Помощь в написании студенческих работ
Антистрессовый сервис

Создание бактериальной тест-системы для скрининга ингибиторов протеинкиназ на основе генов фосфотрансфераз

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Цель работы: изучение возможности использования фермента аминогликозидфосфотрансферазы типа VIII актинобактерий, определяющего устойчивость к антибиотикам, и фосфорилирующих его серин/треониновых протеинкиназ при создании оригинальных тест-систем для скрининга лекарственных средств нового поколения, разработка эффективной оригинальной тест-системы на основе фермента аминогликозидфосфотрансферазы… Читать ещё >

Создание бактериальной тест-системы для скрининга ингибиторов протеинкиназ на основе генов фосфотрансфераз (реферат, курсовая, диплом, контрольная)

Содержание

  • Список сокращений
  • Глава 1.
  • Протеинкиназы
    • 1. 1. Характеристика некоторых серин/треониновых протеинкиназ человека и бактерий
      • 1. 1. 1. Функции некоторых серин/треониновых протеинкиназ человека
      • 1. 1. 2. Функции некоторых бактериальных серин/треониновых протеинкиназ
    • 1. 2. Классификация прокариотических протеинкиназ, осуществленная для выяснения потенциальной биологической активности киназ
    • 1. 3. Структура серин/треониновых протеинкиназ эукариотического типа
    • 1. 4. Ингибиторы протеинкиназ
    • 1. 5. Классификация прокариотических протеинкиназ, основанная на селективных профилях ингибиторов протеинкиназ
    • 1. 6. Серин/треониновые протеинкиназы Б^ерШтусея соеНсо1ог
    • 1. 7. Клонирование и гетерологичная экспрессия генов серин/треониновых-протеинкиназ Б^ер^тусез в клетках Е. соН
    • 1. 8. Кальций-зависимые серин/треониновые протеинкиназы Бр-ерготусеБ
    • 1. 9. Области взаимодействия с ионами кальция у кальций-связывающих белков бактерий
  • Глава 2. Бактериальные аминогликозидфосфотрансферазы (арЬ)
    • 2. 1. Механизм действия аминогликозидфосфотрансфераз
    • 2. 2. Структура аминогликозидфосфотрансфераз
    • 2. 3. Характеристика аминогликозидфосфотрансферазы арЬУШ
  • Б^ерЮтусея птозиэ
  • Глава 3. Биологические тест-системы
  • Глава 4. Материалы и методы
    • 4. 1. Бактериальные штаммы, среды, антибиотики, модуляторы активности СТПК
    • 4. 2. Праймеры, использованные в работе
    • 4. 3. Процедуры молекулярного клонирования и амплификации
    • 4. 4. Электрофорез в полиакриламидном геле (SDS-PAGE)
    • 4. 5. Получение экстрактов клеток Streptomyces и Е. col
    • 4. 6. Афинное выделение протеинкиназ
    • 4. 7. Очистка белка aphVIII в нативном виде
    • 4. 8. Анализ фосфорилирования белка aphVIII in vitro
    • 4. 9. Фосфоаминокислотный анализ
    • 4. 10. Анализ протеинкиназ в геле
    • 4. 11. Выделение клонированного в Е. coli каталитического домена протеинкиназы рк
    • 4. 12. Анализ аутофосфорилирования выделенного белка каталитического домена рк
    • 4. 13. Процедура клонирования в экспрессионные вектора рЕТ32а, рЕТ22Ь и рЕТ16Ь и конструирование рекомбинантных плазмид
    • 4. 14. Процедура сайт-направленного мутагенеза области Ser-146 аминогликозидфосфотрансферазы aphVIII
    • 4. 15. Определение уровня устойчивости к канамицину трансформантов E. coli BL21(DE3), содержащих гены aphVIII ирк
    • 4. 16. Методика определения активности ингибиторов протеинкиназ в бактериальной тест-системе
  • Глава 5. Результаты и обсуждение
    • 5. 1. Характеристика аминогликозидфосфотрансферазы VIII (aphVIII)
    • 5. 2. Характеристика серин/треониновой протеинкиназы рк25 в S. lividans ТК24(66) и S. coelicolor A3(2)
      • 5. 2. 1. Идентификации протеинкиназы, фосфорилирующей белок aphVIII в штамме S. lividans aphVIII+
      • 5. 2. 2. Клонирование и экспрессия нуклеотидной последовательности каталитического домена протеинкиназы рк25 штамма S. coelicolor A3(2) в клетки Е. coli в экспрессионном векторе рЕТ
      • 5. 2. 3. Анализ аутофосфорилирования в активационной петле каталитического домена протеинкиназы рк
    • 5. 3. Тест-система S. lividans ТК 24 (66) aph УШ+ЮТПК
    • 5. 3. 1. Механизм действия тест-системы. c>g
      • 5. 3. 2. Валидация тест-системы S. lividans ТК 24 (66) aphVIII+ICTIIK. gg
      • 5. 3. 3. Скрининг потенциальных ингибиторов серин/треониновых протеинкиназ человека и бактерий. ^qj
    • 5. 4. Конструирование тест-системы E. coli aphVIII/pk 25. ^
      • 5. 4. 1. Модификация области S-146 аминогликозидфосфотрансферазы aphVIII — сайта фосфорилирования киназой рк25. ^^
      • 5. 4. 2. Создание конструкции, содержащей гены aphVIIIvi протеинкиназы рк
      • 5. 4. 3. Анализ уровня устойчивости к канамицину клеток Е. coli BL21 (DES), содержащей различные модификации гена aphVIII и их комбинации с геном рк
    • 5. 5. Выбор и валидация тест-системы Е. coli aphVIII/pk
    • 5. 6. Потенциальные возможности использования тест-системы Е. coli aph Villi 46- 1/рк25 для скрининга ингибиторов СТПК

Серин/треониновые протеинкиназы (СТПК) — универсальные регуляторы клеточного метаболизма эукариот [Manning G., Whyte D.B., 2002., Cohen P. 2002, Levitzki A. 2003]. Им также принадлежит ключевая роль в контроле таких процессов, как апоптоз, пролиферация и дифференцировка клеток, транспорт веществ из клетки и др. Нарушение функционирования киназ ассоциировано с развитием таких заболеваний человека, как диабет [D'Alessandris С., Lauro R., 2007], шизофрения [Barbier Е., Zapata А., 2007], сердечно-сосудистые расстройства [Shirai Н., Autieri М., 2006], канцерогенез [Collins I., Workman P., 2006] и нарушения иммунитета [Ishida A., Kameshita I., 2007]. В последние десятилетия интенсивное развитие получил биомишень-направленный поиск модуляторов (ингибиторов) протеинкиназ как потенциальных лекарственных препаратов нового поколения [Goldstein D.M., Gray N.S., 2008; Bain J., Plater L., 2007; Liu Y., Gray N.S., 2006].

