Спонтанное излучение атомов и молекул вблизи нанообъектов сложной конфигурации
Диссертация
Нульмерные наноструктуры — наночастицы, получаются в основном химическим способом. Например, кварцевые наночастицы производятся с помощью химической реакции с выходом кварца. В результате реакции, в зависимости от реагентов и времени протекания реакции, можно получить кварцевые наносферы определенного диаметра. На такие нано-сферы можно осаждать золотые наночастицы, и в результате получить как… Читать ещё >
Список литературы
- Nanoscience and nanotechnologies: opportunities and uncertainties. — London, The Royal Academy of Engineering, 2004.
- Erhardt D. Materials conservation: not-so-new technology. Nature Materials, 2003, V.2, P.509.
- McAlpine M.C., Friedman R.S., Jin S., Lin K.-H., Wang W.U., and. Lieber C.M. High-performance nanovvire electronics and photonics on glass and plastic substrates. Nano Lett., 2003, V.3, P. 1531.
- Lee J.U. Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett., 2005, V.87, 73 101.
- Tong L., Gattass R.R., Ashcom J.В., He S., Lou J., Shen M., Maxwell I. and Mazur E., Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, V.426, P.816.
- Westcott S.L., Oldenburg S.J., Lee T.R., and Halas N.J. Formation and adsorption of gold nanoparticles onto functionalized silica nanoparticles surface. Langmuir, 1998, V.14, P.5396.
- Averitt R.D., Sarkar D., and Halas N.J. Plasmon resonance shift of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys. Rev. Lett., 1997, V.78, P.4217.
- Porter L.A., Ji D., Westcott S.L., Graupe M., Czernuszewicz R.S., Halas N.J., and Lee T.R. Gold and silver nanoparticles functionalized by the adsorption of dialkyl disulfides. Langmuir, 1998, V.14, P.7378.
- Foss С.A., Hornyak G.L., Stocker J.A., and Martin C.R. Template-synthesized nanoscopic gold particles: Optical spectra and the effect of particle size and shape. J. Phys. Chem., 1994, V.98, P.2963.
- Kong X.Y., Ding Y., Yang R., and Wang Zh.L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, V.303, P.1348.
- Sun Y.G., Xia Y.N. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, V.298, P.2176.
- Murphy C.J. Nanocubes and nanoboxes. Science, 2002, V.298, P.2139.
- Malikova N., Pastoriza-Santos I., Schierhorn M., Kotov N.A., Liz-Marzan L.M. Layer-by-layer assembled mixed spherical and planar gold nanoparti-cles: control of interparticle interactions. Langmuir, 2002, V.18, P.3694.
- Mokari Т., Rothenberg E., Popov I., Costi R., Banin U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science, 2004, V.304, P. 1787.
- Purcell E.M. Spontaneous Transition Probabilities in Radio-Frequency Spectroscopy.- Phys. Rev., 1946, V.69, P.681.
- Бункин Ф.В., Ораевский A.H. О спонтанном излучении молекулы внутри резонатора. Изв. вузов. Радиофиз., 1959, Т.2, С. 181.
- Быков В.П., Шепелев Г. В. Излучение атомов вблизи материальных тел. Москва, Наука, 1986.
- Kleppner D. Inhibited Spontaneous Emission.- Phys. Rev. Lett., 1981, V.47, P.233.
- Goy P., Raimond J.M., Gross M., and Haroche S. Observation of Cavity-Enhanced Single-Atom Spontaneous Emission.- Phys. Rev. Lett., 1983, V.50, P.1903.
- Hulet R.G., Hilfer E.S., Kleppner D. Inhibited Spontaneous Emission by a Rydberg Atom.- Phys. Rev. Lett., 1985, V.55, P.2137.
- Gabrielse G., Dehmelt H. Observation of inhibited spontaneous emission.-Phys. Rev. Lett., 1985, V.55, P.67.
- Jhe W., Anderson A., Hinds E.A., Meschede D., and Moi L., Haroche S. Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space. Phys. Rev. Lett., 1987, V.58, P.666.
- Balykin V.I., Klimov V.V., and Letokhov V.S. Atom nano-optics. Optics and Photonics News, 2005, V.45, P.44.
- Lakowicz J.R., Malicka J., Gryczynski I., Gryczynski Z. and Geddes C.D. Radiative decay engineering: the role of photonic mode density in biotechnology. J. Phys. D: Appl. Phys, 2003, V.36, R240.
