Потоковая модель метаболизма, связанного с производством водорода бактериями рода Rhodobacter
Диссертация
Потоковые модели метаболизма уже зарекомендовали себя как полезные инструменты для анализа распределения потоков вещества в метаболизме различных бактерий и для предсказания возможного влияния на жизнедеятельность клетки путем генных модификаций (Durot et al, 2009; Milne et al, 2009). Хотя уже построено много стехиометрических моделей разных бактерий, они не могут быть использованы для анализа… Читать ещё >
Список литературы
- Берг, И.А., Ивановский, Р.Н., 2009. Ферменты цитрамалатного цикла у Rhodospirillum rubrum. Микробиология 78, 22−31.
- Любецкая, А.В., Рубанов, Л.И., Гельфанд, М.С., 2006. Применение потоковой модели для изучения метаболизма Escherichia coli. Биохимия 71, 1544 — 1549.
- Минкевич, И.Г., Цыганков, А.А., 2002. Материально-энергетический баланс роста фототрофных пурпурных бактерий. Биофизика 47, 663−672.
- Ризниченко, Г. Ю., Рубин, А.Б. Биофизическая динамика продукционных процессов. Москва-Ижевск: Институт компьютерных исследований, 2004.
- Фукс, Г. Биосинтез клеточных строительных блоков. В: Ленгелер, Й., Древе, Г., Шлегель, Г. (ред.), Современная микробиология. Прокариоты. «Мир», Москва, 2005, стр. 145−203.
- Фукс, Г., Крегер, А. Рост и питание. В: Ленгелер, И., Древе, Г., Шлегель, Г. (ред.), Современная микробиология. Прокариоты. «Мир», Москва, 2005, стр. 132−134.
- Цыганков, А.А., 2006. Получение водорода биологическим путем. Российский химический э/сурнал L, 26−33.
- Alber, В.Е., Kung, J.W., Fuchs, G., 2008. 3-Hydroxypropionyl-coenzyme A synthetase from Metallosphaera sedula, an enzyme involved in autotrophic CO2 fixation. Journal of Bacteriology 190,1383−1389.
- Alber, B.E., Spanheimer, R., Ebenau-Jehle, C., Fuchs, G., 2006. Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides. Molecular Microbiology 61,297−309.
- Aoki, K.F., Kanehisa, M., 2005. Using the KEGG database resource. Current Protocols in Bioinformatics Unit 1:12.
- Asada, Y., Miyake, J., 1999. Photobiological hydrogen production. Journal of Bioscience andBioengineering 88, 1−6.
- Barbosa, M.J., Rocha, J.M.S., Tramper, J., Wijffels, R.H., 2001. Acetate as a carbon source for hydrogen production by photosynthetic bacteria. Journal of Biotechnology 85, 25−33.
- Basak, N., Das, D., 2007. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World Journal of Microbiology&Biotechnology 23, 31−42.
- Basak, N., Das, D., 2009. Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides O.U.OOl in an annular photobioreactor: A case study.
- Bio mass and Bioenergy 33, 911−919.
- Beard, D.A., Liang, S.-d., Qian, H., 2002. Energy balance for analysis of complex metabolic networks. Biophysical Journal 83, 79−86.
- Beard, D.A., Babson, E., Curtis, E., Qian, H., 2004. Thermodynamic constraints for biochemical networks. Journal of Theoretical Biology 228, 327−333
- Burgard, A.P., Pharkya, P., Maranas, C.D., 2003. Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering 84, 647−657.
- Cai, G., Jin, В., Saint, C., Monis, P., 2010. Metabolic flux analysis of hydrogen production network by Clostridium butyricum W5: Effect of pH and glucose concentrations. International Journal of Hydrogen Energy 35, 6681−6690.
- Chory, J., Kaplan, S., 1983. Light-dependent regulation of the synthesis of soluble and intracytoplasmic membrane proteins of Rhodopseudomonas sphaeroides. Journal of Bacteriology 153, 465−474.
- Covert, M.W., Schilling, C.H., Palsson, B., 2001. Regulation of gene expression in flux balance models of metabolism. Journal of Theoretical Biology 213, 73−88.
- Domingues, A., Vinga, S., Lemos, J., 2010. Optimization strategies for metabolic networks. BMC Systems Biology 4:113.
- Durot, M., Bourguignon, P.-Y., Schachter, V., 2009. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiology Reviews 33, 164−190.
