Помощь в написании студенческих работ
Антистрессовый сервис

Определение последовательности разрушения элементов структуры зеленого флуоресцентного белка при его тепловой денатурации

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Конечно, главным результатом этой работы следует считать экспериментально определенную последовательность разворачивания элементов вторичной структуры ОРР-сус1еЗ (рисунок 25). Однако, не менее интересным является то, как разные мутации (замены гидрофобных аминокислотных остатков и бз-мостики) повлияли на свободную энергию ОРР-сус1еЗ. А именно — одиночные замены гидрофобных аминокислот повлияли… Читать ещё >

Определение последовательности разрушения элементов структуры зеленого флуоресцентного белка при его тепловой денатурации (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава I. Литературный обзор
    • 1. Проблема сворачивания белка
      • 1. 1. Одностадийно сворачивающиеся белки
      • 1. 2. Многостадийно сворачивающиеся белки
    • 2. Характеристика объекта исследования
      • 2. 1. Особенности структуры зеленого флуоресцентного белка
      • 2. 2. Механизм формирования хромофора
      • 2. 3. Спектральные характеристики ОБР
      • 2. 4. Гомологи ОБР
      • 2. 5. Олигомеризация ОБР-подобных белков
      • 2. 6. Сравнение физико-химических свойств ОБР дикого типа и ОГР-сус1е
      • 2. 7. Денатурационные переходы ОБР-сусІеЗ
    • 3. Калориметрические исследования
      • 3. 1. Модель Ламри-Эйринга
      • 3. 2. Модель одностадийной необратимой денатурации
      • 3. 3. Модель денатурации белка, включающая две последовательно протекающие необратимые стадии
      • 3. 4. Модель Ламри-Эйринга с быстро устанавливающимся равновесием на первой стадии
      • 3. 5. Критерии для одностадийной необратимой денатурации
    • 4. Мутационный анализ
      • 4. 1. Исследование переходного состояния белка методом. ф- анализа
      • 4. 2. Влияние одиночных замен аминокислотных остатков на кинетические параметры процессов сворачивания/разворачивания различных белков
    • 5. Дисульфидные связи
  • Глава II. Материалы и методы
  • Глава III. Результаты и обсуждение
    • 1. Исследование физико-химических свойств GFP-cycle
    • 2. Калориметрическое плавление GFP-cycle
    • 3. Прямой кинетический эксперимент по разворачиванию GFP-cycle3 температурой
    • 4. Сравнение констант скоростей, рассчитанных из калориметрических данных и из прямого кинетического эксперимента
    • 5. Теоретический анализ кристаллической структуры зеленого флуоресцентного белка из A. victoria
    • 6. Влияние замены гидрофобных аминокислотных остатков с большим количеством контактов и введения ss-мостиков на энергетический ландшафт многостадийно сворачивающихся белков
    • 7. Кинетические исследования мутантных форм GFP-cycle
    • 8. Анализ влияния мутаций на GFP-cycle

В последнее десятилетие одним из наиболее приоритетных направлений в биологии и медицине стало развитие методов прижизненной визуализации процессов, происходящих в клетке и организме с помощью флуоресцентных красителей. Исключительное место среди флуоресцентных маркеров занимает зеленый флуоресцентный белок, а также его варианты и гомологи. Зеленый флуоресцентный белок (GFP) медузы Aequorea victoria был впервые описан более 40 лет назад, но широкую известность получил только в 90-е годы после того, как удалось клонировать ген GFP и показать, что этот белок становится флуоресцентным при его синтезе практически в любом организме.

Сегодня GFP широко используется для флуоресцентного мечения белков, органелл и клеток в различных видах прокариот и эукариот. Но, несмотря на широкое применение GFP в клеточной биологии, работ по изучению физико-химических свойств этого белка мало, к тому же литературные данные имеют противоречивый характер. Например, существует распространенное мнение, что этот белок разворачивается только при высоких температурах. При этом, известно, что не получается использовать GFP как маркер в термофильных организмах. Такого рода противоречия возникают из-за недостатка исследований стабильности, скоростей сворачивания и последовательности формирования различных промежуточных состояний этого белка. В данной работе мы исследовали стабильность и скорости разрушения структуры белка GFP-cycle3 (мутантная форма GFP с тремя заменами аминокислотных остатков), а также использовали совершенно новый подход, с помощью которого сумели выяснить последовательность разрушения элементов вторичной структуры GFP-cycle3.

