Помощь в написании студенческих работ
Антистрессовый сервис

Синтез и скрининг нативных белковых библиотек в бесклеточной системе трансляции на основе экстракта из зародышей пшеницы

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Недавно была описана аналогичная фаговому дисплею стратегия функционального отбора белков, основанная на связи синтезированных полипептидов с прокариотическими (.E.coli) и эукариотическими (ретикулоциты кролика и зародыши пшеницы) рибосомами. По аналогии с фаговым дисплеем этот метод скрининга получил название рибосомного дисплея. В этом случае количество последовательностей, которые могут быть… Читать ещё >

Синтез и скрининг нативных белковых библиотек в бесклеточной системе трансляции на основе экстракта из зародышей пшеницы (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. Введение
  • 2. Обзор литературы
    • 2. 1. Структура мРНК и регуляция трансляции
      • 2. 1. 1. Роль ком в регуляции трансляции
      • 2. 1. 2. Роль поли (А) — последовательности в трансляции
      • 2. 1. 3. Кооперативное действие кепа и поли (А)-последовательиости на эффективность трансляции
      • 2. 1. 4. Стабильность мРНКв бесклеточных системах трансляции
      • 2. 1. 5. Общие черты нетранслируемых областей мРНК эукариот
      • 2. 1. 6. Окружение стартового кодонамРНК
    • 2. 2. Бесклеточиая система трансляции из зародышей пшеницы
      • 2. 2. 1. Ионная сила и концентрация в ЭЗП
      • 2. 2. 2. Влияние полиаминов. уровня А’ГФ и тРНКна биосинтез белка в ЭЗП
      • 2. 2. 3. Эндогенные активности ЭЗП
    • 2. 3. Терминация трансляции, котрансляционное сворачивание белков и рибосомный дисплей
      • 2. 3. 1. Терминация трансляции и её регуляция
      • 2. 3. 2. Котрансляционное сворачивание белков
      • 2. 3. 3. Рибосомный дисплеи и гибриды мРНК-белок — основные методы отбора белков in vitro
      • 2. 3. 4. Достоинства и недостатки систем отбора in vitro
  • 3. Экспериментальная часть
  • 4. Результаты и их обсуждение
    • 4. 1. Выделение бесклеточнои системы трансляции из зародышей пшеницы (ЭЗП) и аналитический вариант трансляции в этой системе
      • 4. 1. 1. мРНК и генетические конструкции
      • 4. 1. 2. Приготовление экстракта из зародышей пшеницы и аналитический вариант трансляции
      • 4. 1. 3. Качественный анализ целостности мРНК в условиях трансляции в ЭЗП.. 82 4.2 Синтез и скринннг белковой библиотеки из печени мыши в ЭЗП
      • 4. 2. 1. Исследование агрегации продуктов трансляции с компонентами ЭЗП
      • 4. 2. 2. Определение чувствительности скрининга в рибосомиом дисплее
      • 4. 2. 3. Синтез пативнои белковой библиотеки из печени мыши и ее скрининг на иммобилизованном метотрексате (ингибиторе активности ЦГФР)
  • 5. Выводы

В настоящее время одним из ключевых методов изучения межмолекулярных взаимодействий является функциональный отбор биологически активных молекул in vitro. Разработанные ранее методы такого отбора оказались применимы только для РНК и ДНК со специфическими структурными и каталитическими свойствами [lieumiry, 1992; Jiartel, 1993; Osborn, 1997; Famulok, 2000; Hasselberth, 2000].

В отличие от скрининга нуклеиновых кислот функциональный отбор белков и пептидов in vitro требует физической связи между белком и кодирующей его нуклеиновой кислотой. Такая связь может быть реализована описанными ранее методами фагового дисплея [Smith, 1985] и дисплея на плазмидах [Schatz, 1996]. К сожалению, указанные методы отбора ограничены представительностью наборов РЖ (ДНК). Так, библиотеки фагового дисплея лимитированы эффективностью трансфекции, которая составляет величину менее 109 независимых рекомбинантов.

Недавно была описана аналогичная фаговому дисплею стратегия функционального отбора белков, основанная на связи синтезированных полипептидов с прокариотическими (.E.coli [Matteakis, 1994; Hanes, 1997; 1999]) и эукариотическими (ретикулоциты кролика [Hanes, 1999; Не, 1997; Makeyev, 1999] и зародыши пшеницы [Gersuk, 1997]) рибосомами. По аналогии с фаговым дисплеем этот метод скрининга получил название рибосомного дисплея. В этом случае количество последовательностей, которые могут быть представлены на рибосомах, значительно больше (более Ю12), чем это достижимо в фаговом дисплее. Однако оказалось, что метод рибосомного дисплея обладает существенным недостатком — он требует введения в скрининг мРНК без терминаторных кодонов. Это обстоятельство существенно затрудняет скрининг мРНК и кДНК библиотек в рибосомном дисплее.

В связи с вышеизложенным, целью настоящей работы является:

1. Оптимизация бесклеточной системы трансляции in vitro из зародышей пшеницы (экстракт зародышей пшеницы, ЭЗП) для скрининга в рибосомном дисплее мРНК (кДНК) библиотек.

2. Проведение отбора днгпдрофолатредуктазы из полн (А+)РНК клеток печени мыши методом рибосомного дисплея на основе ЭЗП.

2. Обзор литературы.

Типичный скрининг в рибосомном дисплее объединяет четыре основные стадии: 1) трансляцию набора мРНК в выбранной системе трансляции in vitro и ко-трансляционное сворачивание продуктов трансляции;

2) отбор на молекуле-мишени синтезированного полипептида (полипептидов) в составе комплекса с рибосомой и кодирующей полипептид мРНК;

3) аплификацию отобранных мРНК (ОТ-ПЦР);

4) секвенирование кДНК (или клонирование последней и определение функциональной активности продукта экспрессии отобранного гена).

