Помощь в написании студенческих работ
Антистрессовый сервис

Разработка фармакокинетической модели индивидуального планирования нейтрон-захватной терапии с использованием меченых борсодержащих соединений

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В целом, предлагаемая нами схема планирования БНЗТ выглядит следующим образом. Больному за несколько дней до терапии вводят индикаторное количество меченого соединения, затем сканируют на гамма-камере зону опухоли через заданные интервалы времени для определения динамики накопления и выведения меченого соединения из опухоли и окружающих тканей. Компьютерная обработка данных позволяет определить… Читать ещё >

Разработка фармакокинетической модели индивидуального планирования нейтрон-захватной терапии с использованием меченых борсодержащих соединений (реферат, курсовая, диплом, контрольная)

Содержание

  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Актуальные проблемы борнейтрон-захватной терапии
      • 1. 1. 1. Источники нейтронов для борнейтрон-захватной терапии
      • 1. 1. 2. Соединения для нейтрон-захватной терапии
      • 1. 1. 3. Методы определения бора в биологических объектах
    • 1. 2. Фармакокинетика борсодержащих соединений
      • 1. 2. 1. Распределение борсодержащих соединений в организме животных-опухоленосителей
      • 1. 2. 2. Накопление бора-10 в опухолях онкологических больных
    • 1. 3. Планирование борнейтрон-захватной терапии
      • 1. 3. 1. Содержание бора в опухоли и окружающих тканях больных на момент проведения БНЗТ
      • 1. 3. 2. Оценка поглощенной дозы в опухоли и окружающих тканях
  • ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Экспериментальные модели
    • 2. 2. Борсодержащие соединения, меченные радиоактивным йодом
    • 2. 3. Методики исследования распределения меченых борсодержащих соединений в организме животных-опухоленосителей
    • 2. 4. Методы статистической обработки результатов исследования
  • ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ
    • 3. 1. Исследование распределения BSH, меченного радиоактивным йодом, по органам и тканям мышей с меланомой В
    • 3. 2. Сравнение фармакокинетических параметров I-BSH и его немеченого аналога
    • 3. 3. Динамика накопления и выведения из органов и тканей мышей с меланомой В-16 нового отечественного соединения
  • BSCN, меченного радиоактивным йодом
    • 3. 4. Изучение распределения 131I-BSH в целостном организме мышей с помощью гамма-камеры
    • 3. 5. Влияние дополнительного воздействия агентов химической и физической природы на выведение I-BSH из организма животных-опухоленосителей
    • 3. 6. Разработка модели планирования борнейтрон-захватной терапии, основанной на использовании борсодержащего соединения, меченного радиоактивным йодом

Актуальность работы. Одной из задач современной радиобиологии является поиск способов повышения эффективности лучевого и комбинированного лечения злокачественных новообразований для максимального поражения опухоли при минимальном повреждении нормальных тканей. Перспективным направлением в решении проблемы # избирательного поражения опухолей является применение метода борнейтрон-захватной терапии (БНЗТ). Для успешной реализации в клинической практике потенциальных возможностей БНЗТ должен быть решен комплекс сложных химических, биологических, медицинских и физико-технических проблем. В этом ряду важное место занимает необходимость использования туморотропных борсодержащих соединений и изучение их фармакокинетики (распределение по органам и тканям). При планировании БНЗТ, в первую очередь, необходимо выбрать время начала облучения нейтронами после введения борсодержащего соединения, рассчитать изодозные поля, для чего нужно определить концентрацию бора в опухоли и окружающих тканях в момент проведения терапии. В связи с тем, что накопление бора в органах и тканях больных варьирует в широких пределах, планирование БНЗТ следует проводить с Ф учетом индивидуальных особенностей распределения борсодержащих соединений у каждого больного. Существующие в настоящее время способы планирования БНЗТ не способны обеспечить такой индивидуальный подход. Поэтому для повышения эффективности борнейтрон-захватной терапии актуальной остается разработка способа, индивидуального планирования БНЗТ, позволяющего изучать динамику накопления соединения непосредственно в организме больного, на основании полученных данных выбирать время начала лучевого воздействия и рассчитывать поглощенные дозы в опухоли и окружающих тканях.

Цель и основные задачи исследования. Целью настоящей работы являлась разработка фармакокинетической модели индивидуального планирования борнейтрон-захватной терапии на основе изучения распределения борсодержащих соединений, меченных радиоактивным йодом, в организме животных-опухоленосителей.

Для достижения поставленной цели необходимо было решить следующие задачи:

1. Изучить распределение меркаптододекабората (BSH) и родандодекабората (BSCN) натрия, меченных 131-йодом, по органам и тканям мышей с меланомой В-16.

2. Сравнить накопление в меланоме В-16 и окружающих тканях мышей 131I-BSH и его немеченого аналога.

3. Оценить возможность отбора агентов физической и химической природы, повышающих накопление бора в опухоли, при использовании меченых борсодержащих соединений.

4. Исследовать динамику накопления и выведения 131I-BSH из меланомы В-16 и окружающих тканей с помощью гамма-камеры in vivo.

5. Разработать фармакокинетическую модель индивидуального планирования борнейтрон-захватной терапии.

Научная новизна. Впервые проведены фармакокинетические исследования распределения меченных радиоактивным йодом борсодержащих соединений как по органам и тканям, так и в целостном организме мышей с меланомой В-16 с использованием сцинцилляционного счетчика и гамма-камеры. Изучено влияние на туморотропность 131I-BSH введения глюкозы, нагрева зоны опухоли и локального воздействия на опухоль инфракрасного излучения. Показано, что локальное воздействие на зону опухоли инфракрасного света через 10 мин после введения 1311-BSH значительно повышает накопление соединения в опухоли. Разработана модель, позволяющая оценивать динамику накопления борсодержащего соединения в опухоли и окружающих тканях, и рассчитывать концентрацию бора в этих тканях непосредственно в организме больного. Модель защищена патентом № 2 212 260 «Способ планирования нейтрон-захватной терапии».