Серин/треониновые протеинкиназы эукариотического типа обнаружены у бактерий, включая патогенные для человека [Shi L., Potts М., 1998; Pereira S. F., Dworkin J., 2011]. Установлено, что СТПК участвуют в формировании вирулентности, бактериальных биопленок, поддержании толерантности, персистирования патогенных микроорганизмов. Показано ключевое значение СТПК в формировании вирулентности Streptococcus pneumonia, Mycobacterium tuberculosis, Staphylococcus aureus, Pseudomonas aeruginosa и ряда других патогенных бактерий [Shi L., Potts M., 1998; Echenique J., Kadioglu A., 2004; Cozzone A.J. 2005]. Установлено их участие в модуляции устойчивости к антибиотикам у М. tuberculosis [Perez J., Garcia R., 2006]. В последнее время проводится интенсивная работа по скринингу ингибиторов СТПК [Drews S.J., Hung F., 2005; Wehenkel A., Bellinzoni M., 2007; Waczek F., Szabadkai I., 2008]. Одна из основных современных задач фармацевтики состоит в обнаружении высокоспецифичных терапевтических мишеней, позволяющих разрабатывать новые лекарственные средства. Выявление наиболее подходящих, связанных с болезнями мишеней является определяющим для уменьшения времени и финансовых затрат при разработке новых лекарств. Особое значение при этом придают разработке высокопродуктивного скрининга лекарственных препаратов как определяющего обнаружение перспективных терапевтических средств. Проведение массового скрининга потенциальных ингибиторов протеинкиназ на лабораторных автоматических станциях экономически невыгодно. К недостаткам существующих клеточных тест-систем на основе трансформированных или опухолевых линий человека относятся отсутствие стабильных соответствующих нормальных клеточных линий человека, нестандартность и недоступность первичных культур специализированных клеточных линий человека, ограниченные возможности генно-инженерных манипуляций. Проведение массового скрининга потенциальных лекарств на млекопитающих представляется неэффективным по скорости и стоимости. Первоначальный отбор потенциальных ингибиторов серин/треониновых протеинкиназ (прескрининг) должен проводиться на тест-системах, обеспечивающих чувствительный, быстрый и дешевый скрининг будущих лекарств.

Цель работы: изучение возможности использования фермента аминогликозидфосфотрансферазы типа VIII актинобактерий, определяющего устойчивость к антибиотикам, и фосфорилирующих его серин/треониновых протеинкиназ при создании оригинальных тест-систем для скрининга лекарственных средств нового поколения, разработка эффективной оригинальной тест-системы на основе фермента аминогликозидфосфотрансферазы типа VIII актинобактерий, и фосфорилирующих его серин/треониновых протеинкиназ — целевых биомишеней для искомого лекарственного препарата — для скрининга ингибиторов серин/треониновых протеинкиназ.

Задачи:

1. Охарактеризовать компоненты тест-системы. Для этого: провести фосфорилирование фермента aphVIII in vitro протеинкиназами S. coelicolor A3(2). идентифицировать протеинкиназу S. coelicolor A3(2), фосфорилирующую aphVIII.

— идентифицировать протеинкиназу, фосфорилирующую aphVIII в S. lividans aphVIII+. провести клонирование и экспрессию нуклеотидной последовательности каталитического домена pk25 S. coelicolor в клетки Е. coli.

— провести аутофосфорилирование каталитического домена рк25.

2. Валидировать тест-систему S. lividans TK24(66)aphVIII+/CTIIK.

3. Провести скрининг потенциальных ингибиторов протеинкиназ человека и бактерий.

4. Сконструировать тест-систему E. coli aphVIII/pk25. Для этого:

— модифицировать область S-146 аминогликозидфосфотрансферазы VIIIсайт фосфорилирования киназой рк25.

— создать экспрессионную конструкцию, содержащую ген aphVIII с модифицированным сайтом фосфорилирования и нуклеотидную последовательность каталитического домена киназы рк25.

5. Валидировать тест-систему E. coli aphVIII/pk25 и определить потенциальные возможности использования тест-системы E. coli aphVIII/pk25.

Научная новизна работы. Впервые показано фосфорилирование аминогликозидфосфотрансферазы VIII протеинкиназами S. coelicolor A3(2) и идентифицирована протеинкиназа рк25, фосфорилирующая aphVIII. Впервые обнаружена протеинкиназа, фосфорилирующая aphVIII в S. lividans ТК24(бб), в результате проведенных исследований показана ее способность к аутофосфорилированию in vitro. Используя уникальные свойства полученных молекул, впервые проведен анализ более 500 веществ различных химических классов — потенциальных ингибиторов серин/треониновых протеинкиназ в тест-системе S. lividans TK24(66)aph VIII+/СТПК и отобраны вещества, впоследствии показавшие себя селективными ингибиторами эукариотических СТПК. Впервые показана возможность создания тест-систем на основе аминогликозидфосфотрансферазы VIII и серин/треониновых протеинкиназ и создана бактериальная тест-система, содержащая два компонента: фермент аминогликозидфосфотрансферазу VIII, определяющий устойчивость к антибиотикам, и серин/треониновую протеинкиназу, фосфорилирующую аминогликозидфосфотрансферазу VIII.

Практическая значимость.

Впервые создана бактериальная тест-система, включающая фермент аминогликозидфосфотрансферазу VIII и серин/треониновую протеинкиназу, фосфорилирующую aphVIII, как целевую биомишень для искомого лекарственного препарата. Добавление в тест-систему ингибитора СТПК приводит к снижению ее активности относительно аминогликозидфосфотрансферазы VIII и, как следствие, аминогликозидкиназной активности в отношении антибиотика канамицина, что позволяет отбирать эффективные ингибиторы СТПК. Сконструированные оригинальные тест-системы позволяют проводить эффективный скрининг ингибиторов серин/треониновых протеинкиназ для идентификации и последующей разработки новых лекарственных препаратов. Созданные тест-системы являются важным элементом усовершенствования в технологической платформе скрининга ингибиторов серин/треониновых протеинкиназ.