Ключевой стадией рибосомного дисплея является трансляция in vitro и ко-трансляционное сворачивание продуктов трансляции. Этим двум процессам и уделено основное внимание в настоящем обзоре. Поскольку невозможно в коротком обзоре детально рассмотреть регуляторные механизмы трансляции, ниже описаны лишь те факты и закономерности, значение которых важно для ЭЗП как инструмента в функциональном скрининге мРНК и кДНК.

5. Выводы.

1. Разработан метод получения бесклеточной системы трансляции с низкой активностью собственных протеаз и нуклеаз на основе экстракта зародышей пшеницы. Оптимизированы условия для синтеза нативных белковых библиотек и показано, что эффективность трансляции в такой системе повышается на 20%.

2. Показано, что в выбранной системе трансляции полипептидные продукты трансляции и кодирующая их полноразмерная мРНК образуют с рибосомами стабильные тройные комплексы. Предложена гипотеза, основанная на котрансляционной инактивации рибосом эндогенным фактором тритином, объясняющая существование таких комплексов в системе.

3. Впервые продемонстрировано, что рибосомы в составе тройных комплексов трансляционно неактивны, а синтезированный полипептид в составе комплекса способен образовывать димеры и проявлять ферментативную активность.

4. Предложен новый метод скрининга нативных белковых библиотек на основании данных о комплексах полипептид: рибосома:мРНК. С помощью этого метода синтезирована белковая библиотека печени мыши и проведен её скрининг, в модельных экспериментах измерена чувствительность предлагаемого метода отбора.