Научно-практическая значимость. Метка радиоактивным йодом производных додекабората позволяет проводить скрининг борсодержащих соединений, обладающих способностью накапливаться в опухолях. Показано, что mI-BSCN как по абсолютному накоплению в меланоме file, так и по соотношению между содержанием соединения в опухоли и окружающих тканях превосходит 131I-BSH, немеченый аналог которого применяют при проведении БНЗТ. Это свидетельствует о перспективности использования BSCN для задач БНЗТ. Радиоизотопная метка борсодержащих соединений дает возможность исследовать влияние агентов физической и химической природы на увеличение туморотропных свойств применяемых в клинической практике соединений. Благодаря использованию гамма-камеры можно исследовать динамику накопления меченого борсодержащего соединения в опухоли и окружающих тканях непосредственно в организме больного, что исключает необходимость травматичного отбора образцов тканей. Представленная в данной работе схема планирования БНЗТ позволяет выбирать оптимальное время начала облучения нейтронами и рассчитывать поглощенную дозу в опухоли и окружающих тканях индивидуально для каждого больного, что значительно облегчит работу радиолога и повысит эффективность борнейтрон-захватной терапии.

По материалам работы был получен патент на изобретение. Основные положения диссертационной работы представлены в трех научных работах и доложены на пяти конференциях, четыре из которых проходили на международном уровне:

— Международный конгресс «Энергетика 3000», 16−20 октября 2000 г., Обнинск;

— «IV съезд по радиационным исследованиям (радиобиология, радиоэкология, радиационная безопасность)», 20 — 24 ноября 2001 г., Москва;

— Международный конгресс «Энергетика 3000 (энергетика и человек)», 3−6 декабря 2001 г., Обнинск;

— «XI International conference on boron chemistry», 28 July — 2 August 2002, Moscow;

— «10 International congress on neutron capture therapy», September 8 -13, 2002, Essen, Germany.

На защиту выносятся основные положения:

1. Динамика накопления и выведения индикаторного количества 131I-BSH отражает распределение в меланоме В-16 и окружающих тканях его немеченого аналога, введенного в терапевтической дозе.

2. Использование борсодержащих соединений, меченных радиоактивным йодом, позволяет проводить отбор соединений и модифицирующих их распределение агентов, применение которых в практике БНЗТ может существенно повысить ее эффективность.

3. Предложенная модель индивидуального планирования БНЗТ позволяет оценить степень накопления бора в опухоли и окружающих тканях для определения момента начала и продолжительности лучевого воздействия.

СПИСОК СОКРАЩЕНИЙ.

БНЗТ — борнейтрон-захватная терапия. ЛПЭ — линейная передача энергии. BSH — меркаптододекаборат натрия. BP, А — борфенилаланин.

BPA-F — комплекс борфенилаланина с фруктозой.

ОБЭ — относительная биологическая эффективность.

БЭС — биологическая эффективность борсодержащего соединения.

ПЭТ — позитрон-эмиссионная томография. 1 1.

I-BSHмеркаптододекаборат натрия, меченный радиоактивным йодом. 131I-BSCN — родандодекаборат натрия, меченный радиоактивным йодом. ИК — инфракрасное. Гл — глюкоза.

выводы.

1. Меченный радиоактивным йодом меркаптододекаборат натрия, сохраняет стабильность связи бор-йод после введения в организм животных-опухоленосителей.

2. Кинетика распределения 131I-BSH коррелирует с кинетикой его немеченого аналога BSH, применяемого для борнейтрон-захватной терапии.

3. Отечественное соединение родандодекаборат натрия, меченный йодом-131, превосходит 131I-BSH, как по абсолютному накоплению в меланоме В-16, так и по соотношению между содержанием соединения в опухоли и окружающих тканях.

4. Воздействие на зону опухоли инфракрасного излучения после введения j.

I-BSH увеличивает накопление этого соединения в меланоме В-16 более чем в 3 раза, что дает основание рекомендовать использование данного приема для повышения эффективности БНЗТ.

5. Анализ распределения меченого радиоактивным йодом борсодержащего соединения с использованием гамма-камеры позволяет количественно оценить динамику накопления и выведения бора из опухоли и окружающих тканей in vivo.

6. Разработанный способ индивидуального планирования БНЗТ позволяет на основании данных по радиочувствительности опухоли и окружающих тканей, динамики накопления в них борсодержащего соединения, меченного радиоактивным йодом, оптимизировать время начала облучения нейтронами и рассчитать поглощенную дозу за счет продуктов реакции нейтронного захвата.

Ill.

ЗАКЛЮЧЕНИЕ

.

Анализ литературных данных, охватывающий практически все стороны борнейтрон-захватной терапии, показал, что к началу наших исследований оставался нерешенным целый ряд проблем. Среди них, в частности, широкий круг вопросов, связанных с повышением эффективности БНЗТ: установление целесообразности проведения терапиивыбор оптимального время начала облучения нейтронамиопределение содержания бора-10 в опухоли и окружающих тканях на момент проведения БНЗТпути увеличение накопления бора в опухоли.

Решение перечисленных вопросов значительно упростилось после осуществления синтеза борсодержащих соединений, меченных радионуклидами.

Введение

таких соединений в организм животных-опухоленосителей позволяет изучать накопление и выведение соединений из опухоли и окружающих тканей и на его основе разрабатывать подходы к повышению эффективности БНЗТ.

В работе представлены данные о распределении в организме мышей с меланомой В-16 двух производных додекабората, меченных радиоактивным йодом: 13II-BSH и 131I-BSCN. Изучение распределения 1311-BSH в щитовидной железе показало незначительное (на уровне примеси радиойода, не связанного с молекулой BSH) накопление радиоактивности к окончанию исследования, что свидетельствует о высокой химической прочности связи бор-йод и биологической стабильности I-BSH.

Динамика накопления и выведения I31I-BSH из опухоли и окружающих тканей, полученные на разных группах животных имели одинаковый профиль на всем интервале исследования. Однако активность на 1 г ткани варьировала в широких пределах для всех анализируемых тканей, что указывает на необходимость учета индивидуальных особенностей опухоленосителей по накоплению и элиминировании соединения из организма.