- Eroglu, I., Asian, K., Gunduz, U., Yucel, M., Turker, L. Continuous Hydrogen Production by Rhodobacter sphaeroides O.U.OOl. In: Zaborsky, O.R. (Ed.), BioHydrogen. Plenum Press, New York, 1998
- Eroglu, I., Tabanoglu, A., Gunduz, U., Eroglu, E., Yucel, M., 2008. Hydrogen production by Rhodobacter sphaeroides O.U.OOl in a flat plate solar bioreactor. International Journal of Hydrogen Energy 33, 531−541.
- Fang, H.H.P., Liu, H., Zhang, T., 2005. Phototrophic hydrogen production from acetate and butyrate in wastewater. International Journal of Hydrogen Energy 30, 785−793.
- Feist, A.M., Herrgard, M.J., Thiele, I., Reed, J.L., Palsson, B.O., 2009. Reconstruction of biochemical networks in microorganisms. Nature Reviews. Microbiology 7, 129−143.
- Feist, A.M., Palsson, B.O., 2008. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature. Biotechnology 26, 659−667.
- Feist, A.M., Scholten, J.C.M., Palsson, B.O., Brockman, F.J., Ideker, T., 2006. Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Molecular Systems Biology 2:4.
- Fuhrer, T., Sauer, U., 2009. Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. Journal of Bacteriology 191, 2112−2121.
- Gadhamshetty, V., Sukumaran, A., Nirmalakhandan, N., Thein Myint, M., 2008. Photofermentation of malate for biohydrogen production ~ A modeling approach. International Journal of Hydrogen Energy 33, 2138−2146.
- Geyer, T., Helms, V., 2006. Reconstruction of a kinetic model of the chromatophore vesicles from Rhodobacter sphaeroides. Biophysical Journal 91, 927−937.
- Ghirardi, M.L., Dubini, A., Yu, J., Maness, P.C., 2009. Photobiological hydrogen-producing systems. Chemical Society Reviews 38, 52−61.
- Hallenbeck, P.C., 2009. Fermentative hydrogen production: Principles, progress, and prognosis. International Journal of Hydrogen Energy 34, 7379−7389.
- He, D., Bultel, Y., Magnin, J.-P., Willison, J.C., 2006. Kinetic analysis of photosynthetic growth and photohydrogen production of two strains of Rhodobacter capsulatus. Enzyme Microbiology and Technology 38, 253−259.
- Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V., 2007. Thermodynamics-based metabolic flux analysis. Biophysical Journal 92, 1792−1805.
- Hillmer, P., Gest, H., 1977a. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. Journal of Bacteriology 129, 724−731.
- Hillmer, P., Gest, H., 1977b. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. Journal of Bacteriology 129, 732−739.
- Holzhutter, H.-G., 2006. The generalized flux-minimization method and its application to metabolic networks affected by enzyme deficiencies. Biosystems 83, 98−107.
- Jahn, A., Keuntje, B., Dorffler, M., Klipp, W., Oelze, J., 1994. Optimizing photoheterotrophic H2 production by Rhodobacter capsulatus upon interposon mutagenesis in the hupL gene. Applied Microbiology and Biotechnology 40, 687−690.
- Jamshidi, N., Palsson, B.O., 2008. Formulating genome-scale kinetic models in the postgenome era. Moleculer Systems Biology 4:171.
- Kaplan, S. Control and kinetics of photosynthetic membrane development. In: Clayton, R.K., Sistrom, W.R. (Eds.), The photosynthetic bacteria. Plenum Press, New York, 1978, p. 808−839.
- Kars, G., Giindiiz, U., 2010. Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations. International Journal of Hydrogen Energy 35, 6646−6656.
- Kars, G., Giindiiz, U., Rakhely, G., Yiicel, M., Eroglu, I., Kovacs, K.L., 2008. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.OOl. International Journal of Hydrogen Energy 33, 3056−3060.
- Kauffman, K.J., Prakash, P., Edwards, J.S., 2003. Advances in flux balance analysis. Current Opinion in Biotechnology 14,491−496.
- Khatipov, E., Miyake, M., Miyake, J., Asada, Y. Polyhydroxybutyrate accumulation and hydrogen evolution by Rhodobacter sphaeroides as a function of nitrogen availability. In: Zaborsky, O.R. (Ed.), BioHydrogen. Plenum Press, New York, 1998
- Kiley, P.J., Kaplan, S., 1988. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiology Reviews 52, 50−69.