Показать весь текст

Список литературы

  1. С. А., Гуревич В. В., Шмуклер Б. Е., Наточин М. Ю., Звяга Т. А., Грязнов С. М., Широкова Е. П. Синтез зрительного родопсина в бесклеточной системе трансляции. // Биоорг. химия, 1988, т. 14, с. 1663−1670.
  2. В.И., Вениаминов А. Д., Михеев А. Н., Минят Э. Е. Почему не найдены терминаторные тРНК? Потому что они спрятаны в большой рибосомальной РНК. // Мол. Биол., 2001, т. 35, с. 718−726.
  3. М.И. Препаративный синтез биологически активного интерлейкина-2 человека в проточной системе трансляции in vitro. // Диссертация на соискание ученой степени кандидата химических наук. Москва. 1992.
  4. А.С. Котрансляционное сворачивание, компартментализация и модификация белков. //Мол. Биол., 1984, т. 18, с. 1445−1460.
  5. Д. Методы трансформации Е. coli. II Кн. Клонирование ДНК. Методы. Под редакцией Гловера Д., М., Мир, 1988, с. 140.
  6. И.Н. Реконструкция инициирующих комплексов in vitro для исследования молекулярных механизмов инициации трансляции у млекопитающих. // Молекулярная биология, 2001, т. 35, с. 628−637.
  7. Abraham А.К., Pihl A., Jacob S.T. Turnover of the Poly (A) Moiety of mRNA in Wheat-Germ Extract. //Eur. J. Biochem., 1980, v. 110, p. 1−5.
  8. Abraham A.K., Olsnes S., Pihl A. Fidelity of Protein Synthesis In Vitro Is Increased in the Presence of Spermidine. // FEBS Lett., 1979, v. 101, p. 93−96.
  9. Abramson R.D., Browning K.S., Dever Т.Е., Lawson T.G., Thach R.E., Ravel J.M., Merrick W.C. Initiation Factors That Bind mRNA. A Comparison of Mammilian Factors with Wheat Germ Factors. // J. Biol. Chem., 1988, v. 263, p. 5462−5467.
  10. Anderson C.W., Straus J.W., Dudock B.S. Preparation of a Cell-Free Protein-Synthesizing System from Wheat Germ. //Meth. Enzymol., 1983, v.101, p. 635−644.
  11. Atkins J.F., Levis J.В., Anderson C.W., Gesteland R.F. Enhanced Differential Synthesis of Proteins in a Mammalian Cell-Free System by Addition of Polyamines. // J. Biol. Chem., 1975, v. 250, p. 5688−5695.
  12. Aurup H., Siebert A., Benseler F., Williams D., Eckstein F. Translation of 2'-Modified mRNA in vitro and in vivo. II Nucleic Acids Res., 1994, v. 22, p. 4963−4967.
  13. Baggio R" Burgstaller P., Hale S.P., Putney A.R., Lane M., Lipovsek D., Wright M.C., Roberts R.W., Liu R., Szostak J.W., Wagner R.W. Identification of Epitope-Like Consensus Motifs Using mRNA Display. // J. Mol. Recognit., 2002, v. 15, p. 126−134.
  14. Baglioni C., Vesco C., Jacobs-Lorena M. The Role of Ribosomal Subunits in Mammilian Cells. // Cold Spring Harbor Symp. Quant. Biol., 1969, v. 34, p.555−566.
  15. A.K. 5'-Terminal Structure in Eucaryotic Messenger Ribonucleic Acids. // Microbiol. Rev., 1980, v. 44, p. 175−205.
  16. Barbieri L, Battelli M.G., Stirpe F. Ribosome-lnactivating Proteins from Plants. // Biochim. Biophis. Acta, 1993, v. 1154, p. 237−282.
  17. Bartel D.P., Szostak J.W. Isolation of New Ribozymes from a Large Pool of Random Sequences. // Science, 1993, v. 261, p. 1411−1418.
  18. Bcandry A.A., Joyce G.F. Direction Evolution of an RNA Enzyme. // Science, 1992, v. 257, p. 635−641.
  19. Bergniann J.E., Lodish H.F. Translation of Capped and Uncapped Vesicular Stomatitis Virus and Reovirus mRNAs. // J. Biol. Chem., 1979, v. 254, p. 459−468.
  20. Bernstein P., Peltz S.W., Ross J. The Poly (A)-Poly (A)-Binding Protein Complex Is a Major Determinant of mRNA Stability/// Vitro. //Mol. Cell. Biol., 1989, v. 9, p. 659−670.
  21. Bi X., Goss D.J. Wheat Germ Poly (A)-Binding Protein Increases the ATPase and the RNA Helicase Activity of Translation Initiation Factors eIF4A, eIF4B, and eIF-iso4 °F. // J. Biol. Chem., 2000, v. 275, p. 17 740−17 746.
  22. Bi X., Ren J., Goss D.J. Wheat Germ Translation Initiation Factor eIF4B Affects eIF4A and eIFiso4 °F Helicase Activity by Increasing the ATP Binding Affinity of elF4A. // Biochemistry, 2000, v. 39, p. 5758−5765.
  23. Bi X., Goss D.J. Kinetic Proofreading Scanning Models for Eukaryotic Translational Initiation: the Cap and Poly (A) Tail Dependency of Translation. // J. Theor. Biol., 1999, v. 207, p. 145 157.
  24. Birnboim H.C., Doli J. A Rapid Alkaline Extraction Procedure for Screening Recombinant Plasmid DNA. //Nucleic Acid Res., 1979, v.7, p. 1513−1523.
  25. Blond-Elguindi S., Goldberg M.E. Kinetic Characterization of Early Immunoreactive Intermediates During the Refolding of Guanidine-Unfolded Escherichia coli Tryptophan Synthase Beta 2 Subunits. // Biochemistry, 1990, v. 29, p. 2409−2417.
  26. Boder E.T., Wittrup K.D. Yeast Surface Display for Screening Combinatorial Polypeptide Libraries. //Nat. Biotechnol., 1997, v. 15, p. 553−557.
  27. Bonekanip F., Dalboge H., Christensen Т., Jensen K.F. Translation Rates of Individual Codons Are not Correlated with tRNA Abundances or with Frequencies of Utilization in Escherichia Coli. // J Bacterid., 1989, v. 171, p. 5812−5816.
  28. Bradford M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. // Anal. Biochem., 1976, v. 72, p.248−254.
  29. Browning K.S., Humphreys J., Hobbs W" Smith G.B., Ravel J. Determination of the Amounts of the Protein Synthesis Initiation and Elongation Factors in Wheat Germ. // J. Biol. Cliem., 1990, v. 265, p. 17 967−17 973.