Сравнение динамики накопления 131I-BSH в опухоли и окружающих тканях мышей с распределением его немеченого аналога показало, что формы кривых динамики накопления и выведения соединений описываются двухэкспоненциальными уравнениями. При этом в опухоли, крови и коже периоды полувыведения быстрой и медленной компонент для 131I-BSH и BSH не отличаются (в пределах погрешности). Показана высокая корреляция между этими кривыми (г2 для крови и опухоли равен 0,96, для кожи — 0,88). Полученные результаты свидетельствуют о возможности использования фармакокинетических параметров меченного радиоактивным йодом соединения для экстраполяции данных на кинетику его немеченого аналога.

Наряду с хорошо известным BSH, в работе исследовали новое отечественное борсодержащее соединение (BSCN), меченное радиоактивным йодом. Изучение его распределения по органам и тканям.

131 131 мышей с меланомой В-16 показало, что I-BSCN превосходит I-BSH не только по абсолютному накоплению бора в экспериментальной меланоме, но также и по соотношению между содержанием препарата в опухоли и окружающих тканях. Данное обстоятельство позволяет считать полученный в нашей стране BSCN более перспективным соединением для задач борнейтрон-захватной терапии, чем применяемый в настоящее BSH. Однако внедрение нового соединения в практику БНЗТ дорогостоящий и длительный процесс, требующий проведения многих исследований. Поэтому поиск путей увеличения накопления в опухоли уже применяемых в лечении борсодержащих соединений является оправданным.

В представленной работе рассмотрено несколько подходов к.

1 л I повышению тропности I-BSH: глюкозная нагрузка, нагрев зоны опухоли и локальное воздействие инфракрасного света.

Дополнительное введение глюкозы позволяет повысить накопление 131I-BSH в опухоли уже через 6 ч с момента внутрибрюшинного введения. Однако при этом отмечается повышение его содержания и в других исследуемых органах. Наибольшего внимания заслуживает тот факт, что.

1 О 1 на фоне глюкозной нагрузки, через 24 ч с момента введения I-BSH, происходит не только увеличение содержания этого соединения в опухолевых тканях, но и повышение его градиента в опухоли и окружающих тканях.

После локального нагрева зоны опухоли было выявлено увеличение радиоактивности в опухоли уже на ранних сроках после введения борсодержащего соединения. На более поздних сроках, когда происходит активное выведение препарата из организма, также отмечается некоторое увеличение радиоактивности в опухоли по сравнению с животными контрольной группы.

Полученные данные свидетельствуют о перспективности разработки приемов и методов повышения туморотропности борсодержащих соединений за счет использования дополнительной глюкозной нагрузки и локального нагрева опухоли, что позволит создать более благоприятные условия для проведения борнейтрон-захватной терапии.

1 О 1.

Значительно большее увеличение накопления I-BSH в опухоли получено при использовании инфракрасного излучения. Локальное воздействие ИК излучения на зону опухоли позволило к 6 ч после введения препарата значимо повысить накопление 131I-BSH в опухоли, крови и коже (в 3,2, 3,3 и 3,5 раза, соответственно) по сравнению с контрольной группой животных.

Таким образом, предлагаемый в работе метод, основанный на использовании радиоизотопной метки борсодержащих соединений, позволяет проводить отбор различных агентов, воздействие которых на организм способно увеличить накопление соединений в опухоли, и как следствие, повысить эффективность борнейтрон-захватной терапии.

Применение меченого борсодержащего соединения дало возможность с помощью гамма-камеры провести изучение распределения соединения в целостном организме. Обработка полученных данных позволила на скеннограмме лапки с опухолью выделить зону опухоли и зону.

1 0 1 окружающих тканей и определить для этих тканей активность I-BSH.

1 о I.

Поскольку было установлено, что в процессе циркуляции I-BSH в организме радиоактивный йод от этой молекулы не отщепляется (соотношение между содержанием 1311 и 10 В не изменяется), то на основании данных о радиоактивности исследуемой ткани рассчитывали концентрацию бора.

В настоящее время применяемые в практике борнейтрон-захватной терапии методы исследования динамики выведения соединений из организма больного имеют либо недостаточный предел обнаружения (-10 мкг/г ткани — использование ядерно-магнитного резонанса), либо отслеживают только первые часы после введения соединения (использование позитрон-эмиссионном томографии). Поэтому применение таких приемов не позволяет проводить оптимального планирования БНЗТ.

Использование полученных в настоящей работе данных дало возможность разработать новую модель, устраняющую недостатки отмеченных выше методов. Модель позволяет отслеживать динамику накопления и выведения соединения из опухоли и окружающих тканей непосредственно в организме больного, изучать распределение борсодержащего соединения в организме, устанавливать целесообразность терапии для конкретного больного, выбирать оптимальное время начала облучения нейтронами и рассчитывать поглощенную дозу в тканях. И что наиболее значимо — проводить индивидуальное планирование борнейтрон-захватной терапии.

В целом, предлагаемая нами схема планирования БНЗТ выглядит следующим образом. Больному за несколько дней до терапии вводят индикаторное количество меченого соединения, затем сканируют на гамма-камере зону опухоли через заданные интервалы времени для определения динамики накопления и выведения меченого соединения из опухоли и окружающих тканей. Компьютерная обработка данных позволяет определить целесообразность проведения терапии для данного больного, оптимальное время начала лучевого воздействия и рассчитать мощность дозы за счет реакции нейтронного захвата. Это даст возможность установить время введения соединения и его терапевтическую дозу, время начала облучения тепловыми нейтронами и продолжительность облучения.

Использование предложенной схемы совместно с применяемыми на практике методами определения концентрации бора в опухоли и окружающих тканях, например, спектрометрии мгновенного гамма-излучения в момент проведения терапии, позволит снять главные вопросы, возникающие при проведении индивидуального планирования БНЗТ.