- Kim, E.J., Kim, M.S., Lee, J.K., 2007. Phosphatidylcholine is required for the efficient formation of photosynthetic membrane and B800−850 light-harvesting complex in Rhodobacter sphaeroides. Journal of Microbiology&Biotechnology 17, 373−377.
- Kim, E.-J., Kim, J.-S., Kim, M.-S., Lee, J.K., 2006a. Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen. International Journal of Hydrogen Energy 31, 531−538.
- Kim, M.-S., Baek, J.-S., Lee, J.K., 2006b. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. International Journal of Hydrogen Energy 31, 121−127.
- Kim, S., Seol, E., Oh, Y.-K., Wang, G.Y., Park, S., 2009. Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains. International Journal of Hydrogen Energy 34, 7417−7427.
- Klamt, S., Grammel, H., Straube, R., Ghosh, R., Gilles, E.D., 2008. Modeling the electron transport chain of purple non-sulfur bacteria. Moleculer Systems Biology 4:156.
- Klamt, S., Schuster, S., Gilles, E.D., 2002. Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfiir bacteria. Biotechnology and Bioengeneering 77, 734−751.
- Klein, G., Klipp, W., Jahn, A., Steinborn, B., Oelze, J., 1991. The relationship of biomass, polysaccharide and H2 formation in the wild-type and nifA/nifB mutants of Rhodobacter capsulatus. Archives of Microbiology 155, 477 482.
- Koku, H., Eroglu, I., Giinduz, U., Yiicel, M., Tiirker, L., 2002. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy 21, 1315−1329.
- Koku, H., Eroglu, I., Giinduz, U., Yiicel, M., Tiirker, L., 2003. Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 28, 381−388.
- Kondo, T., Arakawa, M., Hirai, T., Wakayama, T., Hara, M., Miyake, J., 2002. Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment. Journal of Bioscience and Bioengineering 93, 145−150.
- Kondo, T., Wakayama, T., Miyake, J., 2006. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. International Journal of Hydrogen Energy 31,1522−1526.
- Kummel, A., Panke, S., Heinemann, M., 2006. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Moleculer Systems Biology 2.
- Lee, J., Yun, H., Feist, A., Palsson, B., Lee, S., 2008a. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Applied Microbiology and Biotechnology 80, 849−862.
- Lee, J.M., Gianchandani, E.P., Eddy, J.A., Papin, J.A., 2008b. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Computational Biology 4, el000086.
- Lee, J.M., Gianchandani, E.P., Papin, J.A., 2006. Flux balance analysis in the era of metabolomics. Briefings in Bioinformatics 7, 140−150.
- Lee, J.Z., Klaus, D.M., Maness, P.-C., Spear, J.R., 2007. The effect of butyrate concentration on hydrogen production via photofermentation for use in a Martian habitat resource recovery process. International Journal of Hydrogen Energy 32, 3301−3307.
- Lee, S.K., Chou, H., Ham, T.S., Lee, T.S., Keasling, J.D., 2008c. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Current Opinion in Biotechnology 19, 556−563.
- Liu, T., Li, X., Zhou, Z., 2010. Improvement of hydrogen yield by hupR gene knock-out and nifA gene overexpression in Rhodobacter sphaeroides 6016. International Journal of Hydrogen Energy 35, 9603−9610.
- Mackenzie, C., Chounhary, M., Larimer, W.F., Predki, F.P., Stilwagen, S., Armitage, P.J., 2001. The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynthesis Research 70, 19−41.
- Macler, B.A., Bassham, J.A., 1988. Carbon allocation in wild-type and Glc+ Rhodobacter sphaeroides under photoheterotrophic conditions. Applied and Environmental Microbiology 54, 2737−2741.
- Makhorin, A. GNU Linear Programming Kit. Free Software Foundation, Boston, 2001.
- Manish, S., Venkatesh, K.V., Banerjee, R., 2007. Metabolic flux analysis of biological hydrogen production by Escherichia coli. International Journal of Hydrogen Energy 32, 38 203 830.
- McEwan, A.G., 1994. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie Van Leeuwenhoek 66, 151−164.
- McKinlay, J.B., Harwood, C.S., 2010. Photobiological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology 21, 244−251.
- Meister, M., Saum, S., Alber, B.E., Fuchs, G., 2005. L-malyl-coenzyme A/p-methylmalyl-coenzyme A lyase is involved in acetate assimilation of the isocitrate lyase-negative bacterium Rhodobacter capsulatus. Journal of Bacteriology 187, 1415−1425.