  30. Browning K.S., Lax S.R., Humphreys J., Ravel J., Jobling S.A., Gehrke L. Evidence That the 5'-Untranslated Leader of mRNA Affects the Requirement for Wheat Germ Initiation Factors 4A, 4 °F, and 4G. // J. Biol. Chem., 1988, v. 263, p. 9630−9634.
  31. Chen C.Y., Shyn A.B. AU-Rich Elements: Caracterization and Importance in mRNA Decay. // Trends Biochem. Sci., 1995, v. 20, p. 465−470.
  32. Chinchar V.G., Yu W. Translational Efficiency: Iridovirus Early mRNAs Outcomplete Tobacco Mosaic Virus Message In Vitro. // Biochem. Biophys. Res. Comm., 1990, v. 172, p. 1357−1363.
  33. Chomczynski P., Sacchi N. Single-Step Method of RNA Isolation by Acid Guanidinum Thiocyanat-Phenol-ChloroformExtraction. //Anal. Biochem., 1987, v. 162, p. 156−159.
  34. Cowie D.B., Spiegelman S., Roberts R.B., Duerksen J.D. Ribosome-Bound (3-Galactosidase. // Proc. Natl. Acad. Sci. USA, 1961, v. 47, p. 114−122.
  35. Crameri A., Raillard S.A., Bermudez E., Stemmer W.P.C. DNA Shuffling of a Family of Genes from Diverse Species Accelerates Directed Evolution. // Nature, 1998, v. 391, p. 288 291.
  36. Danthinne X., Seurinck J., Meulewaeter F., van Montagu M., Cornelissen M. The 3' Untranslated Region of Satellite Tobacco Necrosis Virus RNA Stimulates Translation InVitro. // Mol. Cell. Biol., 1993, v. 13, p. 3340−3349.
  37. Dasso M.C., Jackson R.T. On the fidelity of mRNA translation in the nuclease-treated rabbit reticulocyte lysate system. //Nucleic Acids Res., 1989, v. 17, p. 3129−3144.
  38. Davydova E. K, Malinin N.L., Ovchinnikov L.P. Ribosomes Terminated In Vitro Are in Tight Association with Non-Phosphorylated Elongation Factor 2 (eEF-2) and GDP. // Eur. J. Biochem., 1993, v. 215, p. 291−296.
  39. Day D.A., Tuite M.F. Post-Transcriptional Gene Regulatory Mechanisms in Eukaryotes: an Overview. //J. Endocrinol., 1998, v. 157, p. 361−371.
  40. Decker C.J., Parker R. A Turnover Pathway for both Stable and Unstable mRNAs in Yeast: Evidence a Requirement for Deadenilation. // Genes & Dev., 1993, v. 3, p. 1632−1643.
  41. Dever Т.Е. Gene-Specific Regulation by General Translation Factors. // Cell, 2002, v. 108, p. 545−556.
  42. Dice J.F., Goldberg A.L. Relationship between In vivo Degradative Rates and Isoelectric Points of Proteins. //Proc. Natl. Acad. Sci. USA, 1975, v. 72, p. 3893−3897.
  43. Doi N., Yanagawa H. STABLE: Protein-DNA Fusion System for Screening of Combinatorial Protein Libraries In vitro. //FEBS Lett., 1999, v. 457, p. 227−230.
  44. Drake J.W., Holland J.J. Mutation Rates among RNA Viruses. // Proc Natl Acad Sci USA, 1999, v. 96, p. 13 910−13 913.
  45. Endo Y., Mitsui K., Motizuki M., Tsurugi K. The mechanism of Action of Ricin and Related Toxic Lectins on Eukariotic Ribosomes. // J. Biol. Chem., 1987, v. 262, p. 5908−5912.
  46. Endo Y., Tsurugi K. RNA N-Glycosidase Activity of Ricin A-Chain. // J. Biol. Chem., 1987, v. 262, p. 8128−8130.
  47. Erickson A.H., Blobel G. Cell-free Translation of Messenger RNA in Wheat Germ System. // Meth. Enzymol., 1983, v.96, p. 38−79.
  48. Falcone D" Andrews D.W. Both the 5' Untranslated Region and the Sequences Surrounding the Start Site Contribute to Efficient Initiation of Translation In Vitro. II Mol. Cell. Biol., 1991, v. 11, p. 2656−2664.
  49. Fainulok M., Mayer G., Blind M. Nucleic Acids Aptamers form Selection In Vitro to Application/// Vivo. И Acc. Chem. Res., 2000 v. 33, p. 591−599.
  50. Fedorov A.N., Baldwin Т.О. Cotranslational Protein Folding. // J. Biol. Cliem., 1997, v. 272, p. 32 715−32 718.
  51. Fedorov A.N., Baldwin Т.О. Contribution of Cotranslational Folding of the Rate of Formation of Native Protein Structure. //Proc. Natl. Acad. Sci. USA, 1995, v. 92, p. 1227−1231.
  52. Fields S., Song O-K. A Novel Genetic System to Detect Protein-Protein Interactions. // Nature, 1989, v. 340, p. 245−246.
  53. Fletcher L., Corbin S.D., Browning K.S., Ravel J.M. The Absence of a m7G Cap on (3-Globin mRNA and Alfalfa Mosaic Virus RNA 4 Increases the Amounts of Initiation Factor 4 °F Required for Translation. //J. Biol. Chem., 1990, v. 265, p. 19 582−19 587.
  54. Fraenkel-Conrat H., Singer B. Effect of Introduction of Small Alkyl Groups on mRNA Function. // Proc. Natl. Acad. Sci. USA, 1980, v. 77, p. 1983−1985.
  55. Friguet В., Djavadi-Ohaniance L., King J., Goldberg M.E. In vitro and Ribosome-Bound Folding Intermediates of P22 Tailspike Protein Detected with Monoclonal Antibodies. // J. Biol. Chem., 1994, v. 269, p. 15 945−15 949.
  56. Frydnian J., Erdjument-Bromage H., Tempst P., Hartl F.U. Co-translational Domain Folding as the Structural Basis for the Rapid De novo Folding of Firefly Luciferase. // Nature Struct. Biol., 1999, v. 6, p. 697−705.
  57. Furuichi Y., LaFiandra A., Shatkin A.J. 5'-Terminal Structure and mRNA Stability. // Nature, 1977, v. 266, p. 235−239.
  58. Futterer J., Kiss-Laszlo Z., Hohn T. Nonlinear Ribosome Migration on Cauliflower Mosaic Virus 35S RNA. // Cell, 1993, v.73, p. 789−802.