Такого рода исследования важны не только для определения физико-химических свойств зеленого флуоресцентного белка. Выяснение механизмов формирования/разрушения промежуточных состояний многостадийно сворачивающихся белков — одна из важнейших задач биофизики. Решение этой 4 задачи становится в последнее время все более актуальным, поскольку все более сложные белки и их комплексы используются в медицине и биоинженерии. Многие свойства этих сложных белковых систем, таких как способность, образовывать амилоидные фибриллы, связывать лиганды и участвовать в их транспортировке определяются как раз свойствами их промежуточных состояний. Однако исследования многостадийно сворачивающихся белков затруднены, поскольку сложно подобрать методы и подходы, позволяющие исследовать нестабильные промежуточные состояния. В особенности, сложно понять последовательность разрушения элементов вторичной структуры при разворачивании белка. В этой работе применен подход с использованием двух видов мутаций, который позволил определить, на каких стадиях разворачивания происходит разрушение разных элементов вторичной структуры зеленого флуоресцентного белка. Этот подход применим для исследования сворачивания/разворачивания любых белков с несколькими промежуточными состояниями.

Выводы.

1. При денатурации GFP-cycle3 in vitro нельзя на прямую связывать флуоресценцию хромофора с изменениями в структуре белка.

2. Показано, что белок GFP-cycle3 не обладает высокой стабильностью. GFP-cycle3 полностью разворачивается в присутствии 4.5 М мочевины, что вполне сопоставимо со стабильностью многих глобулярных белков.

3. Показано, что денатурация GFP-cycle3 — это медленный процесс. Тепловая денатурация GFP-cycle3 длится до нескольких часов, а денатурация мочевиной — до 2 суток.

4. Одиночные замены гидрофобных аминокислотных остатков повлияли только на энтропийную составляющую, а введенные ss-мостики — в основном на энтальпийную составляющую энергетических барьеров при тепловом разворачивании GFP-cycle3.

5. На основе мутационного анализа определена последовательность разрушения элементов структуры GFP-cycle3. Показано, что на первой стадии денатурации GFP-cycle3 изменения в структуре затрагивают всю молекулу но, при этом не возникает развернутых участков полипептидной цепи, затем происходит разворачивание 4,5 и 6-ого бета-стрендов, затем разворачиваются 7−10 бета-стренды. Бета стренды 1−3 остаются структурированными в денатурированном состоянии.

Заключение

.

Конечно, главным результатом этой работы следует считать экспериментально определенную последовательность разворачивания элементов вторичной структуры ОРР-сус1еЗ (рисунок 25). Однако, не менее интересным является то, как разные мутации (замены гидрофобных аминокислотных остатков и бз-мостики) повлияли на свободную энергию ОРР-сус1еЗ. А именно — одиночные замены гидрофобных аминокислот повлияли в основном на энтропийную составляющую, а зб-мостики — на энтальпийную составляющую энергетических барьеров. Полученные результаты можно объяснить следующим образом. Одиночные замены гидрофобных аминокислотных остатков влияют на гидрофобные взаимодействия в процессе сворачивания/разворачивания белка. Гидрофобные взаимодействия это эффекты энтропийного характера.

SS-связи, в свою очередь, должны повлиять на энтропийную составляющую свободной энергии подвижных состояний, например развернутого или состояния типа расплавленной глобулы, но вряд ли на энтропию хорошо упакованных состояний, у которых основная цепь не обладает большой подвижностью. Для таких состояний, более существенным будет способность ss-связи «заморозить» вокруг себя взаимодействия (контакты) аминокислот, тем самым, повлияв на энтальпийную составляющую энергетических барьеров.