- Melnicki, M.R., Bianchi, L., De Philippis, R., Melis, A., 2008. Hydrogen production during stationary phase in purple photosynthetic bacteria. International Journal of Hydrogen Energy 33, 6525−6534.
- Milne, C.B., Kim, P.-J., Eddy, J.A., Price, N.D., 2009. Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnology Journal 4, 16 531 670.
- Montagud, A., Navarro, E., Fernandez de Cordoba, P., Urchueguia, J., Patil, K., 2010. Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Systems Biology 4, 156.
- Muller, F.M., 1933. On the metabolism of the purple sulphur bacteria in organic media. Archiv fur Mikrobiologie 4, 131−166.
- Nath, K., Kumar, A., Das, D., 2005. Hydrogen production by Rhodobacter sphaeroides strain O.U.OOl using spent media of Enterobacter cloacae strain DM11. Applied Microbiology and Biotechnology 68, 533−541.
- Navarro, E., Montagud, A., Fernandez de Cordoba, P., Urchueguia, J.F., 2009. Metabolic flux analysis of the hydrogen production potential in Synechocystis sp. PCC6803. International Journal of Hydrogen Energy 34, 8828−8838.
- Nogales, J., Palsson, B., Thiele, I., 2008. A genome-scale metabolic reconstruction of Pseudomonasputida KT2440: IJN746 as a cell factory. BMC Systems Biology 2:79.
- Novak, L., Loubiere, P., 2000. The metabolic network of Lactococcus lactis: distribution of 14C-labeled substrates between catabolic and anabolic pathways. Journal of Bacteriology 182, 1136−1143.
- Obeid, J., Magnin, J.-P., Flaus, J.-M., Adrot, O., Willison, J.C., Zlatev, R., 2009. Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus. International Journal of Hydrogen Energy 34, 180−185.
- Oh, Y.-K., Kim, H.-J., Park, S., Kim, M.-S., Ryu, D.D.Y., 2008. Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19. International Journal of Hydrogen Energy 33, 1471−1482.
- Ooshima, H., Takakuwa, S., Katsuda, T., Okuda, M., Shirasawa, T., Azuma, M., Kato, J., 1998. Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus. Journal of Fermentation and Bioengineering 85, 470−475.
- Ormerod, J.G., 1956. The use of radioactive carbon dioxide in the measurement of carbon dioxide fixation in Rhodospirillum rubrum. Biochemical Journal 64, 373−380.
- Ormerod, J.G., Gest, H., 1962. Symposium on metabolism of inorganic compounds. IV. Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bacteriology Reviews 26, 51−66.
- Ozgur, E., Uyar, B., Oztiirk, Y., Yucel, M., Gunduz, U., Eroglu, I., 2010. Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures. Resources, Conservation and Recycling 54, 310−314.
- Papoutsakis, E.T., 1984. Equations and calculations for fermentations of butyric acid bacteria. Biotechnology and Bioengineering 27, 174−187.
- Pharkya, P., Burgard, A.P., Maranas, C.D., 2004. OptStrain: A computational framework for redesign of microbial production systems. Genome Research 14, 2367−2376.
- Pirt, S.J., 1982. Maintenance energy: a general model for energy-limited and energy-sufficient growth. Archives of Microbiology 133, 300−302.
- Reed, J.L., Palsson, B.O., 2003. Thirteen years of building constraint-based in silico models of Escherichia coli. Journal of Bacteriology 185, 2692−2699.
- Risso, C., Van Dien, S.J., Orloff, A., Lovley, D.R., Coppi, M.V., 2008. Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens. Journal of Bacteriology 190, 2266−2274
- Sasaki, K. Hydrogen and 5-Aminolevulinic Acid Production by Photosynthetic Bacteria. In: Zaborsky, O.R. (Ed.), Biohydrogen. Plenum Press, New York, 1998.
- Savinell, J.M., Palsson, B.O., 1992. Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. Journal of Theoretical Biology 154, 421−454.
- Sauer, U., Hatzimanikatis, V., Hohmann, H.P., Manneberg, M., van Loon, A.P., Bailey, J.E., 1996. Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Applied and Environmental Microbiology 62, 3687−3696.
- Schilling, C.H., Edwards, J.S., Letscher, D., Palsson, B.0., 2000. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnology and Bioengineering 71, 286−306.