  59. Gallie D.R., Browning K.S. eIF4G Functionally Differs from eIF4iso4G in Promoting Internal Initiation, Cap-Independent Translation, and Translation of Structured mRNA. // J. Biol. Chem., 2001, v. 276, p. 36 951−36 960.
  60. Gallie D.R., Ling J., Niepel M., Morley S.J., Pain V.M. The Role of 5'-Leader Length, Secondary Structure and PABP Concentration on Cap and Poly (A) Tail Function During Translation inXenopus Oocytes. //Nucleic Acids Res., 2000, v. 28, p. 2943−2953.
  61. Gallie D.R., Tanguay R.L., Leathers V. The Tobacco Etch Viral 5' Leader and Poly (A) Tail Are Functionally Synergistic Regulators of Translation. // Gene, 1995, v. 165, p. 233−238.
  62. Gallie D.R., Tanguay R. Poly (A) Binds to Interaction Factors and Increases Cap-Dependent Translation/'// Vitro. Hi. Biol. Chem., 1994, v. 269, p. 17 166−17 173.
  63. Gallie D.R. A Tale of Two Termini: A Functional Interaction between the Termini of an mRNA Is a Prerequisite for Efficient Translation Initiation. // Gene, 1989, v. 216, p. 1−11.
  64. Ganoza M.C., Louis B.G. Potential Secondary Structure at the Translational Start Domain of Eukaryotic and Prokaryotic mRNAs. // Biochemie, 1994, v. 76, p. 429−439.
  65. Geller A.I., Rich A. A UGA Termination Supression tRNATrp Active in Rabbit Reticulocytes. //Nature, 1980, v. 283, p. 41−46.
  66. Gersuk G.M., Corey M.J., Corey E., Stray J.E., Kawasaki G.H., Vesella R.L. High-Affinity Peptide Ligands to Prostate-specific Antigen Identified by Polysome Selection. // Biochem. Biophys. Res. Commun., 1997, v. 232, p. 578−582.
  67. Giannokouros Т., Nikolakaki H., Georgatsos J.G. Concentration-Dependent Effects of Natural Polyamines on Peptide Chain Initiation and Elongation in a Cell-Free System of Protein Synthesis. //Molec. Cell. Biol., 1990, v. 99, p. 9−19.
  68. Gingras A C., Raught В., Sonnenberg N. eIF4 Initiation Factors: Effectors of mRNA Recruitment to Ribosomes and Regulators of Translation. // Annu. Rev. Biochem., 1999, v. 68, p. 913−963.
  69. Graves R.A., Pandey N.B., Chodchoy N., Marzluff W.B. Translation Is Required for Regulation of Histone mRNA Degradation. // Cell, 1987, v. 48, p. 615−626.
  70. Hadcock D.C., Evan G.I. In Methods in Molecular Biology, Immunological Protocols., Ed. Manson M., Humana Press, Inc., Totowa, NJ. 1992, v. 10, p. 23−32.
  71. Hanes J., Jermutis L., Schaffitzel C., Pluckthin A. Comparison of Escherichia coli and Rabbit Reticulocyte Ribosome Display Systems. // FEBS Lett., 1999, v. 450, p. 105−110.
  72. Hanes J., Jermutis L., Schaffitzel C., Pluckthin A. Ribosome Display Efficintly Selects and Evolves High Affinity Antibodies In vitro from Immune Libraries. // Proc. Natl. Acad. Sci. USA, 1998, v. 95, p. 14 130−14 135.
  73. Hanes J., Pluckthin A. In vitro Selection and Evolution of Functional Proteins by Using Ribosome Display. //Proc. Natl. Acad. Sci. USA, 1997, v. 94, p. 4937−4942.
  74. Hasselberth J., Robertson M.P., Jhaveri S., Ellington A.D. In Vitro Selection of Nucleic Acids for Diagnostic Applications. // J. Biotechnol., 2000 v. 74, p. 15−25.
  75. He M., Menges M., Groves M.A.T., Corps E., Liu H., Bruggemann M., Taussig M.J. Selection of a Human Anti-Progesterone Fragment from a Transgenic Mouse Library by ARM Ribosome Display. //J. Immunol. Methods, 1999, v. 231, p. 105−117.
  76. Не М, Taussig М. Antibody-Ribosome-mRNA (ARM) Complexes as Efficient Selection Particles for In Vitro Display and Evolution of Antibody Combining Sites. // Nucleic Acids Res., 1997, v. 25, p. 5132−5134.
  77. Hinnebusch A.G. Translational Regulation of Yeast GCN4. A Window on Factors That Control Initiation tRNA Binding to the Ribosome. // J. Biol. Chem., 1997, v. 272, p. 2 166 121 664.
  78. Hinnebush A., Translational Control of GDN4: Gene-specific Regulation of Phosphorylation of eIF2. // Кн. Hershey J.W.B., Mathews M .В., Sonnenberg N. (Eds.) Translational Control. Cold Spring Harbor Press, Cold Spring Harbor, NY, 1996, p. 199−244.
  79. Hucul J. A., Henshaw E.C., Young D.A. Nucleoside Diphosphate Regulation of Overall Rates of Protein Biosynthesis Acting at the Level of Initiation. // J. Biol. Chem., 1985, v. 260, p. 15 585−15 591.
  80. Hunter A.R., Farrell P.J., Jackson R.J., Hunt T. The Role of Polyamines in Cell-Free Protein Synthesis in the Wheat-Germ System.//Eur. J. Biochem., 1977, v. 75, p. 149−157.
  81. Igarashi K., Hashimoto S., Miyake A., Kashiwagi K., Hirose S. Increase of Fidelity of Polypeptide Synthesis by Spermidine in Eucaryotic Cell-Free Systems. // Eur. J. Biochem., 1982, v. 128, p. 597−604.
  82. Igarashi K., Kashiwagi K., Aoki R., Kojima M., Hirose S. Comparative Studies on the Increase by Polyamines of Fidelity of Protein Synthesis in Escherichia Coli and Wheat Germ Cell-Free Systems. //Biochem. Biophis. Res. Commun., 1979, v. 91, p. 440−448.
  83. Iizuka N., Najita L., Franzusoff A., Sarnow P. Cap-dependent and Cap-independent Translation by Internal Initiation of mRNAs in Cell Extracts Prepared from Sacchoromyces cerevisiae. // Mol. Cell. Biol., 1994, v. 14, p. 7322−7330.