Показать весь текст

Список литературы

  1. , E.H., Мельник, Б.С., Семисотнов, Г. В., Бычкова, В.Е. (2005).
  2. Изучение кинетики сворачивания/разворачивания апомиоглобина. Молекулярная биология, 39, 1008−1016.
  3. , H.H., Булавина, А.Ю., Савицкий, А.П. (2003). Спектральные и физико-химические свойства зеленого (GFP) и красного (drFP583) флуоресцирующих белков. Успехи биологической химии, 43, 163 224.
  4. Котова, Н. В, Семисотнов, Г. В. (1998). Сворачивание глобулярных белков in vivo. Успехи биологической химии, 38, 199−223.
  5. , А.Е., Курганов, Б.И. (1998). Моделирование процесса необратимой тепловой денатурации белка при переменной температуре. I. Модель, включающая две последовательно протекающие необратимые стадии. Биохимия, 63, 516−523.
  6. , А.Е., Курганов, Б.И. (1999). Моделирование процесса необратимой тепловой денатурации белка при переменной температуре. II. Полная кинетическая модель Ламри-Эйринга. Биохимия, 64, 990 997.
  7. , А.Е., Курганов, Б.И. (2000). Изучение необратимой тепловой денатурации белков методом дифференциальной сканирующей калориметрии. Успехи биологической химии, 40, 43−84.
  8. , С.А., Ковригин, Е.Л., (1998). Влияние кинетических факторов на тепловую денатурацию и ренатурацию биополимеров. Биофизика, 43,223−232.
  9. , О.В., Верхуша, В.В., Кузнецова, И.М., Туроверов, К.К.
  10. Флуоресцентные белки: физико-химические свойства использование в клеточной биологии. (2007). Цитология, 49, 395 420.
  11. , А.В., Птицын О. Б. (2005). Физика белка. Andrews, В.Т., Schoenfish, A.R., Roy, М., Waldo, G., Jennings, P.A. (2007). The rough energy landscape of superfolder GFP is linked to the chrome. JMB, 373, 476−490.
  12. , C.B. (1973). Principles that govern the folding of protein chains. Science, 181,223−230.
  13. Barondeau, D.P., Christopher, D.P., Kassmann, C.J., Tainer, J.A., Elizabeth, D.G.2003). Mechanism and enegetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. PNAS, 10, 1073.
  14. The energy landscape of a fast-folding protein mapped by Ala→Gly substitutions. Nat. Struct. Biol., 4, 305−10. Bychkova, V.E., Ptitsyn, O.B. (1993). The molten globule in vitro and in vivo. Chemtracts: Biochem. Mol. Biol., 4, 133−163.
  15. Bychkova, V.E., Ptitsyn, O.B. (1993). The state of unfolded globules of protein molecules is more quickly becoming a rule, rather then an exception. Biophysics, 38, 58−66.
  16. Chaffotte, A.F., Cuigarro, J.I., Guillon, Y., Delepierre, M., Goldberg, M.E. (1997).
  17. The «premolten globule», a new intermediate in protein folding. J. Protein Chem., 16, 433−439.
  18. Chattorayj, M., King, B.A., Bublitz, G.U., Boxer, S.G., (1996). Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl. Acad. Sci. USA, 93, 8362−8367.
  19. Chiang, C.F., Okou, D.T., Griffin, T.B., Verret, C.R. (2001). Green fluorescent protein rendered susceptible to proteolysis: positions for protease-sensitive insertions. Arch. Biochem. Biophys., 394, 229−235.
  20. Clarke, J., Fersht, A.R. (1993). Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation. Biochemistry, 32, 4322−4329.
  21. Cody, C.W., Prasher, R.H., Wester, W.W., Prendergast, F.G., Ward, W.W. (1993).
  22. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry, 32, 1212−1218.
  23. Conejero-Lara, F., Sanchez-Ruiz, J.M., Mateo, P.L., Bugrov, F.J., Vandrell, J., Aviles F.X. (1991). Differential scanning calorimetric study of carboxypeptidase B, procarboxypeptidase B and its globular activation domain. Eur. J. Biochem., 220, 663−670.
  24. Cubitt, A.B., Heim, R., Adams, S.R., Boyd, A.E., Gross, L.A., Tsien, R.Y. (1995).
  25. Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci., 20, 448155.