Выводы.

1. Установлено фосфорилирование аминогликозидфосфотрансферазы VIII протеинкнназамн S. coelicolor A3(2) и идентифицирована одна из нихсерин/треониновая протеинкиназа эукариотического типа рк25.

2. Идентифицирована протеинкиназа, фосфорилирующая белок aphVIII в S. lividans ТК24(66). Клонирована и экспрессирована в Е. coli BL21 (DE3) нуклеотидная последовательность каталитического домена рк25 и показана его способность к аутофосфорилированию in vitro.

3. Валидирована тест-система S. lividans TK24(66)aph УШ+/СТПК и проведен скрининг 537 веществ различных химических классовпотенциальных ингибиторов серин/треониновых протеинкиназ в тест-системе S. lividans TK24(66)aph VIII+ICTIIK.

4. Сконструирована и валидирована тест-система E. coli BL21 (DE3)aphVIII/ pk25.

5. Определены потенциальные возможности использования тест-системы E. coli BL21(DE3)aphVIII/pk25. Данная тест-система позволяет проводить отбор ингибиторов серин/треониновых протеинкиназ человека и бактерий.

Заключение

.

Разработаны оригинальные тест-системы для скрининга ингибиторов серин/треониновых протеинкиназ на основе штамма S. lividans aphVIII+ и Е. coliaphVIII/pk25.

Фосфорилирование фермента аминогликозидфосфотрансферазы VIII (aphVIII), инактивирующего аминогликозидные антибиотики, протеинкиназами, в частности протеинкиназой рк25, увеличивает устойчивость бактерии к антибиотику канамицину. Ингибиторы протеинкиназ, напротив, снижают резистентность клеток бактерий к нему. Тест-система S. lividans ТК 24 (66) aphVIII+/CTIJK, валидированная с помощью известных модуляторов активности специфических серин/треониновых протеинкиназ, позволила отобрать селективные ингибиторы эукариотических протеинкиназ РКСа, Pim, CDK. Получены модификации белка aphVIII, в которых фосфорилируемый рк25 киназой в aphVIII Ser-146 включен в каноническую последовательность аутофосфорилирования pk25 S. coelicolor. Модифицированные и исходный гены aphVIII клонированы в Е. coli одновременно с нуклеотидной последовательностью каталитического домена рк25 каждый. При экспрессии этих генов в клетках происходит накопление кодируемых ими белков. Выделенный каталитический домен рк25 сохраняет киназную активность полноразмерной протеинкиназы. Варианты Е. coli, содержащие одновременно гены aphVIII и рк25, имеют более высокий уровень устойчивости к канамицину, чем варианты, несущие только ген aphVIII. Ингибиторы протеинкиназ класса индолилмалеимидов подавляют активность рк25 и понижают устойчивость клеток к канамицину.

Разработанная оригинальная тест-система может быть использована для первичного отбора АТР-конкурентных низкомолекулярных ингибиторов серин/треониновых протеинкиназ бактерий и человека.