- Lakowicz J.R., Shen B, Gryczynski Z, D’Auria S, and Gryczynski I. Intrinsic fluorescence from DNA can be enhanced by metallic particles. Bio-chem. Biophys. Res. Commun, 2001, V.286, P.875.
- Bergman D.J. and Stockman M.I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plas-mons in nanosystems. Phys. Rev. Lett., 2003, V.90, 27 402.
- Protsenko I.E., Uskov A.V., Zaimidoroga O.A., Samoilov V.N., and O’Reilly E.P. Dipole nanolaser. -. Phys. Rev. A, 2005, V.71, 63 812.
- Chew H. Transition rates of atoms near spherical surfaces. J. Chem. Phys., 1987, V.87, P.1355.
- Klimov V.V., Ducloy M., and Letokhov V.S. Radiative frequency shift and linewidth of an atom dipole in the vicinity of a dielectric microsphere. J. Modern Optics, 1996, V.43, P.2251.
- Klimov V.V. and Letokhov V.S. Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface. Laser Phys., 2005, V.15, P.61.
- Klimov V.V., Ducloy M., Letokhov V.S. Spontaneous emission of an atom placed near a prolate nanospheroid. Eur. J. Phys. D, 2002, V.20, P. 133.
- Wang D.-S. and Kerker M. Enhanced Raman scattering by molecules adsorbed at the surface of colloid spheroids. Phys. Rev. B, 1981, V.24, P. 1777.
- Gersten J., Nitzan A. Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys., 1981, V.75, P. l 139.
- Gersten J., Nitzan A. Radiative properties of solvated molecules in dielectric clusters and small particles. J. Chem. Phys., 1991, V.95, P.686.
- Klimov V.V., Ducloy M. Allowed and forbidden transitions in an atom placed near an ideally conducting cylinder. Phys. Rev. A, 2000, V.62, P.43 818.
- Klimov V.V., Ducloy M. Spontaneous emission rate of an excited atom placed near a nanofiber. Phys. Rev. A, 2004, V.69, 13 812.
- Климов В.В. Спонтанное излучение атомного осциллятора, расположенного вблизи идеально проводящей конической поверхности. -Письма в ЖЭТФ, 1998, Т.68, С. 610.
- Климов В.В. Спонтанное излучение атома, расположенного вблизи апертуры сканирующего микроскопа. Письма в ЖЭТФ, 20 036 Т.78, С. 943.
- Haes A.J., Zou S.L., Schatz G.C., and van Duyne R.P. Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B, 2004, V. I08, P.6961.
- Haes A.J., Zou S.L., Schatz G.C., and van Duyne R.P. A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B, 2004, V.108, P.109.
- Li K., Stockman M.I. and Bergman D.J. Self-similar chain of metal nano-spheres as an efficient nanolens. Phys. Rev. Lett., 2003, V.91, 227 402.
- Stockman M.I. Nanofocusing of optical energy in tapered plasmonic waveguide. Phys. Rev. Lett., 2004, V.93, 137 404.
- Stevenson A.F. Solution of electromagnetic scattering problems as power series the ratio (dimension of scatterer)/wavelength. J. Appl. Phys., 1953, V.24, P.1134.
- Ландау Л.Д. и Лифшиц E.M. Электродинамика сплошных сред. Москва, Наука, 1982.
- Chance R.R., Prock A. and Sylbey R. Molecular fluorescence and energy transfer near interface. In: Prigogine I., Rice S.A. (eds.) Advances in chemical physics. New York, John Wiley & Sons, 1978, P. 1.
- Wylie J. M, Sipe. J.E. Quantum electrodynamics near an interface. I. Phys. Rev. A, 1984, V.30,P.l 185.
- Wylie J. M, Sipe. J.E. Quantum electrodynamics near an interface. II. Phys. Rev. A, 1985, V.32,P.2030.
- Klimov V.V., Letokhov V.S. Enhancement and inhibition of spontaneous emission rates in nanobubbles. Chem. Phys. Lett., 1999, V.301, P.441.
- Glauber R.J., Lewenstein M. Quantum optics of dielectric media. Phys. Rev. A, 1991, V.43, P.467.
- Berman P.R. (ed.), Cavity Quantum Electrodynamics.- Boston, Academic Press, 1994.