Следует отметить, что полученные в настоящей работе результаты и предложенные подходы, завершая определенный этап исследований, указывают направления новых исследований для повышения качества и эффективности борнейтрон-захватной терапии.

Показать весь текст

Список литературы

  1. Н.Н., Савченко Н. Е., Фрадкин С. З. и др. Применение гипертермии и гипергликемии при лечении злокачественных опухолей. -М.: Медицина, 1980.-256 с.
  2. Ю.А. Три гипотезы о механизме действия лазерного облучения на клетки и организм человека. В кн.: Эфферентная медицина. -М.: ИБМХ РАМН, 1994. С. 51−67.
  3. А., Форд Р. Спутник химика. -М.: Мир, 1976. 541 с.
  4. В.Е. Основы лазерной терапии. М.: Респект, 1992. — 122 с.
  5. .М., Брегадзе Ю. И. Нейтроны в радиобиологическом эксперименте. М.: Наука, 1967. — 292 с.
  6. С.П., Потетня В. И., Ходырева Е. В. и др. Глубинное распределение нейтрон-захватных событий на ядрах 10 В при облучении водного фантома нейтронами из каналов реактора БР-10 // Медицинская радиология. 1991. № 8. — С. 44−46.
  7. Р.Г., Фролова Е. И. Методика определения 10 В в биологических образцах // Медицинская радиология. 1981. № 1. — С. 44−48.
  8. Г. М. Биофизические модели радиобиологических эффектов. -М.: Энергоатомиздат, 1987. 152 с.
  9. Г. М. Нейтрон-захватная терапия: итоги и перспективы. Сб. науч. тр.: Нейтроны и тяжелые частицы в биологии и медицине. -Обнинск: НИИМР АМН СССР, 1989. С. 87−95.
  10. В.Н., Фирсов А. А., Филов В. А. Фармакокинетика. -М.: Медицина, 1980.-423 с.
  11. Р.А., Ягудов А. С., Григорьева Е. Ю. и др. Современное состояние бор-нейтронзахватной терапии опухолей // Вопросы онкологии. 1995. Том 41. № 2. — С. 106−107.
  12. Р.А. Биологические основы нейтрон-захватной терапии на боре-10 (экспериментальные исследования): Дис.. док. биол. наук. М., 1999.-47 с.
  13. С.Е., Ядровская В. А., Савина Е. П. и др. Синтез меченного131 2
  14. Bi2HhSCN. «и особенности его распределения в организме экспериментальных животных // Химико-фармацевтический журнал. -2000. Том 34. № 2. С. 30−31.
  15. В.Ю. Биометрические методы. М.: Наука, 1964. — 415 с.
  16. Д. Анализ процессов статистическими методами. М.: Мир, 1973.-957 с.
  17. B.C. Биохимические аспекты опухолевого роста. М.: Медицина, 1975- 304 с.
  18. В.А., Ульяненко С. Е., Савина Е. П. и др. Синтез и фармакокинетика меченого йодом-131 aHHOHa-Bi2HioSH. «// Химико-фармацевтический журнал. 2001. Том 35. № 8. — С. 6−7.
  19. Allen D.A., Beynon T.D. A design study for an accelerator-based epithermal neutron beam for BNCT // Phys. Med. Biol. 1995. Vol. 40. No. 5. — P. 807−821.
  20. Barth R.F., Adams D.M., Soloway A.H. et al. Determination of boron in tissues and cells using direct-current plasma atomic emission spectroscopy // Anal. Chem. 1991. Vol. 40. -P. 890−893.
  21. Barth R.F., Soloway A.H. Boron neutron capture therapy of brain tumors -current status and future prospects // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2.-P. 3−7.
  22. Barth R.F., Soloway A.H., Brugger R.M. Boron neutron capture therapy of brain tumors: past history, current status, and future potential // Cancer Invest. 1996. Vol. 14. No. 6. — P. 534−550.
  23. Barth R.F., Yang W., Adams D. et al. Molecular targeting of the epidermal growth factor receptor for neutron capture therapy of gliomas // Cancer Res. -2002. Vol. 62. No. 11.-P. 3159−3166.
  24. Bendel P., Koudinova N., Salomon Y. In vivo imaging of the neutron capture therapy agent BSH in mice using 10B MRI // Magnetic Resonance in Medicine. 2002. Vol. 46. — P. 13−17.
  25. Bendel P., Sauerwein W. Optimal detection of the neutron capture therapy agent borocaptate sodium (BSH): A comparison between 1-H and 10-B NMR// Med. Phys. 2001. Vol. 28. No. 2. — P. 178−183.
  26. Bleuel D.L., Donahue R.J., Lubewigt B.A. et al. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy // Med. Phys. 1998. Vol. 25. No. 9. — P. 1725−1734.
  27. Britten R.A., Peters L.J., Murray D. Biological factors influencing the RBEof neutrons: implications for their past, present and future use in radiotherapy//Radiation Research. -2001. Vol. 156. P. 125−135.
  28. Brugger R. An epithermal neutron beam for neutron capture therapy at the Missouri University Research Reactor // J. Nucl. Tech. 1992. Vol. 98. No. 3.-P. 322−332.
  29. Buchholz T.A., Laramore G.E., Stelzer K.J. et al. Boron neutron capture enhanced fast neutron radiotherapy for malignant gliomas and other tumors //J. Neuro-Oncology. 1997. Vol. 33. No. 1&2. — P. 171−178.
  30. Burian J., Marek M., Mares V. et al. Neutron-capture therapy of brain tumours: neutron sources, neutron-capture drugs, biological tests and clinical perspectives in the Czech Republic // Physiol. Res. 1997. Vol. 46. — P. 9399.
  31. Burian J., Marek M., Rataj J. et al. Report on the first patient group of the phase I BNCT trial at the LVR-15 reactor. In: Research and Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002.-P. 1107−1112.
  32. Burn K.W., Casalini L., Daffara C. et al. Design of an epithermal facility for treating patients with brain gliomas at ENEA Casaccia. In: Research and
  33. Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A.
  34. Witting), Essen, 2002. P. 129−134.
  35. Capala J., Skold K., Stenstam B.H. et al. Clinical BNCT studies in Sweden. I* In: Research and Development in Neutron Capture Therapy (W. Sauerwein,