Показать весь текст

Список литературы

  1. Adindla S., Inampudi K.K., Guruprasad К., Guruprasad L. Identification and analysis of novel tandem repeats in the cell surface proteins of archaeal and bacterial genomes using computational tools. Comp Funct Genomics. 2004, V.5: P.2−16.
  2. Ambudkar S.V., Kim I.W., Sauna Z.E. The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). Eur J Pharm Sci. 2006 Apr-27(5): P.392−400.
  3. Aravind L., Ponting C.P. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci. 1997, V.22: P.458−459.
  4. Aramburu J., Heitman J., Crabtree G.R. Calcineurin: a central controller of signalling in eukaryotes. EMBO reports. 2004, V. 5, N 4.
  5. Av-Gay Y., Everett M. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol. 2000, V.8: P.238−244.
  6. Av-Gay Y., Jamil S., Drews S.J. Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infect Immun. 1999, Nov-67(ll): P.5676−82.
  7. Azucena E., Mobashery S. Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist Updat. 2001, Apr-4(2): P. 106−17.
  8. Bain J., Plater L., Elliott M., Shpiro N., Hastie C.J., McLauchlan H., Klevernic I., Arthur J.S., Alessi D.R., Cohen P. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 2007, V.408. P. 297−315.
  9. Barbier E., Zapata A., Oh E., Liu Q., Zhu F., Undie A., Shippenberg Т., Wang J.B. Supersensitivity to Amphetamine in Protein Kinase-C Interacting
  10. Protein/HINTl Knockout Mice. Neuropsychopharmacology. 2007, Aug-32(8): P.1774−1782.
  11. Banu L.D., Conrads G., Rehrauer H., Hussain H., Allan E,. van der Ploeg J.R. Streptococcus mutans serine/threonine kinase PknB regulates competence development, bacteriocin production and cell-wall metabolism. Infect Immun. 2010 May-78(5): P.2209−2220.
  12. Bateman A., Murzin A.G., Teichmann S.A. Structure and distribution of pentapeptide repeats in bacteria. Protein Sci. 1998, V.7: P.1477−1480.
  13. Baumann U., Wu S., Flaherty K.M., McKay D.B. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 1993, Sep-12(9): P.3357−3364.
  14. Bentley S.D., Chater K.F., Cerdeno-Tarraga A.M., Challis G.L., Thomson N.R., et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002, V.417: P.141−147.
  15. Boch J., Nau-Wagner G., Kneip S., Bremer E. Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol. 1997, Oct- 168(4): P.282−289.
  16. Boudsocq M., Willmann M.R., McCormack M., Lee H., Shan L., He P., Bush J., Cheng S.H., Sheen J. Differential innate immune signalling via Ca (2+) sensor protein kinases. Nature. 2010, Mar 18−464(7287): P.418−422.
  17. Bourn W.R., Babb B. Computer assisted identification and classification of streptomycete promoters. Nucleic Acids Res. 1995, Sep 25−23(18), P.3696−3703.
  18. Bradford M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, Y.72: P.248−254.
  19. Brettar I., Christen R., Hofle M.G. Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea. Int J Syst Evol Microbiol. 2002, V.52: P.2211−2217.
  20. Bridges A J. Chemical inhibitors of protein kinases. Chem Rev. 2001, Aug- 101(8): P.2541−2572.
  21. Brown-Elliott B.A., Wallace R.J. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol. 2002, Rev 15: P.716−746.
  22. Bruns R.F., Miller F.D., Merriman R.L., Howbert J.J., Heath W.F., Kobayashi E., Takahashi I., Tamaoki T., Nakano H. Inhibition of protein kinase C by calphostin C is light-dependent. Biochem Biophys Res Commun. 1991, Apr 15−176(1): P.288−293.
  23. Burk D.L., Hon W.C., Leung A.K., Berghuis A.M. Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase. Biochemistry. 2001, Jul 31−40(30): P.8756−8764.
  24. Cerdeno-Tarraga A.M., Efstratiou A., Dover L.G., Holden M.T., Pallen M., et al. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 2003, V.31: P.6516−6523.
  25. Chaurasiya S.K., Srivastava K.K. Downregulation of protein kinase C-alpha enhances intracellular survival of Mycobacteria: role of PknG. BMC Microbiol. 2009 Dec 24- V.9:P.271.
  26. Chen L., Brugger K., Skovgaard M., Redder P., She Q., et al. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol. 2005, V. 187: P .4992−4999.
  27. Chen C., Gao M., Liu J., Zhu H. Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase. Plant Physiol. 2007, Dec-145(4): P.1619−1628.
  28. Cohen P. Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov. 2002, Apr-l (4): P.309−315.
  29. Cole S.T., Brosch R., Parkhill J., Gamier T., Churcher C., et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998, V.393: P.537−544.
  30. Collins I., Workman P. Chemical inhibitors of protein kinases .Nat. Chem. Biol. 2006, V.2: P.689−700.
  31. Cowley S., Ko M., Pick N., Chow R., Downing K.J., et al. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol. 2004, V.52: P.1691—1702.
  32. Cozzone A.J. Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. J. Mol. Microbiol. Biotechnol. 2005, V.9. P. 198−213.
  33. D’Andrea L.D., Regan L. TPR proteins: the versatile helix. Trends Biochem Sci.2003 V.28: P.655−662.
  34. Danilenko V.N., Mironov V.A., and Elizarov S.M. Calcium as a regulator of intracellular processes in actinomycetes: Prikl Biokhim Mikrobiol. 2005, V.41: P.363−375.
  35. Dasgupta A., Datta P., Kundu M., Basu J. The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillinbinding protein required for cell division. Microbiology. 2006, V.152: P.493−504.
  36. Davis S.P., Reddy H., Caivano M. Cohen P. Specificity and mechanism of action of some commonly usedprotein kinase inhibitors Biochem. J. 2000, V.351: P.95−105.
  37. D’Costa V.M., Griffiths E., Wright G.D. Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol. 2007, 0ct-10(5): P.481−489.
  38. Deol P., Vohra R., Saini A.K., Singh A., Chandra H., et al. Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: implications in glucose transport and cell division. J Bacteriol. 2005, V.187: P.3415−3420.
  39. Deutscher J., Saier M.H. ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc Natl Acad Sci U S A. 1983, V.80: P.6790−6794.
  40. Drews S.J., Hung F., Av-Gay Y. A protein kinase inhibitor as an antimycobacterial agent. FEMS Microbiol Lett. 2001, V.205: P.369−374.
  41. Duran R., Villarino A., Bellinzoni M. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinasesBiochem Biophys Res Commun. 2005, Aug 5−333(3). P.858−867.