- Климов B.B. Теория электромагнитного взаимодействия атомов с мезо-и наноструктурами. материалы докт. дисс., Москва, ФИАН, 1998.
- Давыдов A.C. Теория твердого тела. М., Наука, 1979.
- Amos R.M. and Barnes W.L. Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror. Phys. Rev. B, 1997, V.55, P.7249.
- Schniepp H. and Sandoghdar V. Spontaneous Emission of Europium Ions Embedded in Dielectric Nanospheres. Phys. Rev. Lett., 2002, V.89, 257 403.
- Buchholz H. Elektrische und magnetische potentialfelder. Berlin, SpringerVerlag, 1957.
- Smythe W.R. Static and dynamic electricity. New York, McGraw-Hill, 1952.
- Jones T.B. Dipole moments of conducting particle chains. J. Appl. Phys., 1986, V.60, P.2226.
- Poladian L. Long-wavelength absorption in composites. Phys. Rev. B, 1991, V.44, P.2092.
- Meyer R.J. Nearest-neighbor approximation for the dipole moment of con-ducting-particle chains. J. Electrostat., 1994, V.33, P.133.
- Jiang Z., Shen Z., Lu К. Dipole images in conducting-particle chains. J. Electrostat., 2001, V.53, P.53.
- Godet J.L. and Dumon B. Dielectric-sphere-couple model for noble-gas pair polarizability. Phys. Rev. A, 1992, V.46, P.5680.
- Мазец И.Е. Поляризация двух близко расположенных металлических сфер во внешнем однородном электрическом поле. ЖТФ, 2000, Т.70, С. 8.
- Гузатов Д.В., Климов В. В. Свойства спонтанного излучения атома, расположенного вблизи кластера из двух сферических ианочастнц. Квантовая электроника, 2005, Т.35, С. 891.
- Гузатов Д.В., Смещение частоты спонтанного излучения атома, расположенного вблизи кластера из двух идеально проводящих сферических наночастиц. Квантовая электроника, 2005, Т.35, С. 901.
- Morse P.M. and Feshbah H. Methods of theoretical physics. New York, McGraw-Hill, 1953.
- Свешников А.Г., Тихонов A.H. Теория функций комплексной переменной. Москва, Наука, 1979.
- Климов В.В. Спонтанное излучение атома в присутствии напотел. -УФН, 2003, Т.173, С. 1008.
- Климов В.В., Дюклуа М., Летохов B.C. Спонтанное излучение атома в присутствии напотел. Квантовая электроника, 2002, Т.31, С. 569.
- Ruppin R. Surface modes of two spheres. Phys. Rev. B, 1982, V.26, P.3440.77.01ivares I., Rojas R., and Claro F. Surface modes of two unequal spheres. -Phys. Rev. В, 1987, V.35, P.2453.
- Jones T.B. and Miller R.D. Multipolar interactions of dielectric spheres. J. Electrostat., 1989, V.22, P.231.
- Park S.Y. and Stroud D. Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation. Phys. Rev. B, 2004, V.69, 125 418.
- Stoy R.D. Solution procedure for the Laplace equation in bispherical coordinates for two spheres in a uniform external field: Parallel orientation. J. Appl. Phys., 1989, V.65, P.2611.
- Stoy R.D. Solution procedure for the Laplace equation in bispherical coordinates for two spheres in a uniform external field: Perpendicular orientation. -J. Appl. Phys., 1989, V.66, P.5093.
- Chaumet P.C., Dufour J.P. Electric potential and field between two different spheres. J. Electrostat. 1998, V.43, P.145.
- Liver N. and Nitzan A., Freed K.F. Radiative and nonradiative decay rates of molecules adsorbed on clusters of small dielectric particles. J. Chem. Phys., 1985, V.82, P.3831.
- Mills D.L. Theory of STM-induced enhancement of dynamic dipole moments on crystal surfaces. Phys. Rev. B, 2002, V.65, 125 419.
- Blanco L.A., Garcia de Abajo F.J. Spontaneous emission enhancement near nanoparticles. J. Quant. Spectr. Rad. Trans., 2004, V.89, P.37.
- Nordlander P. and Oubre C., Prodan E., Li K. and Stockman M.I. Plasmon hybridization in nanoparticle dimers. Nano Lett., 2004, V.4, P.899.
- Claro F. Absorption spectrum of neighboring dielectric grains. Phys. Rev. B, 1982, V.25, P.7875.