  36. R. Moss, A. Witting), Essen, 2002. P. 1101−1106.
  37. Ceberg C.P., Brun A., Kahl S.B. et al. A comparative study on the pharmacokinetics and biodistribution of boronated porphyrin (BOPP) and sulfhydryl boron hydride (BSH) in the RG2 rat glioma model // J. Neurosurg. 1995. Vol. 83. — P. 86−92.
  38. Ceberg C.P., Persson A., Brun A. et al. Performance of sulfhydryl boron hydrid in patients with grade III and IV astrocytoma: a basis for boron neutron capture therapy // J. Neurosurg. 1995. Vol. 83. — P. 79−85.
  39. Cemazar M., Skrk J., Mitrovic B. et al. Change delivery of boron to tumours using electroporation for boron neutron capture therapy with BSH // The British Journal of Radiology. 2000. Vol. 73. — P. 195−200.
  40. Cerullo N., Esposito J. Proposal of a new BNCT irradiation facility based on л. alternative compact fusion neutron source. In: Research and Development in
  41. Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002.-P. 207−211.
  42. Coderre J.A., Button T.M., Micca P.L. et al. Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex // Int. J. Radiat. Oncol. Biol. Phys. 1994. Vol. 30. No. 3. — P. 643−652.
  43. Codere J.A., Elowitz E.H., Chadha M. et al. Boron neutron capture therapy for glioblastoma multiforme using p-boronophenylalanine and epithermal neutrons: trial design and early clinical results // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2.-P. 14−152.
  44. Coderre J.A., Glass J.D., Fairchild R.G. et al. Affinity of the melanin precursor analog p-boronophenylalanine for tumors other than melanoma // Cancer Res. 1990. Vol. 50. — P. 138−141.
  45. Coderre J.A., Glass J.D., Fairchild R.G. et al. Selective targeting of boronophenylalanine to melanoma in BALB/c mice for neutron capture therapy // Cancer Res. 1987. Vol. 47. — P. 6377−6383.
  46. Coderre J.A., Joel D.D., Micca P.L. et al. Control of intracerebral gliosarcomas in rats by boron neutron capture therapy with p-boronophenylalanine // Radiation Res. 1992. Vol. 129. — P. 290−296.
  47. Coderre J.A., Morris G.M. The radiation biology of boron neutron capture therapy II Radiation Res. 1999. Vol. 151. No. 1. — P. 1−18.
  48. Downing R.G., Strong P.L., Hovance B.M. et al. Considerations in the determination of boron at low concentrations // Biol. Trace Elem. Res. -1998. Vol. 66. No. 1−3.-P.3−21.
  49. Evans S., Krahenbuhl U. Improved boron determination in biological material by inductively coupled plasma mass spectrometry // J. Anal. At. Spectrom. 1994. Vol. 9. — P. 1249−1253.
  50. Feinendegen L.E. Strategic planning workshop on research needs for neutron capture therapy // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2. -P.179−185.
  51. Fukuda H., Honda C., Wadabayashi N. et al. Pharmacokinetics of lOB-p-boronophenylalanine in tumours, skin and blood of melanoma patients: a study of boron neutron capture therapy for malignant melanoma // Melanoma Res. 1999. Vol. 9. No. 1. — P. 75−83.
  52. Gabel D. Present status and perspectives of boron neutron capture therapy // Radiotherapy and Oncology. 1994. Vol. 30. — P. 199−205.
  53. Gabel D., Fairchild R.G., Borner H.G. et al. The relative biological effectiveness in V79 Chinese hamster cells of neutron capture reaction in boron and nitrogen // Radiation. Res. 1984. Vol. 98. — P. 307−316.
  54. Gabel D., Foster S., Fairchild R.G. The Monte Carlo simulation of the1П Hbiological effect of the B (n, a) Li reaction in cells and tissues and its implication for boron neutron capture therapy // Radiation. Res. 1987. Vol. 111.-P. 14−25.
  55. Gabel D., Holstein H., Larsson B. Et al. Quantitative neutron capture radiography for studying the biodistribution of tumor-seeking boron-containing compounds // Cancer Res. 1987. Vol. 47. — P. 5451−5454.
  56. Gahbauer R.A., Fairchild R.G., Goodman J.H. et al. RBE innormal tissue studies. In: Neutron Capture Therapy (D. Gabel and R. Moss), New York, 1992.-P. 123−128.
  57. Giusti V., Munck af Rosenschold P. M, Skold K. et al. Monte Carlo description and validation of the Studsvik BNCT clinical beam. In: Research and Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002. P. 145−151.
  58. Goodman J.H., Yang W., Barth R.F. et al. Boron neutron capture therapy of brain tumors: biodistribution, pharmacokinetics, and radiation dosimetry sodium borocaptate in patients with gliomas // Neurosurgery. 2000. Vol. 47.No. 3.-P. 608−621.
  59. Grant R., Walker M., Hadley D. et al. Imaging response to chemotherapy with RMP-7 and carboplatin in malignant glioma: size matters but speed does not // J. Neuro-Oncology. 2002. Vol. 57. No. 3. — P. 241−245.
  60. Gregor A., Lind M., Newman H. et al. Phase II studies of RMP-7 and carboplatin in the treatment of recurrent high grade glioma. RMP-7 European Study Group // J. Neuro-Oncology. 1999. Vol. 44. No. 2. — P. 137−145.
  61. Gritzay O., Kaltchenko O., Klimova N. et al. Possibility of neutron source for boron neutron capture therapy at Kyiv Research Reactor. In: Researchand Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002. P. 185−189.
  62. Hartman Т., Carlson J. Radiation dose heterogeneity in receptor and antigen mediated boron neutron capture therapy // Radiotherapy and Oncology. -1994. Vol. 31.-P. 61−75.
  63. Haselsberger K., Radner H., Pendl G. Boron neutron capture therapy for glioblastoma: improvement of boron biodistribution by hyaluronidase // Cancer Letters.-1998. Vol. 131.-P. 109−111.