  42. Durocher D., Henckel J., Fersht A.R., Jackson S.P. The FHA domain is a modular phosphopeptide recognition motif. Mol Cell. 1999, V.4: P.387−394.
  43. Echenique J., Kadioglu A., Romao S., Andrew P.W., Trombe M.C. Protein serine/threonine kinase StkP positively controls virulence and competence in Streptococcus pneumoniae. Infect Immun. 2004, Apr-72(4): P.2434−2437.
  44. Eeken J.C., Klink I., van Veen B.L., Pastink A., Ferro W. Induction of epithelial tumors in Drosophila melanogaster heterozygous for the tumor suppressor gene wts. Environ Mol Mutagen. 2002, V.40(4): P.277.
  45. Elizarov S.M., Michurina T.A., Danilenko V.N. Serine/threonine type protein kinase activity in cell-free extracts of Streptomyces lividans. Antibiot Khimioter. 1998, V.43: P.3−8.
  46. Elizarov S.M., Sergienko O.V., Sizova I.A., Danilenko V.N. Dependence of aminoglycoside 3'-phosphotransferase VIII activity on protein serine/threonine kinases in Streptomyces rimosus. Mol Biol (Mosk). 2005, Mar-Apr-39(2): P.255−263.
  47. Elizarov S.M., Danilenko V.N. Multiple phosphorylation of membrane-associated calcium-dependent protein serine/threonine kinase in Streptomyces fradiae. FEMS Microbiol Lett. 2001, Aug 7−202(1): P.135−138.
  48. Elizarov S.M., Mironov V.A., Danilenko V.N. Calcium-induced alterations in the functioning of protein Ser/Thr and Tyr kinases in Streptomyces fradiae. Life. 2000, V. 50 P. 139−143.
  49. Fernandez P., Saint-Joanis B., Barilone N., Jackson M., Gicquel B., Cole S.T., Alzari P.M. The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J Bacteriol. 2006, V.188: P.7778−7784.
  50. Fong D.H., Lemke C.T., Hwang J., Xiong В., Berghuis A.M. Structure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pneumophila! J Biol Chem. 2010, Mar 26−285(13): P.9545−9455.
  51. Fong D.H., Berghuis A.M., Structural basis of APH (3')-IIIa-mediated resistance to N1-substituted aminoglycoside antibiotics. Antimicrob. Agents Chemother. 2009, Jul-53 (7):3049−55
  52. Galyov E.E., Hakansson S., Forsberg A., Wolf-Watz H. A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature. 1993, V.361: P.730−732.
  53. Gauger A.K., Goldstein L.S. The Drosophila kinesin light chain. Primary structure and interaction with kinesin heavy chain. J Biol Chem. 1993, Jun 25−268(18): P.13 657−13 666.
  54. Goldstein D.M., Gray N.S., Zarrinkar P.P. High-throughput kinase profiling as a platform for drug discovery. Nat Rev Drug Discov. 2008, May-7(5): P.391−397.
  55. Good M.C., Greenstein A.E., Young T.A., Ng H.L., Alber T. Sensor domain of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknD, forms a highly symmetric beta propeller. J Mol Biol. 2004, V.339: P.459169.
  56. Gopalaswamy R., Narayanan S., Jacobs W.R., Av-Gay Y. Mycobacterium smegmatis biofilm formation and sliding motility are affected by the serine/threonine protein kinase PknF. FEMS Microbiol Lett. 2008, Jan-278(l): P.121−7.
  57. Greenstein A.E., MacGurn J.A., Baer C.E., Falick A.M., Cox J.S., et al. M. tuberculosis Ser/Thr protein kinase D phosphorylates an anti-anti-sigma factor homolog. PLoS Pathog. 2007, 3: e49.
  58. Grundner C., Gay L.M., Alber T. Mycobacterium tuberculosis serine/ threonine kinases PknB, PknD, PknE, and PknF phosphorylate multiple FHA domains. Protein Sci. 2005, V.14: P.1918−1921.
  59. Hamada K., Kato M., Shimizu T., Ihara K., Mizuno T., Hakoshima T. Crystal structure of the protein histidine phosphatase SixA in the multistep His-Asp phosphorelay. Genes Cells. 2005, V.10: P. 1−11.
  60. Hanks S.K., Quinn A.M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988, Jul 1−241(4861): P.42−52.
  61. Hazes B. The (QxW)3 domain: a flexible lectin scaffold. Protein Sci. 1996, Aug-5(8): P.1490−1501.
  62. Hirakata T., Kieser H., Hopwood D., Urabe H., Ogarawa H. Putative protein serine/threonine kinase genes are located in several positions on the chromosome of Streptomyces coelicolor A3(2). FEMS Microbiol Lett. 1998 Febl-159(l): P. l-5.
  63. Hogan D.A., Sundstrom P. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiol. 2009, Dec-4: P.1263−1270.
  64. Hudson M.E., Zhang D., Nodwell J.R. Membrane association and kinase-like motifs of the RamC protein of Streptomyces coelicolor. J Bacteriol. 2002, Sep- 184(17): P.4920−4924.
  65. Ichimura T., Wakamiya-Tsuruta A., Itagaki C., Taoka M., Hayano T., Natsume T., Isobe T. Phosphorylation-dependent interaction of kinesin light chain 2 and the 14−3-3 protein. Biochemistry. 2002, Apr 30−41(17): P.5566−5572.
  66. Ishida A., Kameshita I., Sueyoshi N., Taniguchi T., Shigeri Y. Recent advances in technologies for analyzing protein kinases. J Pharmacol Sci. 2007, Jan- 103(1): P. 5−11.
  67. Iyer L.M., Aravind L. The emergence of catalytic and structural diversity within the beta- clip fold. Proteins. 2004, V.55: P.977−991.
  68. John T.R., Smith L.A., Kaiser I.I. Genomic sequences encoding the acidic and basic subunits of Mojave toxin: unusually high sequence identity of non-coding regions. Gene. 1994, V.139 (2): P.229−234.
  69. Kamei A., Yuasa T., Orikawa K., Geng X.X., Ikeuchi M. A eukaryotic-type protein kinase, SpkA, is required for normal motility of the unicellular Cyanobacterium synechocystis sp. strain PCC 6803. J Bacteriol. 2001, V.183: P.1505—1510.
  70. Kami K., Takeya R., Sumimoto H., Kohda D. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67(phox), Grb2 and Pexl3p. Embo J. 2002, V.21: P.4268−4276.
  71. Kang J, Tseng T.T. Analysis of S-adenosylmethionine binding to Afsk, a protein kinase from Streptomyces coelicolor. FEMS Microbiol Lett. 2007, Jun-271(l): P. l-2.
  72. Kannan N., Taylor S.S., Zhai Y., Venter J.C., Manning G. Structural and functional diversity of the microbial kinome. 2007, PLoS Biol 5: el 7.
  73. Kalman S., Mitchell W., Marathe R., Lammel C., Fan J., et al. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet. 1999, V.21: P.385−389.
  74. Kari L., Whitmire W.M., Carlson J.H., Crane D.D., Reveneau N., et al. Pathogenic diversity among Chlamydia trachomatis ocular strains in nonhumanprimates is affected by subtle genomic variations. J Infect Dis.2008, V.197: P.449−456.
  75. Kameshita I., Fujisawa H. A sensitive method for detection of calmodulin-dependent kinase II activity in sodium dodecyl sulfate polyacrylamyde gel. Analyt. Biochem. 1989, V. 183. P. 139−143.