  26. Dobson, C.M., Karplus, M. (1999). The fundamentals of protein folding: bringing together theory and experiment. Curr. Opin. Struct. Biol., 9, 92−101.
  27. Dolgikh, D.A., Gilmanshin, R.I., Brazhnikov, E.V., Bychkova, V.E., Semisotnov, G.V., Venyaminov, S.Yu., Ptitsyn, O.B. (1981). a-lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett., 136, 311−315.
  28. Dopf, J., Horiagon, T.M. (1996). Deletion mapping of the Aequorea victoria green fluorescent protein. Gene, 143, 39−44.
  29. Ehrig, T., O’Kane, D.J., Prender', F.G. (1995). Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett., 367, 163−166.
  30. Ellis, R.L., Hartl, F.U. (1999). Principles of protein folding in the cellular environment. Curr. Opin. Struct. Biol., 9, 102−110.
  31. Enoki, S., Saeki, K., Maki, K., Kuwajima, K. (2004). Acid denaturation and refolding of green fluorescent protein. Biochemistry, 43, 14 238−14 248.
  32. Ferguson, N., Johnson, C.M., Macias, M., Oschkinat, H., Fersht, A.R. (2001).
  33. Ultrafast folding of WW domains without structured aromatic clusters in the denatured state. Proc. Natl. Acad. Sci. USA, 98, 13 002−7.
  34. , A.R. (1995). Characterizing transition states in protein folding: an essential step in the puzzle. Curr. Opin. Struct. Biol., 5, 79−84.
  35. , A.R. (1997). Nucleation mechanisms in protein folding. Curr. Opin. Struct. Biol., 7, 3−9.
  36. Fersht, A.R., Matouschek, A., Serrano, J.L. (1992). The folding of an enzyme. I.
  37. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol., 224, 771−82.
  38. Fersht, A.R., Sato, S. (2004). tp-Value analysis and the nature of protein-folding transition states. Proc. Natl. Acad. Sci., 101, 7976−7981.
  39. Freire, E., Osdol, W.W., Mayorga, O.L., Sanchez-Ruiz, J.M. (1990).
  40. Calorimetrically determined dynamics of complex unfolding transitions in proteins. Annu Rev Biophys Biophys Chem., 19, 159−188.
  41. Fukuda, H., Arai, M., Kuwajima, K. (2000). Folding of GFP and the Cycle3 mutant. Biochemistry, 39, 12 025−12 032.
  42. Golbik, R., Zahn, R., Harding, S.E., Fersht, A.R. (1998). Thermodynamic stability and folding of GroEL minichaperones. J. Mol. Biol., 276, 505−15.
  43. , D.P. (1989). Analysis of protein conformation by gel electrophoresis. Oxford University Press, Oxford.
  44. Grantcharova, V.P., Riddle, D.S., Baker, D. (2000). Long-range order in the src SH3 folding transition state, Proc. Natl. Acad. Sci. USA, 97, 7084−7089.
  45. Heim, R., Cubitt, A.B., Tsien, R.Y. (1995). Improved green fluorescence. Nature, 373, 663−664.
  46. Heim, R., Prasher, D.C., Tsien, R.Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA, 91, 12 501−12 504.
  47. Helms, V., Straatsma, T.P., McCammon J.A. (1999). Internal dynamics of green fluorescent protein, J. Phys. Chem. B., 103, 3263−3269.
  48. Holladay, L.A., Hammonds, R.G., Puett, D. (1974). Growth hormone conformation and conformational equilibria. Biochemistry, 13, 16 531 661.
  49. Huang, J.R., Hsu, S.T., Christodoulou, J., Jackson, S.E. (2008). The extremely slow-exchanging core and acid-denatured state of green fluorescent protein. HFSP, 2, 378−387.
  50. , S.E. (1998). How do small single-domain proteins fold? Fold. Design, 3, 81−91.
  51. Jackson, S.E., Fersht, A.R. (1991). Folding of chymotrypsin inhibitor 2. Evidence for a two-state transition. Biochemistry, 30, 10 428−10 435.
  52. Kane, J.F., Harley, D.F. (1988). Properties of inclusion bodies from recombinant Escherichia coli. Trends Biotechnol., 14, 95−101.
  53. Kent, P.K., Childs, W., Boxer, S.G. (2008). Deconstructing Green Fluorescent Protein. JACS, 130, 9664−9665.
  54. Kojima, S., Hirano, T., Niwa, H., Ohashi, M., Inouye, S., Tsuji, F.I. (1997).