  64. Hawthorne M. F. New horizons for therapy based on the boron neutron capture reaction // Molecular Medicine Today. 1998. April. — P. 174−181.
  65. Hiratsuka J., Fukuda H., Kobayashi T. et al. Human melanoma treated by boron neutron capture therapy: comparison of the clinical response with the predicted response // Radiation Med. 1996. Vol. 14. No. 5. — P. 257−263.
  66. Hiratsuka J., Yoshino K., Kondoh H. et al. Biodistribution of boron concentration on melanoma-bearing hamsters after administration of p-, m-, o-boronophenylalanine // Jpn. J. Cancer Res. 2000. Vol. 91. No. 4. — P. 446−450.
  67. Horn V., Pharm D., Slansky J. et al. Disposition and tissue distribution of boron after infussion of borocaptate sodium in patients with malignant brain tumors // Int. J. Radiation Oncology Biol. Phys. 1998. Vol. 41. No. 3. — P. 631−638.
  68. Horsman M.R., Wood P.J., Chaplin D.J. et al. The potentiation of radiation damage by nicotinamide in the SCC VII tumour in vivo II Radiotherapy and Oncology. 1990. Vol. 18. — P. 49−57.
  69. Imahori Y., Ueda S., Ohmori Y. et al. Fluorine- 18-labeled fluoroboronophenylalanine PET in patients with glioma // J. Nucl. Med. -1998. Vol. 39. No. 2. P. 325−333.
  70. Imahori Y., Ueda S., Ohmori Y. et al. Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-gradegliomas: part I and part II // Clin. Cancer Res. 1998. Vol. 4. No. 8. — P. 1825−1841.
  71. D. Т., Slater С. O., Williams L. R. BNCT Filter Design Studies for the ORNL Tower Shielding Facility. Proceedings of the Seventh International Symposium on Neutron Capture Therapy for Cancer, Zurich, 1996.-P. 234−239.
  72. Ishikawa M., Kobayashi Т., Sakurai Y. et al. Optimization technique for a prompt gamma-ray SPECT collimator system // Radiation Res. 2001. Vol. 42.-P. 387−400.
  73. Ishiwata K., Ido Т., Honda C. et al. 4-Borono-2-18 °F.fluoro-D, L-phenylalanine: a possible tracer for melanoma diagnosis with PET // Nucl. Med. Biol. 1992. Vol. 19. -P. 311−318.
  74. Ishiwata K., Ido Т., Mejia A.A. et al. Synthesis and radiation dosimetry of 41 лborono-2- F. fluoro-D, L-phenylalanine: a target compound for PET and boron neutron capture therapy // Int. J. Rad. Appl. Instrum. [А]. 1991. Vol. 42. No. 4.-P. 325−328.
  75. Joel D.D., Coderre J. A., Micca P.L. et al. Effect of dose and infusion time on the delivery of p-boronophenylalanine for neutron capture therapy // J. Neuro-Oncology. 1999. Vol. 41. No. 3. — P. 213−221.
  76. Kabalka G.W., Smith G.T., Dyke J.P. et al. Evaluation of fluorine-18-BPA-fructose for boron neutron capture treatment planning // J. Nucl. Med. -1997. Vol. 38. No. 11. P. 1762−1767.
  77. Kageji Т., Nagahiro S., Uyama S. et al. Clinical review of BNCT using mixed neutron beam in patients with malignant glioma. In: Research and Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002. P. 1085−1091.
  78. Kageji Т., Nakagawa Y., Kitamura K. et al. Pharmacokinetics and boron uptake of BSH (Na2Bi2HnSH) in patients with intracranial tumors // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2. — P. 117−130.
  79. Kiger W.S., Micca P.L., Coderre J.A. et al. Microdosimetry analysis of the10 7 •
  80. B (n, a) Li reaction for human and rat neural tissues and tumor. In: Research and Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002. P. 651−655.
  81. Koivunoro H., Lou T-P., Reijonen J. et al. A compact neutron generator based on D-D or D-T fusion reaction for BNCT. In: Research and Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002. P. 313−318.
  82. Kulakov V.N., Khokhlov V.F., Nasonova T.A. et al. Compounds with I0B and Gd in the Russian NCT project. In: Research and Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002.-P. 107−110.
  83. Laakso J., Kulvik M., Ruokonen I. et al. Atomic emission method for total boron in blood during neutron-capture therapy // Clinical Chemistry. 2001. Vol. 47. No. 10.-P. 1796−1803.
  84. Laramore G.E., Wootton P., Livesey J.C. et al. Boron neutron capture therapy: a mechanism for achieving a concomitant tumor boost in fast neutron radiotherapy // Int. J. Radiation Oncology Biol. Phys. 1994. Vol. 28. No. 5.-P. 1135−1142.
  85. Laramore G.E., Risler R., Griffin T.W. et al. Fast neutron radiotherapy and boron neutron capture therapy: application to a human melanoma test system // Bull Cancer/Radiother. 1996. Vol. 83 (Suppl 1). — P. 191s-197s.
  86. Laramore G.E. The use of neutrons in cancer therapy: a historical perspective through the modern era // Seminars in Oncology. 1997. Vol. 24. No. 6. — P. 672−685.
  87. Larrieu O.C., Blaumann H., Longhino J. RA-6 reactor mixed beam design and performance for NCT trials. In: Research and Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002. P. 155−158.
  88. Liberman T.A., Razon N., Bartal A.D. et al. Expression of epidermal growth factor receptors in human brain tumors // Cancer Res. 1984. Vol. 44.-P. 753−760.
  89. Liu L., Barth R.F., Adams D.M. et al. Critical evaluation of bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors // Anticancer Res. 1996. Vol. 16. No. 5a. — P. 2581−2587.
  90. Liu H.B., Brugger R.M., Rorer D.C. et al. Design of a high-flux epithermal neutron beam using U fission plates at the Brookhaven Medical Research Reactor // Med. Phys. 1994. Vol. 21. No. 10. — P. 1627−1631.