  76. Kehoe D.M., Grossman A.R. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science.1996, V.273: P.1409−1412.
  77. Kieser T., Bibb M.J., Buttner M.J., Chater K.F., Hopwood D.A. Practical Streptomyces Genetics. Norwich, John Innes Foundation. England. 2000. P.613.
  78. Kno’lker H-.J, Reddy K.R. Isolation and synthesis of biologically active carbazole alkaloids. Chem Rev. 2002, V.102: P.4303^1428.
  79. Kunze B., Kohl W., Hofle G., Reichenbach H. Production, isolation, physico-chemical and biological properties of angiolam A, a new antibiotic from Angiococcus disciformis (Myxobacterales). J Antibiot (Tokyo). 1985, V.38: P. 1649−1654.
  80. Kunze B., Kemmer T., Hofle G., Reichenbach H. Stigmatellin, a new antibiotic from Stigmatella aurantiaca (Myxobacterales). I. Production, physico- hemical and biological properties. J Antibiot (Tokyo). 1984, V.37: P.454−461.
  81. Lagarkova M.A., Volchkov P.Y., Lyakisheva A.V., Philonenko E.S., Kiselev S.L. Diverse epigenetic profile of novel human embryonic stem cell lines. Cell Cycle. 2006, Feb-5(4): P.416−420.
  82. Lagarkova M.A., Volchkov P.Y., Philonenko E.S., Kiselev S.L. Efficient differentiation of hESCs into endothelial cells in vitro is secured by epigenetic changes. Cell Cycle. 2008, Sep 15−7(18): P.2929−2935.
  83. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, V.227(5259): P.680−685.
  84. Levitzki A. Protein kinase inhibitors as a therapeutic modality. Acc Chem Res. 2003, Jun-36(6): P.462−469.
  85. Liao J.J. Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J Med Chem. 2007 Feb 8−50(3): P.409−424.
  86. Liman R., Akyil D., Eren Y., Konuk M. Testing of the mutagenicity and genotoxicity of metolcarb by using both Ames/Salmonella and Allium test. Chemosphere. 2010, Aug-80(9): P. 1056−1061.
  87. Lin Y., Hupp T.R., Stevens C. Death-associated protein kinase (DAPK) and signal transduction: additional roles beyond cell death. FEBS J. 2010, Jan-277(l): P.48−57.
  88. Liu Y., Gray N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2006, V.2: P. 358−364.
  89. Magnet S., Blanchard J.S. Molecular insights into aminoglycoside action and resistance. Chem. Rev. 2005, V.105, P.477−497.
  90. Madec E., Laszkiewicz A., Iwanicki A., Obuchowski M., Seror S. Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, implicated in developmental processes. Mol Microbiol. 2002, V.46: P.571−586.
  91. Manning G., Plowman G.D., Hunter T., Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 2002, V.27: P.514−520.
  92. Manning G., Whyte D.B., Martinez R., Hunter T., Sudarsanam S. The protein kinase complement of the human genome. Science 2002, V.298. P.1912−1934.
  93. Makemson J.C., Fulayfil N.R., Landry W., Van Ert L.M., Wimpee C.F., et al. Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol. 1997, V.47: P. 1034−1039.
  94. Matsumoto A., Hong S.K., Ishizuka H., Horinouchi S., Beppu T. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene. 1994, V.146: P.47−56.
  95. Michiels J., Xi C., Verhaert J., Vanderleyden J. The functions of Ca (2+) in bacteria: a role for EF-hand proteins? Trends Microbiol. 2002 Feb- 10(2): P.87−93.
  96. Mierendorf R., Yeager K., Novy R. Innovations. Newsletter of Novagen, Inc. 1994, V. l.P. 1−3.
  97. Mongodin E.F., Shapir N., Daugherty S.C., DeBoy R.T., Emerson J.B., et al. Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TCI. 2006, PLoS Genet. 2: e214.
  98. Monot M., Honore N., Gamier T., Zidane N., Sherafi D., et al. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet. 2009, V.41: P.1282−1289.
  99. Morth J.P., Gosmann S., Nowak E., Tucker P.A. A novel two-component system found in Mycobacterium tuberculosis. FEBS Lett. 2005, V.579: P.4145−4148.
  100. Munoz-Dorado J., Inouye S., Inouye M. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gramnegative bacterium. Cell. 1991, V.67: P.995−1006.
  101. Nadvornik R., Vomastek T., Janecek J., Technikova Z., and Branny P. Pkg2, a novel transmembrane protein Ser/Thr kinase of Streptomyces granaticolor. J Bacteriol. 1999, V.181: P. 15−23.
  102. Nariya H., Inouye S. Activation of 6-phosphofructokinase via phosphorylation by Pkn4, a protein Ser/Thr kinase of Myxococcus xanthus. Mol Microbiol. 2002, V.46: P.1353−1366.
  103. Nariya H., Inouye S. An effective sporulation of Myxococcus Xanthus requires glycogen consumption via Pkn4-activated 6-phosphofructokinase. Mol Microbiol. 2003, V.49: P.517−528.
  104. Nakano H., Omura S. Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. J Antibiot (Tokyo). 2009, Jan-62(l): P. 17−26.
  105. Neer E.J., Schmidt C.J., Nambudripad R., Smith T.F. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994, V.371: P.297−300.
  106. Nelson R. M., G. L. Long. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal. Biochem. 1989, V.180: P.147−151.
  107. Nelson M.R., Thulin E., Fagan P.A., Forsen S. The EF-hand domain: A globally cooperative structural unit. Protein Science. 2002, V. ll: P. 198−205.
  108. Neu J.M., MacMillan S.V., Nodwell J.R., Wright G.D. StoPK-1, a serine/ threonine protein kinase from the glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15 009, affects oxidative stress response. Mol Microbiol. 2002, V.44: P.417−430.
  109. Nystrom T., Neidhardt F.C. Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest. Mol Microbiol. 1994, V. ll: P.537—544.
  110. O’Connor T.J., Nodwell J.R. Pivotal roles for the receiver domain in the mechanism of action of the response regulator RamR of Streptomyces coelicolor. J Mol Biol. 2005, Sep 2−351(5): P. 1030−1047.
  111. O’Connor T.J., Kanellis P., Nodwell J.R. The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol Microbiol. 2002, Jul-45(l): P.45−57.
  112. Ono-Saito N., Niki I., Hidaka H. H-series protein kinase inhibitors and potential clinical application. Pharmacol Ther. 1999, V.82: P. 123−131.
  113. Ortiz-Lombardia M., Pompeo F., Boitel B., Alzari P.M. Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis. J Biol Chem. 2003, V.278: P. 13 094−13 100.
  114. Oren A. A proposal for further integration of the cyanobacteria under the Bacteriological Code Int J Syst Evol Microbiol. 2004, V.54: P. 1895−1902.
  115. Oubrie A., Rozeboom H.J., Kalk K.H., Olsthoorn A.J., Duine J.A., Dijkstra B.W. Structure and mechanism of soluble quinoprotein glucose dehydrogenase. J Mol Biol. 1999, Jun 4−289(2): P.319−333.