  55. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Tetrahedron Lett., 38, 2875−2878.
  56. Kojima, S., Ohkawa, H., Hirano, T., Maki, S., Niwa, H., Ohashi, M., Inouye, S., Tsuji, F.I. (1998). Chemical nature of the light emitter of the Aequorea green fluorescent protein. Tetrahedron Lett., 39, 5239−5242.
  57. Kragelund, B.B., Robinson, C.V., Knudsen, J., Dobson, C.M., Poulsen F.M.1995). Folding of a four-helix bundle: studies of acyl-coenzyme A binding protein. Biochemistry, 34, 7217−7224.
  58. Kurganov, B.I., Lyubarev, A.E., Sanchez-Ruiz, J.M., Shnyrov, V.L. (1997).
  59. Analysis of differential scanning calorimetry data for proteins. Criteria of validity of one-step mechanism of irreversible protein denaturation. Biophys. Chem., 69, 125−135.
  60. Makhatadze, G.I., Privalov, P.L. (1995). Energetics of protein structure. Adv. Protein Chem., 47, 307−425.
  61. Mason, J.M., Gibbs, N., Sessions, R.B., Clarke, A.R. (2002). The influence of intramolecular bridges on the dynamics of a protein folding reaction, Biochemistry 41, 12 093−12 099.
  62. Matouschek, A., Kellis, J.T., Serrano, J.L., Fersht, A.R. (1989). Mapping the transition state and pathway of protein folding by protein engineering. Nature, 340, 122−6.
  63. Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L., Lukyanov, S.A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol., 17, 969−973.
  64. Melnik, B.S., Molochkov, N.V., Prokhorov, D.A., Uversky, V.N., Kutyshenko, V.P. (2011). Molecular mechanisms of the anomalous thermal aggregation of green fluorescent protein. Biochim Biophys Acta, 1814, 1930−1939.
  65. , R.B. (1965). Automated synthesis of peptides. Science, 150, 178−185.
  66. Milardi, D., Rosa, La, C., Grasso, D. (1994). Extended theoretical analysis of irreversible protein thermal unfolding. Biophys. Chem., 52, 183−189.
  67. Niwa, H., Inouye, S., Hirano, T., Matsuno, T., Kojima, S., Kubota, M. (1996).
  68. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci USA, 93, 13 617−13 622.
  69. Nozaka, M., Kuwajima, K., Nitta, K., Sugai, S. (1978). Detection and characterization of the intermediate on the folding pathway of human alpha-lactalbumin. Biochtmistry, 17, 3753−3758.
  70. , Y. (1972). The preparation of guanidine hydrochloride. Meth. Enzymol., 26, 43−50.
  71. , M. (1998). Alternative explanations for «multistate» kinetics in protein folding: transient aggregation and changing transition-state ensemble. Acc. Chem. Res., 31, 765−772.
  72. Oliveberg, M., Fersht, A.R. (1996). Thermodynamics of transient conformations in the folding pathway of barnase: reorganization of the folding intermediate at low pH. Biochemistry, 35, 2738−2749.
  73. Ormoe, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., and Remington, S.J.1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273, 1392−1395.
  74. Otzen, D.E., Kristensen, O., Procter, M., Oliveberg, M. (1999). Structural changes in the transition state of protein folding: alternative interpretations of curved chevron plots. Biochemistry, 38, 6499−511.
  75. Parker, M.J., Sessions, R.B., Badcoe, I.G., Clarke, A.R. (1996). The development of tertiary interactions during the folding of a large protein. Fold Des, 1, 145−56.
  76. Pedelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T., Waldo, G. (2006).
  77. Engineering and characterization of a superfolder green fluorescent protein. Nature biotechnology, 10, 1038−1172.
  78. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., Cormier, M.J.1992). Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 111, 229−233.
  79. , P.L. (1979). Stability of proteins. Small globular proteins. Adv.Prot.Chem., 33, 167−241.
