Современный уровень развития вычислительной техники открывает качественно новые возможности для создания компьютерных программ, моделирующих различные физические объекты. Такими объектами могут быть (применительно к электротехнике) электрические цепи, электрические машины в целом или составляющие их элементы (зазор, зубцовый слой, ярмо статора или ротора, обмотка и т. д.), электрические аппараты любого назначения, различные части электроэнергетических систем. Моделирующие их программы могут применятся в научных исследованиях, при проектировании, как тренажеры, а также в учебном процессе. Во всех случаях от модели требуется, прежде всего, ее способность правильно (адекватно) отражать физические явления, происходящие в моделируемом объекте. Универсальную и вполне адекватную математическую модель всех известных процессов в электротехнических устройствах дают уравнения электромагнитного поля Максвелла, дополненные современными моделями материальных сред. Их решение уже не является непреодолимой вычислительной проблемой, как это было в недалеком прошлом. Поэтому для учета всех существенных эффектов в реальных системах целесообразно исходить из полевого описания объектов.
Термин «имитационное моделирование» в настоящее время не имеет четкого, однозначного определения. Первоначально, по данным [1], термин «имитация» (англ. simulation) появился в начале шестидесятых годов в США в связи с исследованием сложных систем, поведение которых зависело от случайных параметров, методом статистических испытаний. Позднее понятие имитации стали использовать в более широком смысле, появились термины «имитационная модель», «имитационое моделирование» [2,3,4,5]. В общем, эти понятия подразумевают задачи воспроизведения на компьютере сложных динамических процессов с возможностью анализа множества вариантов его течения. Уточним конкретный смысл, в котором используются упомянутые термины в данной работе.
Компьютерная модель воспроизводит основные характеристики временных процессов реальной системы и позволяет производить с ней опыты, аналогичные тем, которые можно поставить в лабораторных условиях. Например, программа, моделирующая электрическую машину, может имитировать процесс включения машины, регулировки напряжения сети и момента на валу, управления возбуждением, позволяет изменять параметры нагрузки и т. д. Важно также то, что с моделью можно делать опыты, трудно выполнимые в лабораторных условиях, например, изменять тип обмотки, конфигурацию пазов, форму кривой питающего напряжения, частоту сети и т. д. Все подобные действия могут производиться в процессе работы компьютерной модели, если программа допускает произвольные изменения внешних воздействий во времени. С другой стороны, программа должна давать возможность измерять все описывающие состояние модели величины, как и реальная электромагнитная система. При наличии таких свойств возможно проведение над компьютерной моделью экспериментов, никак заранее программно не предусмотренных (например, можно снять механическую характеристику электрического двигателя). Компьютерная модель, удовлетворяющая приведенным выше требованиям имитирует как физические процессы в реальном объекте, так и логику работы с ним. Такие модели мы будем называть имитационными.
Имитационная модель сложного объекта строится на основе имитационных моделей составляющих его элементов. Такая программа работает по замкнутому циклу, каждый проход которого содержит расчет состояния объекта в один фиксированный момент временив, исходя из его состояния в предшествующий момент и внешних воздействий на данном временном шаге. При имитационном моделировании отдельного элемента для его тестирования необходимо наличие «подпрограммы-заглушки», замыкающей цикл и моделирующей недостающие связи между выходом и входом элемента. Задача разбиения сложного объекта на элементы при компьютерном моделировании подобна такой же проблеме при аналоговом моделировании [6]. Здесь нет исчерпывающего списка правил и многое зависит от правильной оценки роли отдельных физических факторов, иначе могут получаться и некорректные схемы. Этот вопрос дальше в диссертации не обсуждается, так как речь пойдет лишь о моделях некоторых отдельных элементов электрической машины.
Независимые переменные, значения которых однозначно определяют состояние модели в каждый данный момент времени, будем называть переменными состояния модели. Если предшествующие состояния моделей не влияют на текущее, модель называется безинерционной. Такими являются, например, модели воздушного зазора и ярма электрической машины. И, напротив, модели замыкающего кольца ротора типа «беличья клетка» и обмотки электрической машины являются инерционными. Признаком инерционности модели является наличие в ее уравнениях производных по времени. Модели инерционных злементов содержат эволюционный алгоритм, рассчитывающий последующее состояние элемента по предшествующему на основе использования дифференциальных уравнений состоянии.
Итак, перечислим основные признаки полевых имитационных компьютерных моделей электромагнитных систем:
• модель строится на основе полевой постановки задачи,.
• составляется из имитационных моделей отдельных элементов системы,.
• имеет в основе алгоритм с замкнутым циклом по времени,.
• использует эволюционные дифференциальные уравнения состояний,.
• допускает изменение внешних воздействий в процессе работы,.
• воспроизводит метафору работы с реальным объектом.
Тенденция роста быстродействия персональных компьютеров позволяет надеяться на широкое распространение имитационного подхода к моделированию электромагнитных систем. Тем не менее, такая постановка задачи предъявляет жесткие требования к эффективности используемых вычислительных алгоритмов. Моделирующая программа должна иметь достаточное быстродействие для отображения интересующих пользователя временных интервалов за разумное время (порядка Ю'-Ю2 с). Поскольку временной шаг (dt) ограничен сверху точностью и устойчивостью работы используемых численных методов, одним из основных вопросов при разработте программ является максимальное сокращение количества вычислительных операций, выполняемых на каждом шаге. С этой точки зрения предпочтительными выглядят модели, описывающие связи интегральных характеристик полей.