  84. Imataka H., Gradi A., Sonenberg N. A Newly Identified N-Terminal Amino Acid Sequence of Human eIF4G Binds Poly (A)-Binding Protein and Function in Poly (A)-Dependent Translation. // EMBO J., 1998, v. 17, p. 7480−7489.
  85. Irving R.A., Coia G., Roberts A., Nuttall S.D., Hudson P.J. Ribosome Display and Affinity Maturation: from Antibodies to Single V-Domains and Steps towards Cancer Therapeutics. // J. Immunol. Methods, 2001, v. 248, p. 31−45.
  86. Ito K., Uno M., Nakamura Y. A Tripeptide «Anticodon» Deciphers Stop Codons in Messenger RNA. // Nature, 2000, v. 403, p. 680−684.
  87. Jackson R.J., Napthine S., Breirley I. Development of a tRNA-Dependent In Vitro Translation System. // RNA, 2001, v. 7, p. 765−773.
  88. Jackson R.J., Hunt T. Preparation and Use of Nuclease-Treated Rabbit Reticulocyte Lysates for the Translation of eukariotic messenger RNA. // Methods Enzymol., 1983, v. 96, p. 50−74.
  89. Kawarasaki Y., Nakano H., Yamane T. Phosphatase-Immunodepleted Cell-Free Protein Synthesis System. //J. Biotechnol., 1998, v. 61, p. 199−208.
  90. Kawarasaki Y., Kawai Т., Nakano H., Yamane T. A Long-Lived Batch Reaction System of Cell-Free Protein Synthesis. // Anal. Biochem., 1995, v. 226, p. 320−324.
  91. Kawarasaki Y., Nakano H., Yamane T. Prolonged Cell-Free Protein Synthesis in a Batch System Using Wheat Germ Extract. // Biosci. Biotech. Biochem., 1994, v. 58, p. 1911−1913.
  92. Kawasaki G.H. Cell-Free Synthesis and Isolation of Novel Genes and Polypeptides. // US Patent, 1997, US5658754.
  93. Kiho Y., Rich A. Induced Enzyme Formed on Bacterial Polyribosomes. // Proc. Natl. Acad. Sci. USA, 1964, v. 51, p. 111−118.
  94. Kiseleva E.V. Secretory Protein Synthesis in Chironomus salivary Gland Cells Is Not Coupled with Protein Translocation across Endoplasmic Reticulum Membranes. Electron Microscopic Evidence. //FEBS Lett., 1989, v. 257, p. 251−253.
  95. Kisselev L.L., Buckingham R.H. Translational Termination Comes of Age. // Trends Biochem. Sci., 2000, v. 25, p. 561−567.
  96. Knoechel W., Finke C. The Influence of rRNA and tRNA on the Translation of Avian Globin mRNA in Cell-Free Systems of Protein Synthesis. // Biochim. Biophys. Acta, 1978, v. 519, p. 365−371.
  97. Kochetov A.V., Ischenko I.V., Vorobiev D.G., Kel A.E., Babenko V.N., Kisselev L.L., KolchanovN.A. Eucaryotic mRNAs Encoding Abundant and Scarce Proteins Are Statistically Dissimilar in Many Structural Features. // FEBS Lett., 1998, v. 440, p. 351−355.
  98. Kolb V.A., Makeyev E.V., Spirin A.S. Folding of Firefly Luciferase During Translation in a Cell-Free System. //EMBO J., 1994, v. 13, p. 3631−3637.
  99. Komar A. A., Kommer A., Krasheninnikov I. A., Spirin A.S. Cotranslational Folding of Globin. // J. Biol. Chem., 1997, v. 272, p. 10 646−10 651.
  100. Korman A.J., Knudsen P.J., Kaufman J.F., Strominger J.L. cDNA Clones for the Heavy Chain of HLA-DR Antigens Obtained after Immunopurification of Polysomes by Monoclonal Antibody. //'Proc. Natl. Acad. Sci. USA, 1982, v. 79, p. 1844−1848.
  101. Юб.Когпег C.G., Wormington M., Muckenthaler M., Schneider S., Dehlin E., Wahle E. The Deadenylating Nuclease (DAN) Is Involved in Poly (A) Tail Removal During the Meiotic Maturation of Xenopus Oocytes. I I EMBO J., 1989, v. 17, p. 5427−5437.
  102. KozakM. Initiation of Translation in Prokaryotes and Eukaryotes. // Gene, 1999, v. 234, p. 187−208.
  103. Kozak M. Migration of 40S Ribosomal Subunits on mRNA When Initiation Is Perturbed by Lowering Magnesium or Added Drugs. // J. Biol. Chem., 1979, v. 254, p. 4731−4738.
  104. Kozak M. How Do Eucaryotic Ribosomes Select Initiation Regions in Messenger RNA? // Cell, 1978, v. 15, p. 1109−1123.1 lO. Kudlicki W., Chirgwin J., Kramer G., Hardesty B. Folding of an Enzyme into an Active
  105. Conformation While Bound as Peptidyl-tRNA to the Ribosome. // Biochemistry, 1995, v. 34, p. 14 284−14 287.11 l. Lacmnili CJ.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. // Nature, 1970, v. 227, p.680−685.
  106. Lancet D., Sadovsky E., Seidemann E. Probability Model for Molecular Recognition in Biological Receptor Repertoires: Significance to the Olfactory System. // Proc. Natl. Acad. Sci. USA, 1993, v. 90, p. 3715−3719.
  107. Liarakos C.D., Theus S.A., Watson A.S., Wahba A.J., Dholakia J.N. The Translation Efficiency of Ovalbumin mRNA Is Determined in Patr by a 5'-End Hairpin Structure. // Arch. Biochem. Biophis., 1994, v. 315, p. 54−59.
  108. Licitra E., Liu J.O. A Tree-Hybrid System for Detecting Ligand-Protein Receptor Interactions. //Proc. Natl. Acad. Sci. USA, 1996, v. 93, p. 12 817−12 821.
  109. Lim V.I., Spirin A.S. Stereochemical Analysis ofRibosomal Transpeptidation. Conformation of Nascent Peptide. //J. Mol. Biol., 1986, v. 188, p. 565−574.
  110. Lin L., DeMartino G.N., Greene W.C. Cotranslational Biogenesis of NF-kappaB p50 by the 26S Proteasome. // Cell, 1998, v. 92, p. 819−828.
  111. Liu R., Barrick J., Szostak J.W., Roberts R.W. Optimized Synthesis of RNA-Protein Fusions for In vitro Protein Selection. // Methods Enzymol., 2000, v. 318, p. 268−293.
  112. Luciani N" Hess K., Belleville F., Nabet P. Stimulation of Translation by Reactive Oxigen Species in a Cell-Free System. // Biochimie, 1995, v. 77, p. 182−189.