  116. Pajak B., Turowska A., Orzechowski A., Gajkowska B. Bisindolylmaleimide IX facilitates extrinsic and initiates intrinsic apoptosis in TNF-alpha-resistant human colon adenocarcinoma COLO 205 cells. Apoptosis. 2008, Apr- 13(4): P.509−522.
  117. Pearce L.R., Komander D., Alessi D.R. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 2010, Jan-l 1(1): P.9−22.
  118. Perez J., Garcia R., Bach H., de Waard J.H., Jacobs W.R., Av-Gay Y., Bubis J., Takiff H.E. Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD. Biochem Biophys Res Commun. 2006, Sep 15−348(1): P.6−12.
  119. Petrickova K., Tichy P., Petricek M. Cloning and characterization of the pknA gene from Streptomyces coelicolor A3(2), coding for the Mn2+ dependent protein Ser/Thr kinase. Biochem Biophys Res Commun. 2000, V.279: P.942−948.
  120. Pillonel C. Evaluation of phenylaminopyridines as antifungal protein kinase inhibitors. Pest Manag Sci. 2005, V.61: P. 1069−1076.
  121. Pindur U., Kim Y.S., Mehrabani F. Advances in indolo2,3-a.carbazole chemistry: design and synthesis of protein kinase C and topoisomerase I inhibitors. Curr Med Chem. 1999, V6: P.29−69.
  122. Pouliot P., Olivier M. Opposing forces in asthma: regulation of signaling pathways by kinases and phosphatases. Crit Rev Immunol. 2009, V.29(5): P.419−442.
  123. Rampersaud A., Utsumi R., Delgado J., Forst S.A., Inouye M. Ca -enhanced phosphorylation of a chimeric protein protein kinase involved with bacterial signal transduction. J. Biol. Chem. 1991, V. 266. P. 7633−7637.
  124. Rajagopal L., Vo A., Silvestroni A., Rubens C.E. Regulation of purine biosynthesis by a eukaryotic-type kinase in Streptococcus agalactiae. Mol. Microbiol. 2005, V.56: P.1329−1346.
  125. Rajagopal L., Vo A., Silvestroni A., Rubens C.E. Regulation of cytotoxin expression by converging eukaryotic-type and two-component signaling mechanisms in Streptococcus agalactiae. Mol Microbio. 2006, V.62: P.941−957.
  126. Rajkarnikar A., Kwon H.J., Ryu Y.W., Suh J.W. Two threonine residues required for role of AfsKav in controlling morphogenesis and avermectin production in Streptomyces avermitilis. J Microbiol Biotechnol. 2007, Sep- 17(9): P.1563−1567.
  127. Rigdenl D.J., Galperin M.Y. The DxDxDG Motif for Calcium Binding: Multiple Structural Contexts and Implications for Evolution. J. Mol. Biol. 2004, V.343:P.971−984.
  128. Rodig H., Kloep F., Weissbach L., Augustin C., Edelmann J., Hering S., Szibor R., Gotz F., Brabetz W. Evaluation of seven X-chromosomal short tandem repeat loci located within the Xq26 region. Forensic Sei Int Genet. 2010, Apr-4(3): P.194−199.
  129. Rosenshine I., Duronio V., Finlay B.B. Tyrosine protein kinase inhibitors block invasion-promoted bacterial uptake by epithelial cells. Infect Immun. 1992, V.60:P.2211−2217.
  130. Saini D.K., Tyagi J.S. High-throughput microplate phosphorylation assays based on DevR-DevS/Rv2027c 2-component signal transduction pathway to screen for novel antitubercular compounds. J Biomol Screen. 2005, Apr-10(3): P. 215 224.
  131. Sanchez C., Mendez C., Salas J.A. Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Nat Prod Rep. 2006, V.23: P. 1007−1045.
  132. Sanchez-Weatherby J., Southall S., Oubrie A. Crystallization of quinoprotein glucose dehydrogenase variants and homologues by microseeding. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006, Jun l-62(Pt 6): P.518−521.
  133. Eukaryote-Like Serine/Threonine Kinases and Phosphatases in Bacteria Sandro Pereira S. F., Dworkin J. Microbiol. Mol. Biol. Rev. March 2011, V. 75, P.192−212.
  134. San-Juan-Vergara H., Peeples M.E., Lockey R.F., Mohapatra S.S. Protein kinase C-alpha activity is required for respiratory syncytial virus fusion to human bronchial epithelial cells. J. Virol. 2004, V.78 (24), P.13 717−13 726.
  135. Sawai R., Suzuki A., Takano Y., Lee P.C., Horinouchi S. Phosphorylation of AfsR by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). Gene. 2004, Jun 9−334: P.53−61.
  136. Sensen C.W., Charlebois R.L., Chow C., Clausen I.G., Curtis B., et al. Completing the sequence of the Sulfolobus solfataricus P2 genome. Extremophiles. 1998, V.2: P.305−312.
  137. Serova M., Ghoul A., Benhadji K.A., Cvitkovic E., Faivre S., Calvo F., Lokiec F., Raymond E. Preclinical and clinical development of novel agents that target the protein kinase C family. Semin Oncol. 2006, Aug-33(4): P.466−478.
  138. Scheeff E.D., Bourne P.E. Structural evolution of the protein kinase-like superfamily. PLoS ComputBiol. 2005, Oct-l (5): e49.
  139. Shakir S.M., Bryant K.M., Larabee J.L., Hamm E.E., Lovchik J., et al. Regulatory Interactions of a Virulence-Associated Serine/Threonine Phosphatase-Kinase Pair in Bacillus anthracis. J Bacteriol. 2010, Jan- 192(2): P.400−409.
  140. Shi L., Potts M., Kennelly P.J. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev. 1998, V.22: P.229−253
  141. Shirai H., Autieri M., Eguchi S. Small GTP-binding proteins and mitogen-activated protein kinases as promising therapeutic targets of vascular remodeling. Curr Opin Nephrol Hypertens. 2007, Mar- 16(2): P. 111−115.
  142. Shoen C.M., Chase S.E., DeStefano M.S., Harpster T.S., Chielewski A.J., Cynamon M.H. Evaluation of rifalazil in long-term treatment regimens for tuberculosis in mice. Antimicrob Agents Chemother. 2000, V.44: P. 1458−1462.
  143. Shtil A.A., Azare J. Redundancy of biological regulation as the basis of emergence of multidrug resistance. Int Rev Cytol. 2005, V.246: P. 1−29.
  144. Smith R.J. Calcium and bacteria. Adv. Microb. Physiol. 1995, V.37. P.83−133.
  145. Smith T.F., Gaitatzes C., Saxena K., Neer E.J. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci. 1999, V.24: P.181−185.
  146. Tatevossian R.G., Lawson A.R., Forshew T., Hindley G.F., Ellison D.W., Sheer D. MAPK pathway activation and the origins of pediatric low-grade astrocytomas. J Cell Physiol. 2010, Mar-222(3): P.509−514.
  147. Tauch A., Trost E., Tilker A., Ludewig U., Schneiker S., et al. The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence stablished by pyrosequencing. J Biotechnol. 2008, V.136: P.11−21.
  148. Tereshko V., Teplova M., Brunzelle J., Watterson D.M., Egli M. Crystal structures of the catalytic domain of human protein kinase associated with apoptosis and tumor suppression. Nat Struct Biol. 2001, 0ct-8(10), P.899−907.
