. W. Zur Pathogenese der Atherosklerose // Klin. Wschr. 1952. -V. 11. (12).-P. 244−253.
  96. Nichols W. W., O’Rourke M. F. McDonald’s Blood Flow in Arteries // Chapter 4 London: Arnold, 1998. P. 73−97.
  97. Oka S., Azuma T. Physical theory of tension in thick walled blood vessels in equilibrium//Biorheology. 1970. V. 7. — N 2. — P. 109−117.
  98. Olufsen M. Modeling the arterial system with reference to an anesthesia simulator / PhD thesis. Denmark, Roskilde: IMFUFA, Roslcilde University, 1998.
  99. Olufsen M. Structured tree outflow condition for blood flow in larger systemic arteries // Am. J. Physiol. 1999. V. 276. — P. 257−268.
  100. Parker K. H., Jones C. J. H. Forward and Backward Running Waves in the Arteries: Analysis Using the Method of Characteristics // ASME J. Biomech. Engng. 1992. V. 114. — P. 10−14.
  101. Patel D. J., Vaishnav R. N. Basic Hemodynamics and its Role on Disease Processes. Baltimore. University Park Press, 1980.
  102. Pedersen E. M., SungH.-W., Burlson A. C., Yoganathan A. P. Two-dimensional velocity measurements in a pulsatile flow model of the abdominal aorta simulating different hemodynamic conditions // J. Biomech. 1993 V. 26. — P. 1237−1247.
  103. Pedley T. J. Mathematical Modeling of Arterial Fluid Dynamics // Journal of Engineering Mathematics. 2003. V. 47. — P. 419−444.
  104. Peskin C. S. Partial Differential Equations in Biology. New York: Courant Institute of Mathematical Sciences, New York University, 1976.
  105. Rugani F. Vascular variation: trifurcation of femoralis communis. // Atti Accad Fisiocrit Siena Med Fis., 1954. V. 1. — P. 55−57.
  106. Rhodin J. A. G. Architecture of the Vessel Wall //Handbook of Physiology, the Cardiovascular System H.V. Sparks, D.F. Bohr Jr., A.D. Somlyo, S.R. Geiger. Bethesda, Maryland: Americal Physiological Society, 1980. P. 1−31.
  107. Simon B. R., Koboyashi A. S., Strandness D. E., Wiederhielm C. A. Reevaluation of arterial constitutive relations. A finite-deformation approach // Circulation Res. 1972. V. 30. — N 4. — P. 491−500.
  108. Spencer A. J. M. Deformations of Fibre-reinforced Materials. -Oxford: Clarendon Press, 1972.
  109. Streeter V. L. Keitzer W. F., Bohr D. F. Pulsatile pressure and flow through distensible vessels // Circulation Res. 1963. V. 13. — N 1. — P. 3−20.
  110. Takamizawa K., Hayashi K. Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics // J. Biomech. 1987. V. 20. — P. 7−17.
  111. Tambasco M., Steinman D. A. Path-Dependent Hemodynamics of the Stenosed Carotid Bifurcation // Annals of Biomedical Engineering. 2003. -V. 31. P. 1054−1065.
  112. Taylor L. A., GerrardJ. H. Pressure-radius relationsips for elastic tubes and their application to arteries. Part 1. Theoretical relationships // Med. Biol. Eng. Comput. 1977. V. 15. — N 1. — P. 11−17.
  113. Thubrikar M. J., RobicsekF. Pressure-Induced Arterial Wall Stress and Atherosclerosis // Ann. Thorac. Surg. 1995. V. 59. — P. 1594−1603.
  114. Tropea B. I., Schwarzacher S. P., Chang A. Reduction of Aortic Wall Motion Inhibits Hypertension-Mediated Experimental Atherosclerosis // Artherioscler. Thromb. Vase. Biol. 2000. V. 20. — P. 2127−2133.
  115. Vaishnav R. N., Young J. T., Patel D. J. Distribution of Stresses and of Strain-Energy Density Through the Wall Thickness in a Canine Aortic Segment // Circ. Res. 1973. V. 32. — P. 577−583.
  116. Voltairas P. A., Fotiadis D. I., Massalas C. V., Michalis L. K. Anharmonic Analysis of Arterial Blood Pressure and Flow Pulses // Journal of Biomechanics. Elsevier, 2005. — V. 38. — P. 1423−1431.
  117. Waters S. L. Solute Uptake Through The Walls of a Pulsating Channel // J. Fluid Mech. 2001. V. 433. — P. 193−208.
  118. Weinbaum S., Tzeghai G., Ganatos P. Effect of Cell Turnover and Leaky Junctions on Arterial Macromolecular Transport // Am. J. Physiol. 1985. -V. 248. P. H945-H960.
  119. Wepfer J. Observatio Anatomica Zurich. 1704.
Заполнить форму текущей работой