  113. Lutcke H.A., Chow K.C., Mickel F.S., Moss K.A., Kern H.F., Scheele G.A. Selection of AUG Codons Differs in Plants and Animals. // EMBO J., 1987, v. 6, p. 43−48.
  114. Malkin L I., Rich A. Partial Resistance of Nascent Polypeptide Chains to Proteolytic Digestion due to Ribosomal Shielding. // J. Mol. Biol., 1967, v. 26, p.329−346.
  115. Makeyev E.V., Kolb V.A., Spirin A.S. Cell-Free Immunology: Construction and In Vitro Expression of a PCR-Based Library Encoding a Single-chain Antibody Repertoire. // FEBS Lett., 1999, v. 444, p. 177−180.
  116. Makeyev E.V., Kolb V.A., Spirin A.S. Enzymatic Activity of the Ribosome-Bound Nascent Polypeptide. //FEBS Lett., 1996, v. 378, p. 166−170.
  117. Margolis J., Wrigley C.W. Improvement of Pore Gradient Electrophoresis by Increasing the Degree of Cross-Linking at High Acrylamide Concentrations. // J. Chromatography, 1975, v. 106, p. 204−209.
  118. MarszaI E., Scouten W. Dihydrofolate Reductase Synthesis in the Presence of Immobilized Methotrexate. An Approach to a Continuous Cell-free Protein Synthesis System. // J. Mol. Recognition, 1996, v. 9, p. 543−548.
  119. Martinez-SaIas E., Ramos R., Lafuente E., Lopez de Quinto S. Functional Interactions in Translation Initiation Directed by Viral and Cellular IRES Elements. // J. Gen. Virology, 2001, v. 82, p. 973−984.
  120. Massiah A.J., Hartley M.R. Wheat Ribosome-Inactivating Proteins: Seeds and Leaf Forms with Different Specificities and Cofactor Requirements. //Planta, 1995, v. 197, p. 633−640.
  121. Matteakis L.C., Dias J.M., Dower W.J. Cell-Free Synthesis of Peptide Libraries Displayed on Polysomes. //Methods Enzymol., 1996, v. 267, p. 195−207.
  122. Matteakis L.C., Bhatt R.R., Dower W.J. An In Vitro Polysome Display System for Identifying Ligands from Very Large Peptide Libraries. // Proc. Natl. Acad. Sci. USA, 1994, v. 91, p. 9022−9026.
  123. Matveev S.V., Vinokurov L.M., Shaloiko L.A., Davies C., Matveeva E.A., Alakhov Yu.B. Effect of the ATP Level on the Overall Protein Biosynthesis Rate in a Wheat Germ Cell-Free System. //Biochim. Biophis. Acta, 1996, v. 1293, p. 207−212.
  124. Matveev S.V., Illarionov B.A., Visotski E.S., Bondar V.S., Markova S.V., Alakhov Yu.B. Obelin mRNA A New Tool for Studies of Translation in Cell-Free Systems. // Anal. Biochem., 1995, v. 231, p. 34−39.
  125. Matz M., Shagin D., Bogdanova E., Britanova O., Lukyanov S., Diatchenko L., Chenchik A. Amplification of cDNA Ends Based on Template-Switching Effect and Step-Out PCR. // Nucleic Asids Res., 1999, v. 27, p. 1558−1560.
  126. McCaughan K.K., Brown C.M., Dalphin M.E., Berry M.J., Tate W.P. Translational Termination Efficiency in Mammals Is Influenced by the Following the Stop Codon. // Proc. Natl. Acad. Sci. USA, 1995, v. 92, p. 5431−5435.
  127. Mendelsohn S.L., Nordeen S.K., Young D.A. Rapid Changes in Initiation-Limited Rates of Protein Synthesis in Rat Thymic Lymphocytes Correlate with Energy Charge. // Biochem. Biophis. Res. Commun., 1977, v. 79, p. 53−60.
  128. Metafora S., Terada M., Dow L.W., Marks P. A., Bank A. Increased Efficiency of Exogenous Messenger RNA Translation in a Krebs Ascites Cell Lysate. // Proc. Natl. Acad. Sci. USA, 1972, v. 69, p. 1299−1303.
  129. Michel Y.M., Poncet D., Piron ML, Kean K.M., Borman A.M. Cap-Poly (A) Synergy in Mammilian Cell-Free Extracts. Investigation of the Requirements for Poly (A)-Mediated Stimulation of Translation. //J. Biol. Chem., 2000, v. 275, p. 32 268−32 276.
  130. Mitchell P, Tollervey D. mRNA Stability in Eucaryotes. // Curr. Opin. Genet. Dev., 2000, v. 10, p. 193−198.
  131. Morch M.D., Drugeon G., Zagorski W., Haenni A.L. The Synthesis of Hight-Molecular-Weight Proteins in the Wheat Germ System. // Metli. Enzymol., 1986, v. 118, p. 154−166.
  132. Mullet J.E., Klein P.G., Klein R.R. Chlorophyll Regulates Accumulation of the Plastid-Encoded Chlorophyll Apoproteins CP43 and D1 by Increasing Apoprotein Stability. //Proc. Natl. Acad. Sci. USA, 1990, v. 87, p. 4038−4042.
  133. Munroe D., Jacobson A. mRNA Poly (A) Tail, a 3' Enhancer of Translational Initiation. // Mol. Cell. Biol., 1990, v. 10, p. 3441−3455.
  134. Nakamura Y., lto K. A Tripeptide Discriminator for Stop Codon Recognition. // FEBS Lett., 2002, v. 514, p. 30−33.
  135. Nemoto N., Miyamoto-Sato E., Husimi Y., Yanagawa H. In Vitro Virus: Bonding of mRNA Bearing Puromycin at the 3'-Terminal End to the C-Terminal End of Its Encoding Protein on the Ribosome In Vitro. // FEBS Lett., 1997, v. 414, p. 405−408.
  136. Nicola A.V., Chen W., Helenius A. Co-translational Folding of an Alphavirus Capsid Protein in the Cytosol of Living Cells. //Nat. Cell Biol., 1999, v. 1, p. 341−345.
  137. Pain V.M. Initiation of Protein Synthesis in Eukaryotic Cells. // Eur. J. Biochem., 1996, v. 236, p. 747−771.
  138. Payvar F., Schimke R.T. Improvements in the Immunoprecipitation of Specific mRNA. Isolation of Highly Purified Conalbumin mRNA in high Yield. // Eur. J. Biochem., 1979, v. 101, p. 271−282.