- Segre, D., Vitkup, D., Church, G.M., 2002. Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences of the United States of America 99, 15 112−15 117.
- Seifert, K., Waligorska, M., Laniecki, M., 2010. Hydrogen generation in photobiological process from dairy wastewater. International Journal of Hydrogen Energy 35, 9624−9629.
- Shastri, A.A., Morgan, J.A., 2005. Flux balance analysis of photoautotrophic metabolism. Biotechnology Progress 21, 1617−1626.
- Shi, X.-Y., Yu, H.-Q., 2004. Hydrogen production from propionate by Rhodopseudomonas capsulata. Applied Biochemistry and Biotechnology 117, 143−154.
- Shi, X.Y., Yu, H.Q., 2005. Optimization of volatile fatty acid compositions for hydrogen production by Rhodopseudomonas capsulata. Journal of Chemical Technology & Biotechnology 80, 1198−1203.
- Smallbone, K., Simeonidis, E., Broomhead, D.S., Kell, D.B., 2007. Something from nothing: bridging the gap between constraint-based and kinetic modelling. FEBS Journal 21 A, 5576−5585.
- Stephanopoulos, G., 1994. Metabolic engineering. Current Opinion in Biotechnology 5,196−200.
- Stephanopoulos, G., 1999. Metabolic fluxes and metabolic engineering. Metabolic Engineering 1, 1−11.
- Strnad, H., Lapidus, A., Paces, J., Ulbrich, P., Vlcek, C., Paces, V., Haselkorn, R., 2010. Complete Genome Sequence of the Photosynthetic Purple Nonsulfur Bacterium Rhodobacter capsulatus SB 1003. Journal of Bacteriology 192, 3545−3546.
- Takaichi, S. Distribution and Biosynthesis of Carotenoids. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (Eds.), The Purple Phototrophic Bacteria. Springer Science + Business Media B.V., 2009, p. 97−117.
- Tao, Y., He, Y., Wu, Y., Liu, F., Li, X., Zong, W., Zhou, Z., 2008. Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. International Journal of Hydrogen Energy 33, 963−973.
- Teusink, B., Wiersma, A., Jacobs, L., Notebaart, R.A., Smid, E.J., 2009. Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation. PLoS Computational Biology 5, el000410.
- Tichi, M.A., Tabita, F.R., 2000. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway. Archives of Microbiology 174, 322−333.
- Tichi, M.A., Tabita, F.R., 2001. Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism. Journal of Bacteriology 183, 63 446 354.
- Tsygankov, A. A., Laurinavichene, T.V., 1996. Influence of the degree and mode of light limitation on growth characteristics of the Rhodobacter capsulatus continuous cultures. Biotechnology and Bioengineering 51, 605−612.
- Van Dien, S.J., Iwatani, S., Usuda, Y., Matsui, K., 2006. Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression. Journal of Bioscience and Bioengeneering 102, 34−40.
- Varma, A., Palsson, B.O., 1993a. Metabolic capabilities of Escherichia coli: II. Optimal growth patterns. Journal of Theoretical Biology 165, 503−522.
- Varma, A., Palsson, B.O., 1993b. Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. Journal of Theoretical Biology 165, 477 502.
- Varma, A., Palsson, B.O., 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Applied and Environmental Microbiology 60, 3724−3731.
- Vermeglio, A., Joliot, P., 1999. The photosynthetic apparatus of Rhodobacler sphaeroides. Trends in Microbiology 7, 435−440.
- Waligorska, M., Seifert, K., Goreeki, K., Moritz, M., Laniecki, M., 2009. Kinetic model of hydrogen generation by Rhodobacter sphaeroides in the presence of NH4+ ions. Journal of Applied Microbiology 107, 1308−1318.
- Weaver, P.F., Wall, J.D., Gest, H., 1975. Characterization of Rhodopseudomonas capsulata. Archives of Microbiology 105, 207−216.
- Willows, R.D., Kriegel, A.M. Biosynthesis of bacteriochlorophylls in purple bacteria. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (Eds.), The Purple Phototrophic Bacteria. Springer Science + Business Media B.V., 2009, p. 57—79.
- Zaborsky, O.R. (Ed), BioHydrogen. Plenum Press, New York, 1998.
- Автор выражает благодарность своему научному руководителю, Всеволоду Александровичу Твердислову, за внимание и всестороннюю поддержку проведенного исследования.