  91. Matsumoto T, Aizawa О. Prompt gamma-ray neutron activation analysis of boron-10 in biological materials // Int. .J Rad. Appl. Instrum. А. 1990. Vol. 41. No. 9.-P. 897−903.
  92. Mishima Y., Ichihashi M., Tsuji M. et al. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound // J. Invest Dermatol. 1989. Vol. 92. No. 5 (Suppl). -P. 321s—325s.
  93. Mishima Y., Imahory Y., Honda C. et al. In vivo diagnosis of human malignant melanoma with positron emission tomography using specific melanoma-seeking 18F-DOPA analogue // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2.-P. 163−169.
  94. Moore D.E. A review of techniques for the analysis of boron in the development of neutron capture therapy agents // J. Pharmaceutical & Biomedical Analysis. 1990. Vol. 8. No. 7. — P. 547−553.
  95. Morris G.M., Coderre J.A., Hopewell J.W. et al. Response of rat skin to boron neutron capture therapy with p-boronophenylalanine and borocaptate sodium // Radiotherapy and Oncology. 1994. Vol. 32. — P. 144−153.
  96. Morris G.M., Coderre J.A., Hopewell J.W. et al. Response of the central nervous system to boron neutron capture irradiation: Evaluation using rat spinal cord model // Radiotherapy and Oncology. 1994. Vol. 32. — P. 249−255.
  97. Moss R.L., Aizawa O., Beynon D. et al. The requirements and development of neutron beams for neutron capture therapy of brain cancer // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2. — P. 27−40.
  98. Munck af Rosenschold P.M., Verbakel W.F., Ceberg C.P. et al. Toward clinical application on prompt gamma spectroscopy for in vivo monitoring of boron uptake in boron neutron capture therapy // Med. Phys. 2001. Vol. 28. No. 5.-P. 787−795.
  99. Murphy L.C., Dotzlaw H., Wong M.S. et al. Epidermal growth factor: receptor and ligand expression in human breast cancer // Semin. Cancer Biol.-1990. Vol. 1. No. 5.-P. 305−316.
  100. Nakagawa Y., Hatanaka H. Boron neutron capture therapy. Clinical brain tumor studies // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2. — P. 105 115.
  101. Nigg D.W., Wemple C.A., Risler R. et al. Modification of the University of Washington neutron radiotherapy facility for optimization of neutron capture enhanced fast-neutron therapy // Med. Phys. 2000. Vol. 27. No. 2. -P. 359−367.
  102. Nigg D.W. Some recent trends and progress in the physics and biophysics of neutron capture therapy // Progress in Nuclear Energy. 1999. Vol. 35. No. l.-P. 79−127.
  103. Nigg D.W., Wheeler F.J., Wessol D.E. et al. Computational dosimetry and treatment planning for Boron Neutron Capture Therapy // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2. — P. 93−104.
  104. Novick S., Quastel M., Marcus S. et al. Linkage of boronated polylysine to glycoside moieties of polyclonal antibody- boronated antibodies as potential delivery agents for neutron capture therapy // Nucl. Med. Biol. -2002. Vol. 29. No. 2. P. 159−167.
  105. Ono K., Kinashi Y., Suzuki M. et al. The combined effect of electroporation and borocaptate in boron neutron capture therapy for murine solid tumors // Jpn. J. Cancer Res. 2000. Vol. 91. No. 8. — P. 853 858.
  106. Ono K., Masunaga S-I., Suzuki M. et al. The combined effect of boronophenylalanine and borocaptate in boron neutron capture therapy for
  107. SCCVII tumors in mice 11 Int. J. Radiation Oncology Biol. Phys. 1999. Vol. 43. No. 2.-P. 431−436.
  108. Otersen В., Haritz D., Grochulla F. et al. Binding and distribution of Na2Bi2HnSH on cellular and subcellular level in tumor tissue of glioma patients in boron neutron capture therapy // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2.-P. 131−139.
  109. Pan X.Q., Wang H., Shukla S. et al. Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy // Bioconjugate Chem. 2002. Vol. 13. — P. 435−442.
  110. Pettersson O.A., Grusell E., Larsson B. et al. Quantitative neutron capture radiography for boron in biological specimens // Phys. Med. Biol. 1993. Vol. 38. No. 8. — P. 1089−1097.
  111. Pignol J-P., Oudart H., Chauvel P. et al. Selective delivery of 10B to soft tissues sarcoma using 10B-L- borophenylalanine for boron neutron capture therapy // The British Journal of Radiology. 1998. Vol. 71. — P. 320−323.
  112. Raaijmakers C.P., Bruinvis I.A., Nottelman E.L. et al. A fast and accurate treatment planning method for boron neutron capture therapy // Radiotherapy and Oncology. 1998. Vol. 46. — P. 321−332.
  113. Raaijmakers C.P., Konijnenberg M.W., Dewit L. et al. Monitoring of blood-10B concentration for boron neutron capture therapy using prompt gamma-ray analysis // Acta Oncol. 1995. Vol. 34. No. 4. -P. 517−523.
  114. Rivard M .J. Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy // Med. Phys. 2000. Vol. 27. No. 8. — P. 1761−1769.
  115. Rogus R.D., Harling O.K., Yanch J.C. Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor // Med. Phys. 1994. Vol. 21. No. 10. — P. 1611−1625.
  116. Sah R.N., Brown P.H. Isotope ratio determination in boron analysis // Biol. Trace Elem. Res. 1998. Vol. 66. No. 1−3. — P. 39−53.
  117. Sakurai Y., Kobayashi T. The medical-irradiation characteristics for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor // Med. Phys. 2002. Vol. 29. No. 10. -P. 2328−2337.
  118. Shih J.L., Brugger R.M. Gadolinium as a neutron capture therapy agent // Med. Phys. 1992. Vol. 19. No. 3. — P. 733−744.