Целью данной работы является разработка полевых имитационных компьютерных моделей элементов электрических машин с прицелом на их использование для построения имитационной модели асинхронной машины. В данной диссертационной работе описан опыт разработки имитационных моделей следующих элементов асинхронной машины:
• воздушный зазор с двухсторонней зубчатостью и изменяющейся (при вращении ротора) геометрией;
• циллиндрическое ярмо (статора и ротора);
• короткозамыкающее кольцо ротора;
• статорная обмотка.
Для каждого из перечисленных элементов разработаны экспериментальные имитационные программы, демонстрирующие работу моделей, и необходимые вспомогательные программы. Именно программная реализация математических алгоритмов имитационного моделирования является главным практическим результатом данной работы. В приложении будут приведены исходные тексты (листинги) всех вычислительных процедур, используемых в компьютерных моделях элементов. Интерфейсные части программ достаточно громоздки, используют нестандартные библиотеки подпрограмм и поэтому не приводятся. Алгоритмы, на которых основана работа моделей рассматриваемых элементов, изложены в конце соответствующих перечисленным элементам глав. Автор принимал непосредственное участие в разработке деталей этих алгоритмов и выполнил их численную реализацию, однако идеи этих алгоритмов в число защищаемых положений диссертации не включает. Напротив, все программные разработки полностью выполнены автором.
Все программы данной работы написаны на языке программирования С++. Это объектно-ориентированный язык, позволяющий создавать удобные и стройные описания свойств и параметров реальных объектов. Вычислительная процедура, написанная на С++ работает в среднем в 1,5−2 раза быстрее аналогичной процедуры, написанной на других распространенных компилируемых языках (например, Pascal или современный Basic). Исходные тексты вычислительных процедур могут практически без изменений применяться в программах, компилируемых с помощью различных реализаций трансляторов С++. 6 ж ш мпп1/ пм .'мп:ап1л1111<1 нпт^пармгли пл тплоотр ги.
Интерфейс с пользователем.
Модули ввода параметров м I.
ОДНЫХ ВОЗДСМСТВИЙ модели визуализации щего состояния.
Модули модели.
Рис. 1. Общая архитектура имитационной программы.
Вычислительные модули разрабатывались с учетом возможного применения в различных программах. Поэтому они не содержат операций ввода-вывода, т. е. не связаны с конкретной реализацией пользовательского интерфейса программы. Однако, предполагается, что использующая вычислительный модуль программа способна обеспечить его всеми необходимыми входными данными и может получать доступ к необходимым ей результатам вычислений на каждом шаге по времени. Возможный вариант общей архитектуры программы приведен на рис. 1. Модули ввода параметров и входных воздействий реализуют интерфейс, с помощью которого пользователь моделирующей программы управляет моделью. Эти процедуры должны предоставлять удобные возможности числового и графического ввода (поля ввода числовых и строковых значений, поля выбора различных вариантов значений параметров, редакторы формы входных сигналов, редакторы геометрии моделируемого объекта и т. д.). Модули визуализации текущего состояния модели моделируют функции датчиков и измерительных преобразователей, используемых при постановке эксперимента с реальным объектом. Примерами таких модулей являются различные средства построения графиков, диаграмм, процедуры построения динамических изображений различных частей моделируемого объекта, на которых могут выводиться графики или значения переменных состояния модели. Координацию работы всех частей программы выполняют модули управления интерфейсом пользователя, обеспечивая возможности настройки, включения и выключения ввода-вывода параметров, воздействий и характеристик. Все описанные модули составляют оболочку, интерфейс между пользователем программы и вычислительными модулями. Вычислительные модули, снабженные необходимым интерфейсом, образуют компьютерную модель объекта.
ЗАКЛЮЧЕНИЕ
.
Конкретные результаты работы заключаются в следующем.
1. Предложен и реализован в виде компьютерной программы оптимизированный по быстродействию алгоритм метода Монте-Карло для расчета поля в воздушном зазоре электрической машины.
2. Разработана полевая имитационная модель воздушного зазора с двухсторонней зубчатостью и изменяющейся при вращении ротора геометрией. Модель выражает магнитные потоки и силы в воздушном зазоре электрической машины через магнитные потенциалы коронок зубцов и реализована в виде законченного набора процедур, на основе которого написана быстродействующая имитационная компьютерная программа.
3. Построен алгоритм параметрического синтеза схем симметричных многофазных петлевых обмоток машин переменного тока с целым числом пазов на полюс и фазу. Предложены алгоритмы матричного выражения потокосцеплений параллельных ветвей фаз обмотки через магнитные потоки зубцов, и пазовых токов через токи параллельных ветвей. Алгоритмы реализованы в виде библиотеки подпрограмм. С ее помощью написана программа синтеза схем обмоток указанного типа.
4. Разработана полевая имитационная модель ярма электрической машины, выражающая межзубцовые магнитные напряжения ярма через магнитные потоки зубцов с помощью предложенного метода осреднения. Рассмотрены алгоритмы расчета поля и потерь в ненасыщенном ярме методом Фурье и методом кусочно-гармонической аппроксимации поля в кольцевых элементах ярма.
5. Построена полевая модель короткозамыкающего кольца ротора, выражающая электрические напряженности на поверхностях сегментов кольца через токи стержней и радиальные потоки лобового рассеивания. Для вычисления переходных функций слоя разработана оптимизированная программа обратного преобразования Лапласа. Разработана программа расчета частотных характеристик слоя.
6. Все разработанные имитационные процедуры оптимизированы по быстродействию. Время расчета переменных состояния наиболее медленных моделей на каждом временном шаге не превышает на компьютере с процессором класса Intel Pentium. Для разработанных алгоритмов необходимый временной шаг требует порядка 102 точек на период основной частоты. Поэтому программы способны отображать период основной частоты за время порядка 1−10 с.