- Ruppin R. Optical absorption of two spheres. J. Phys. Soc. Japan, 1989, V.58, P.1446.
- Xu H., Kali M. Surface-plasmon-enhanced optical forces in silver nanoag-gregates. Phys. Rev. Lett., 2002, V.89, 246 802.
- Xu H., Aizpurua J., Kail M. and Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E, 2000, V.62, P.4318.
- Mikhailovsky A.A., Petruska M.A., Li K., Stockman M.I. and Klimov V.l. Phase-sensitive spectroscopy of surface plasmons in individual metal nanos-tructures. Phys. Rev. B, 2004, V.69, 85 401.
- Rockstuhl C., Salt M.G. and Herzig H.P. Analyzing the scattering properties of coupled metallic nanoparticles. J. Opt. Soc. Am. A, 2004, V.21, P. 1761.
- Genov D.A., Sarychev A.K., Shalaev V.M., and Wei A. Resonant field enhancements from metal nanoparticle arrays. Nano Lett., 2004, V.4, P. 153.
- Stoy R.D. Induced multipole strengths for two dielectric spheres in an external electric field. J. Appl. Phys., 1991, V.69, P.2800.
- Gersten J., Nitzan A. Resonance optical response of small dielectric clusters. Phys. Rev. B, 1984, V.29, P.3852.
- Gersten J.I. and Nitzan A. Photophysics and chemistry near surfaces and small particles. Surf. Sci., 1985, V. l58, P. 165.
- Su K.-H, Wei Q.-H., and Zhang X. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett, 2003, V.3, P. 1087.
- Rechberger W, Hohenau A, Leitner A, Krenn J. R, Lamprecht B, Aussenegg F.R. Optical properties of two interacting gold nanoparticles. -Optics Comm., 2003, V.220, P. 137.
- Tamaru H, Kuwata H, Miyazaki H. T, Miyano K. Resonant light scattering from individual Ag nanoparticles and particle pairs. Appl. Phys. Lett, 2002, V.80, P.1826.
- Prikulis J, Svedberg F, and Kail M, Enger J, Ramser K, Goksor M, and Hanstorp D. Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett, 2004, V.4, P. l 15.
- Климов В. В, Гузатов Д. В. Оптические свойства атома в присутствии кластера из двух наносфер. рокмкл ^ млмч) — V.V. К&юо^
- Johnson P. В, Christy R.W. Optical constants of noble metals. Phys. Rev. B, 1972, V.6, P.4370.
- R. Hillenbrand, T. Taubner and F. Keilmann, Phonon-Enhanced LightMatter Interaction at the Nanometre Scale. Nature, 2002, V.418, P. 159.
- Engelbrecht F. and Helbig R, Effect of Crystal Anisotropy on the Infrared Reflectivity of бЯ-SiC. Phys. Rev. B, 1993, V.48, P.698.
- Stratton J.A. Electromagnetic Theory. New York, McGraw-Hills, 1941.
- Moon P. and Spencer D.E. Field theory handbook. Berlin, SpringerVerlag, 1988.
- Hobson E.W. The theory of spherical and ellipsoidal harmonics. Cambridge, Cambridge University Press, 1931.
- Jackson J.D. Classical electrodynamics. New York, John Wiley & Sons, 1962.
- Jones R.C. A generalization of the dielectric ellipsoid problem. Phys. Rev., 1945, V.68,P.93.
- Stevenson A.F. Electromagnetic scattering by an ellipsoid in the third approximation. J. Appl. Phys., 1953, V.24, P. l 143.
- Charalambopoulos A., Dassios G., Perrusson G., Lesselier D. The nonlinear approximation in ellipsoidal geometry: A novel approach to the low-frequency scattering problem. Int. J. Eng. Sci., 2002, V.40, P.67.
- Asvestas J.S. and Kleinman R.E. Low frequency scattering by spheroids and disks 1. Dirichlet problem for a prolate spheroid. J. Inst. Maths Applies, 1969, V.6, P.42.
- Asvestas J.S. and Kleinman R.E. Low frequency scattering by spheroids and disks 2. Neumann problem for a prolate spheroid. J. Inst. Maths Applies, 1969, V.6.P.57.
- Asvestas J.S. and Kleinman R.E. Low frequency scattering by spheroids and disks 3. Oblate spheroids and disks. J. Inst. Maths Applies, 1970, V.6, P.157.
- Chew W.C. Waves and fields in inhomogeneous media. New York, IEEE Press, 1995.