  80. , P.L. (1996). Intermediate states in protein folding. JMB, 24, 707−725.
  81. Privalov, P.L., Khechinashvili, N.N. (1974). A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J.Mol.Biol., 86, 665−684.
  82. Privalov, P.L., Potekhin, S.A. (1986). Scanning microcalorimetry in studying temperature-unduced changes in proteins. Meth. Enzymol., 131, 1−51.
  83. Reid, B.G., Flynn, G.C. (1997). Chromophore formation in green fluorescent protein. Biochemistry, 36, 6786−6791.
  84. Robson, B., Pain, R.H. (1976). The mechanism of folding of globular proteins.
  85. Equilibria and kinetics of conformational transitions of penicillinase from Staphylococcus aureus involving a state of intermediate conformation. Biochem. J., 155,331−334.
  86. Sacchetti, A., Capetti, V., Marra, P., Dell’Arciprete, R., El Sewedy, T., Grescenzi, C., Alberti, S. (2001). Green Fluorescent Protein variants fold differentially in prokaryotic and eukaryotic cells. J. Cell Biochem., 81, 117−128.
  87. Sakikawa, C., Taguchi, H., Makino, Y., Yoshida, M. (1999). On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES. J. Biol. Chem., 274, 21 251−21 256.
  88. Sanchez-Ruiz, J.M. (1992). Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys. J., 61, 921−935.
  89. Sanchez-Ruiz, J.M., Lopez-Lacomba, J.L., Cortijo, M., Mateo, P.L. (1988).
  90. Differential scanning calorimetry of the irreversible thermal denaturation of thermolisin. Biochemistry, 27, 1648−1652.
  91. Schindler, T., Schmid, F.X. (1996). Thermodinamic properties of an extremely rapid protein folding reaction. Biochemistry, 35, 16 833−16 842.
  92. Seifert, M.N.J., Georgescu, J., Ksiazek, D., Smialowski, P., Rehm, T., Steipe, B., Holak, T.A. (2003). Backbone dynamics of green fluorescent protein and the effect of histidine 148 substitution. Biochemistry, 42, 2500−2512.
  93. Siadat, O.R., Lougarre, A., Lamouroux, L., Ladurantie, C., Fournier, D. (2006).
  94. The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase, BMC. Biochem., 7, 12.
  95. Sosnick, T.R., Shtilerman, M.D., Mayne, L., Englander, S.W. (1997). Ultra fast signals in protein folding and the polypeptide contracted state. Proc. Natl. Acad. Sei. U.S.A., 5, 8545−8550.
  96. Steiner, T., Hess, P., Bae, J.H., Wiltschi, B., Moroder, L., Budisa, N. (2008).
  97. Synthtic biology of proteins: tuning GFPs folding and stability with fluoroproline. PLoS ONE.
  98. Thor, J.J., Gensch, T., Hellingwerf, K.J., Johnson, L.N. (2002).
  99. Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat. Struct. Biol., 9, 3741.
  100. Tsien, R.Y., Miyawaki, A. (1998). Seeing the machinery of live cells, Science, 280, 1954−1955.
  101. Viguera, A.R., Martinez, J.C., Filimonov, V.V., Mateo, P.L., Serrano, L. (1994).
  102. Thermodinamic and kinetic analis of the SH3 domain of spectrin shows a two-state folding transition. Biochemistry, 33, 2142−2150.
  103. Wall, M.A., Socolich, M., Ranganathan, R. (2000). The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol., 7, 1133−1138.
  104. , W.W. (1982). Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry, 21, 4535−4540.
  105. Wong, K.-P., Hamlin, L.M. (1974). Acid denaturation of bovine carbonic anhydrase B. Biochemistry, 13, 2678−2683.
  106. Wong, K.-P., Tanford, C.J. (1973). Denaturation of bovine carbonic anhydrase B by guanidine hydrochloride. A process involving separable sequential conformational transitions. J. Biol. Chem., 248, 8518−8523.
  107. Yang, F., Moss, L., Phillips G. (1996). The molecular structure of green fluorescent protein Nat. Biotechnol., 14, 1246−1251.
  108. Yarbrough, D., Wachter, R.M., Kallio, K., Matz, M.V., Remington, S.J. (2001).
Заполнить форму текущей работой