  119. Sjoberg S., Carlsson J., Ghaneolhosseini H. et al. Chemistry and biology of some low molecular weight boron compounds for Boron Neutron Capture Therapy // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2. — P. 41−52.
  120. Soloway A.H., Barth R.F., Gahbauer R.A. et al. The rationale and requirements for the development of boron neutron capture therapy of brain tumors // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2. — P. 9−18.
  121. Soloway A.H., Tjarks W., Barnum B.A. et al. The chemistry of neutron capture therapy // Chem. Rev. 1998. Vol. 98. — P. 1515−1562.
  122. Sweet W.H. Early history of development of boron neutron capture therapy of tumors // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2. — P. 19−26.
  123. Taddia M., Cerroni M.G., Morelli E. et al. Determination of boron in silicon-doped gallium arsenide by electrothermal atomic absorption spectrometry and ultraviolet-visible spectrophotometry // Ann. Chem. -2002. Vol. 92. No. 11&12. P. 1045−1056.
  124. Takagaki M., Oda Y., Miyatake S. et al. Boron neutron capture therapy: Preliminary study of BNCT with sodium borocaptate (Na2Bi2HnSH) on glioblastoma // J. Neuro-Oncology. 1997. Vol. 35. — P. 177−185.
  125. Tamat S.R., Moore D.E., Allen В J. Determination of the concentration of complex boronated compounds in biological tissues by inductively coupled plasma atomic emission spectrometry // Pigment Cell Res. 1989. Vol. 2. -P. 281−285.
  126. Tietze L.F., Griesbach U., Bothe U. et al. Novel carboranes with a DNA binding unit for the treatment of cancer by the boron neutron capture therapy // Chem. Bio. Chem. 2002. Vol. 3. — P. 219−225.
  127. Tjarks W., Barth R.F., Rotaru J. et al. In vivo evaluation of phosphorous-containing derivatives of dodecahydro-closo-dodecaborate for boron neutron capture therapy of gliomas and sarcomas // Anticancer Res. 2001. Vol. 21. No. 2A. — P. 841−846.
  128. Tokuyne K., Tokita N., Akine Y. et al. Comparison of radiation effects of gadolinium and boron neutron capture reactions // Strahlenther Onkol. -2000. Vol. 176. No. 2. P. 81−83.
  129. Verbakel W.F. Validation of the scanning gamma-ray telescope for in vivo dosimetry and boron measurements during BNCT // Phys. Med. Biol. -2001. Vol. 46. No. 12.-P. 3269−3285.
  130. Wheeler F.J., Nigg D.W. Three-dimensional radiation dose distribution analysis for boron neutron capture therapy // Nucl. Sci. Eng. 1992. Vol. 110.-P. 16−31.
  131. Wheeler F.J., Nigg D.W., Capala J. et al. Boron neutron capture therapy (BNCT): Implications of neutron beam and boron compound characteristics // Med. Phys. 1999. Vol. 26. No. 7. — P. 1237−1244.
  132. Wierzbicki J.G., Maruyama Y., Porter A.T. Measurement of augmentation of 252Cf implant by 10B and 157Gd neutron capture // Med. Phys. 1994. Vol. 21.No. 6.-P. 787−790.
  133. Wojnecki C., Green S. A preliminary comparative study of two treatment planning systems developed for boron neutron capture therapy: MacNCTPlan and SERA // Med. Phys. 2002. Vol. 29. No. 8. — P. 17 101 715.
  134. Yamamoto Т., Matsumura A., Yamamoto K. et al. Comparison of patient brain dose measurements and the JCDS calculation. In: Research and Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002. -P. 415−418.
  135. Yanagia H., Fujii Y., Sekiguchi M. et al. A targeting model of boron neutron-capture therapy to hepatoma cells in vivo with a boronated anti-(alpha-fetoprotein) monoclonal antibody // J. Cancer Res. Clin. Oncol. -1994. Vol. 120. No. 11. P. 636−640.
  136. Yanagie H., Kobayashi H., Takeda Y. et al. Inhibition of growth of human breast cancer cells in culture by neutron capture using liposomes containing 10B // Biomed. Pharmacother. 2002. Vol. 56. No. 2. — P. 93−99.
  137. Yang W., Barth R.F., Adams D.M. et al. Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas // Cancer Res. 2002. Vol. 62. — P. 6552−6558.
  138. Yonai S., Aoki Т., Nakamura T. et al. Optimization of epithermal neutron field for cyclotron-based boron neutron capture therapy. In: Research and Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002. P. 299−303.
  139. Yongmao Z., Zhixian G., Weiguo Z. et al. In-hospital neutron irradiator. In: Research and Development in Neutron Capture Therapy (W. Sauerwein, R. Moss, A. Witting), Essen, 2002. P. 181−184.
  140. Yoshino K., Okamoto M., Kakihana H. et al. Spectrophotometry determination of trace boron in biological materials after alkali fusion decomposition // Anal. Chem. 1984. Vol. 56. No. 4. — P. 839−842.
  141. Zamenhof R.G. Microdosimetry for boron neutron capture therapy: A review // J. Neuro-Oncology. 1997. Vol. 33. No. 1&2. — P. 81−92.
  142. Zamenhof R.G., Redmond E. H, Solares G. Et al. Monte Carlo based treatment planning for BNCT using custom designed models automatically generated from CT data // Int. J. Radiat. Oncol. Bio. Phys. 1996. Vol. 35. -P. 383−397.
  143. Zimin S., Allen B.J. Study of moderator thickness for an accelerator-based neutron irradiation facility for boron neutron capture therapy using the 7Li (p, n) reaction near threshold // Phys. Med. Biol. 2000. Vol. 45. — P. 59−67.
  144. Zuo C.S., Prasad P.V., Busse P. et al. Proton nuclear magnetic resonance measurement of p-boronophenylalanine (BPA): A therapeutic agent for boron neutron capture therapy // Med. Phys. 1999. Vol. 26. No. 7. — P. 1230−1236.
Заполнить форму текущей работой