- Roth well E.J., Cloud M.J. Electromagnetics. Boca Raton (FL), CRC Press, 2001.
- Peterson A.F., Ray S.L., Mittra R. (eds.) Computational methods for electromagnetics. -New York, IEEE Press, 1960.
- Mittra R. Computer techniques for electromagnetics. New York, Perga-mon Press, 1973.
- Chew W.C., Jin J.-M., Michielssen E., Song J. Fast and efficient algorithms in computational electromagnetics. Norwood (MA), Artech House, 2001.
- Song J.M. and Chew W.C. Multilevel fast multipole algorithm for solving combined field integral equation of electromagnetic scattering. Micro. Opt. Tech. Lett., 1995, V. 10, P.M.
- Song J.M. and Chew W.C. Fast multipole method solution of combined field integral equation. In: Proc. 11th Annual Review of Progress in Applied Computational Electromagnetics. Monterey (CA), 1995.
- Song J.M. and Chew W.C. Moment method solutions using parametric geometry. J. Electromagn. Waves Appl., 1995, V.9, P.71.
- Piller N.B. and Martin O.J.F. Increasing the performances of the coupleddipole approximation: A spectral approach. IEEE Trans. Antennas Propa-gat, 1998, V.46, P.1126.
- Martin O.J.F. and Piller N.B. Electromagnetic scattering in polarizable background. Phys. Rev. E, 1998, V.58, P.3909.
- Kottmann J.P. and Martin O.J.F. Accurate solution of the integral equation for high-permittivity scatterers. IEEE Trans. Antennas Propagat., 2000, V.48, P.1719.
- Белкина М.Г. Характеристики излучения вытянутого эллипсоида вращения. В сб.: Дифракция электромагнитных волн на некоторых телах вращения, Москва, Советское Радио, 1957, С. 126.
- Белкина М.Г. Дифракция электромагнитных волн на диске. В сб.: Дифракция электромагнитных волн на некоторых телах вращения. -Москва, Советское Радио, 1957, С. 148.
- Flammer С. Spheroidal Wave Functions. Stanford, Stanford University Press, 1957.
- Asano S. and Yamamoto G. Light scattering by a spheroidal particle. -Appl. Opt., 1975, V.14, P.29.
- Фарафонов В.Г. Дифракция плоской электромагнитной волны на диэлектрическом сфероиде. Дифференциальные уравнения, 1983, Т.19, С. 1765.
- Voshchinnikov N.V. and Farafonov V.G. Optical properties of spheroidal particles. Astrophys. Space Sci., 1993, V.204, P. 19.
- Wang D.-S. and Kerker M. Absorption and luminescence of dye-coated silver and gold particles. Phys. Rev. B, 1982, V.25, P.2433.
- Фарафонов В.Г. Рассеяние света многослойными неконфокальными эллипсоидами в релеевском приближении. Оптика и спектроскопия, 2001, Т.91, С. 92.
- Guzatov D.V., Klimov V.V. Radiative decay engineering by triaxial nanoellipsoids. Chem. Phys. Lett., 2005, V.412, P.341.
- Гузатов Д.В., Ораевский A.A., Ораевский A.H. Плазмонный резонанс в эллипсоидальных наночастицах с оболочкой. Квантовая электроника. 2003, Т. ЗЗ, С. 817.
- Прудников А.П., Брычков Ю. А., Маричев О. И. Интегралы и ряды. Элементарные функции. Москва, Наука, 1981.
- Shu Q.Q., Hansma Р.К. Fluorescent apparent quantum yields for excited molecules near dielectric interfaces. Thin solid films, 2001, V.384, P.76.
- Войтович Н.Н., Каценеленбаум Б. З., Сивов А. Н. Обобщенный метод собственных колебаний в теории дифракции. М., Наука, 1977.
- Wokaun A., Gordon J.P., and Liao P.F. Radiation Damping in Surface-Enhanced Raman Scattering. Phys. Rev. Lett., 1982, V.48, P.957.
- Meier M. and Wokaun A. Enhanced fields on large metal particles: dynamic depolarization. Opt. Lett., 1983, V.8, P.581.
- Kelly K.L., Coronado E., Zhao L.L., and Schatz G.C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 2003, V. 107, P.668.
- Prasad P.N. Introduction to biophotonics. Hoboken (NJ), John Wiley & Sons, 2003.