  149. Tisa L.S., Adler J. Calcium ions are involved in Escherichia coli chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1992, V. 89. P. 11 804−11 808.
  150. Thomson N.R., Holden M.T., Carder C., Lennard N., Lockey S.J., et al. Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res. 2008, V. 18: P. 161−171.
  151. Thompson C.J., Gray G.S. Nucleotide sequence of a streptomycete aminoglycoside phosphotransferase gene and its relationship tophosphotransferases encoded by resistance plasmids. Proc Natl Acad Sci USA. 1983, Sep-80(17): P.5190−5194. ATCC 10 745
  152. Yonekawa T., Ohnishi Y., Horinouchi S. A calmodulin-like protein in the bacterial genus Streptomyces. FEMS Microbiology Letters. 2005, V.244: P.315−321.
  153. Toth M., Vakulenko S., Smith C.A. Purification, crystallization and preliminary X-ray analysis of Enterococcus casseliflavus aminoglycoside-2"-phosphotransferase-IVa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010, Jan l-66(Pt 1): P.81−84.
  154. Toth M., Chow J.W., Mobashery S., Vakulenko S.B. Source of phosphate in the enzymic reaction as a point of distinction among aminoglycoside 2"-phosphotransferases. J Biol Chem. 2009, Mar 13−284(11): P.6690−6696.
  155. Toth M., Frase H., Chow J.W., Smith C., Vakulenko S.B. Mutant APH (2″)-IIa enzymes with increased activity against amikacin and isepamicin. Antimicrob Agents Chemother. 2010, Apr-54(4): P. 1590−1595.
  156. Trombe M.C. Mutations which alter the kinetics of calcium transport after the regulation of competence in Streptococcus pneumoniae. J. Bacteriol. 1994, V. 176. P. 1992−1996.
  157. Tussavainen H., Permi P., Annila A. NMR solution structure of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea. Eur. J. Biochem. 2003, V.270(6): P.2505−2512.
  158. Tyagi N., Anamika K., Srinivasan N. A Framework for Classification of Prokaryotic Protein Kinases. PLoS ONE, V.5, Issue 5, el0608, P. 1−9.
  159. Ueda K., Umeyama T., Beppu T., Horinouchi S. The aerial myceliumdefective phenotype of Streptomyces griseus resulting from A-factor deficiency is suppressed by a Ser/Thr kinase of S. coelicolor A3(2). Gene. 1996, V. 169: P.91−95.
  160. Udo H., Munoz-Dorado J., Inouye M., Inouye S. Myxococcus xanthus, a gram-negative bacterium, contains a transmembrane protein serine/threoninekinase that blocks the secretion of beta-lactamase by phosphorylation. Genes Dev. 1995, V.9: P.972−983.
  161. Umeyama T., Lee P.C., Horinouchi S. Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl Microbiol Biotechnol. 2002, V.59: P.419−425.
  162. Umeyama T., Lee P.C., Ueda K., Horinouchi S. An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology. 1999, Sep-145 (Pt 9): P.2281−2292.
  163. Umeyama T., Horinouchi S. Autophosphorylation of a bacterial serine/threonine kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein. J Bacterid. 2001, Oct-183(19): P.5506−5512.
  164. Urabe H., Ogawara H. Cloning, sequencing and expression of serine/threonine kinase-encoding genes from Streptomyces coelicolor A3(2) Gene. 1995, Feb 3−153(1): P.99−104.
  165. Venkateswaran K., Dollhopf M.E., Aller R., Stackebrandt E., Nealson K.H. Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol. 1998, V.48 Pt 3: P.965−972.
  166. Verma A., Maurelli A.T. Identification of two eukaryote-like serine/ threonine kinases encoded by Chlamydia trachomatis serovar L2 and characterization of interacting partners of Pknl. Infect Immun. 2003, V.71: P.5772−5784.
  167. Vieth M., Higgs R.E., Robertson D.H., Shapiro M., Gragg E.A., Hemmerle H. Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim Biophys Acta. 2004, Mar 11- 1697(1−2): P.243−257.
  168. Walburger A., Koul A., Ferrari G., Nguyen L., Prescianotto-Baschong C., Huygen K., Klebl B., Thompson C., Bacher G., Pieters J. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science. 2004, V.304: P.1800−1804.
  169. Watkins N.J., Knight M.R., Trewavas A.J., Campbell A.K. Free calcium transients in chemotactic and non-chemotactic strains of Escherichia coli determined by using recombinant aequorin. Biochem J. 1995, Mar 15−306 (Pt 3): P.865−869.
  170. Woese C.R., Kandler O., Wheelis M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA. 1990, V.87: P.4576−4579.
  171. Wright G.D., Thompson P.R. Aminoglycoside phosphotransferases: proteins, structure, and mechanism. Front Biosci. 1999, V.4: P. D9−21.
  172. Yang J., Cron P., Good V.M., Thompson V., Hemmings B.A., Barford D. Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol. 2002, Dec-9(12), P. 940−4.
  173. Yeats C., Finn R.D., Bateman A. The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci. 2002, Sep-27(9): P.438.
  174. Young T.A., Delagoutte B., Endrizzi J.A., Falick A.M., Alber T. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat Struct Biol. 2003, V.10: P. 168−174.
  175. Yu X-C., Margolin W. Ca -mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBOJ. 1997, V.16: P.5455−5463.
  176. Zhang W., Munoz-Dorado J., Inouye M., Inouye S. Identification of a putative eukaryotic- like protein kinase family in the developmental bacterium Myxoccus xanthus. J Bacteriol. 1992, V.174: P.5450−5453.
  177. Zhang W., Inouye M. Reciprocal regulation of the differentiation of Myxococcus xanthus by Pkn5 and Pkn6, eukaryotic-like Ser/Thr protein kinases. Mol Microbiol. 1996, V.20: P.435−447.
  178. Zheng J., He C., Singh V.K., Martin N.L., Jia Z. Crystal structure of a novel prokaryotic Ser/Thr kinase and its implication in the Cpx stress response pathway. Mol Microbiol. 2007, V.63: P. 1360−1371.
  179. Zhulin I.B., Nikolskaya A.N., Galperin M.Y. Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. J Bacteriol. 2003, V.185: P.285−294.
  180. С.А., Преображенская M.H. Методы синтеза индоло2,3-а.пирроло[3,4-с]карбазолов, родственных бис (индол-3-ил)малеимидов и их аналогов. «Избранные методы синтеза и модификации гетероциклов» под ред. Карцева В. Г. 2005.
  181. Я.А., Даниленко В. Н. Детерминант устойчивости к канамицину Streptomyces rimosus: амплификация в составе хромосомы и обратимая генетическая нестабильность. Молекулярная биология, 1985, Т. 19, №.3, С.805−816.
  182. А. Ю., Лакатош С. А., Лузиков Ю. Н., Резникова М. И.,
  183. О. Ю., Штиль А. А., Елизаров С. М., Даниленко В. Н.,
Заполнить форму текущей работой