  139. PeIIetier J., Sonnenberg N. Incertion Mutagenesis to Increase Secondary Structure within the 5' Noncoding Region of a Eucariotic mRNA Reduces Translational Efficiency. // Cell, 1985, v. 40, p. 515−526.
  140. Perara E., Rothman R.E., Lingappa V.R. Uncoupling Translocation from Translation: Implication for Transport of Proteins across Membranes. // Science, 1986, v. 232, p. 348−352.
  141. Peri S., Pandey A. A Reassessment of the Transaction Initiation Codon in Vertebrates. // TRENDS Genet., 2001, v. 17, p. 685−687.
  142. PesoIe G., Mignone F., Gissi C., Grillo G., Licciulli F., Liuni S. Structural and Functional Features of Eukaryotic mRNA Untranslated Regions. // Gene, 2001, v. 276, p. 73−81.
  143. PesoIe G., Gissi C., Grillo G., Licciulli F., Liuni S., Saccone S. Analysis of Oligonucleotide AUG Start Codon Context in Eucariotic mRNAs. // Gene, 2000, v. 261, p. 85−91.
  144. PesoIe G., Bernardi G., Saccone C. Isochore Specificity of AUG Initiator Context of Human Genes. // FEBS Lett., 1999, v. 464, p. 60−62.
  145. Pestova T.V., Hellen C.U.T. Ribosome Recruitment and Scanning: What’s New? // TIBS, 1999, v. 24, p. 85−87.
  146. Preiss Т., Muckenthaler M., Hentze M.W. Poly (A)-Tail-Promoted Translation in Yeast: Implication for Translational Control. //RNA, 1998, v. 4, p. 1321−1331.
  147. Ready M.P., Brown D.T., Robertus J.D. Extracellular Localization of Pokeweed Antiviral Protein. //Proc. Natl. Acad. Sci. USA, 1986, v. 83, p. 5053−5056.
  148. Roberts R.W., Szostak J.W. RNA-Peptide Fusion for the In vitro Selection of Peptides and Proteins. //Proc. Natl. Acad. Sci. USA, 1997, v. 94, p. 12 297−12 302.
  149. Roberts BE., Paterson B.M. Efficient Translation of Tobacco Mosaic Virus RNA and Rabbit Globin 9S RNA in a Cell-Free System from Commercial Wheat Germ. // Proc. Natl. Acad. Sci. USA, 1973, v. 70, p. 2330−2334.
  150. Rogozin I.В., Kochetov A.V., Kondrashov F.A., Koonin E.V., Milanesi L. Presence of ATG Triplets in 5' Untranslated Regions of Eucaryotic cDNAs Correlates with a «Weak» Context of the Start Codon. //Bioinformatics, 2001, v. 17, p. 890−900.
  151. Rohde N., Daum H., Biebricher C.K. The Mutant Distribution of an RNA Species Replicated by Q beta Replicase. // J Mol Biol., 1995, v. 249, p. 754−762.
  152. Ross J., Kobs G., Brewer G., Peltz S.W. Properties of the Exonuclease Activity That Degrades H4 Histone mRNA. //J. Biol. Chem., 1987, v. 262, p. 9374−9381.
  153. Ross J., Peltz W., Kobs G., Brewer G. Histone mRNA Degradation In Vivo: the First Detectable Step Occurs at or Near the 3' Terminus. //Mol. Cell. Biol., 1986, v. 6, p. 4362−4371.
  154. Ryabova L.A., Hohn T. Ribosome Shunting in the Cauliflower Mosaic Virus 35S RNA Leader Is a Special Case of Reinitiation of Translation Functioning in Plant and Animal Systems. // Genes & Dev., 2000, v. 14, p. 817−829.
  155. Ryabova L.A., Torgashov A.F., Kurnasov O.V., Bubunenko M.G., Spirin A.S. The 3'-terminal Untraslated Region of Alfalfa Mosaic Virus RNA 4 Facilitates the RNA Entry into Translation in a Cell-Free System. // FEBS Lett., 1993, v.326, p. 264−266.
  156. Sachs A.B., Sarnow P., Hentze M.W. Starting at the Beginning, Middle, and End: Translation Initiation in Eukaryotes. // Cell, 1997, v. 89, p. 831−838.
  157. Sachs A., Wahle E. Poly (A) Tail Metabolism and Function in Eucaryotes. // J. Biol. Chem., 1993, v. 268, p 22 955−22 958.
  158. Sachs A.B., Davis R.W. The Poly (A) Binding Protein Is Required for Poly (A) Shortening and 60S Ribosomal Subunit-Dependent Translation Initiation. // Cell, 1989, v. 58, 857−867.
  159. Sachs А.В., Davis R.W., Kornberg R.D. A Single Domain of Yeast Poly (A)-Binding Protein Is Necessary and sufficient for RNA Binding and Cell Viability. // Mol. Cell. Biol., 1987, v.7, p.3268−3276.
  160. Saito R., Tomita M. On Negative Selection Against ATG Triplets Near Start Codons in Eukaryotic and Prokaryotic Genomes. //J. Mol. Evol., 1999, v. 48, p. 213−217.
  161. Sala-Newby G.B., Campbell A.K. Stepwise Removal of the C-Terminal 12 Amino Acids of Firefly Luciferase Results in Graded Loss of Activity. // Biochim. Biophys. Acta, 1994, v. 1206, p. 155−160.
  162. Sanibrook J., Fritsch E.F., Maniatis T. Molecular Cloning. A Laboratory Manual. 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
  163. SchaIhorn A., Wilmanns W. In Methods of Enzymatic Analysis. Ed. Bergmayer H.U., 3d Ed., Verlag-Chemie, 1983, v. 3, p. 251−257.
  164. Schatz P.L., Cull M.G., Martin E.L., Gates C.M. Screening of Peptide Libraries Linked to lac Repressor. //Methods Enzymol., 1996, v. 267, p. 171−191.
  165. Schmidt-Puchta W., Domingues D., Lewetag D., Hohn T. Plant Ribosome Shunting in viiro. II Nucleic Asids Res., 1997, v. 25, p. 2854−2860.
  166. Shafritz D.A., Weinstein J. A., Safer В., Merrick W.C., Weber L.A., Hickey E.D., Baglioni C. Evidence for Role of m7G5'-Phosphate Group in Recognition of Eukariotic mRNA by Initiation Factor 1F-M3. // Nature, 1976, v. 261, p. 291−294.
  167. SIiagin D.A., Lukyanov K.A., Vagner L.L., MatzM.V. Regulation of Average Length of Complex PCR Product. // Nucleic Asids Res., 1999, v. 27, e23.
  168. Shatkin A.J. mRNA Cap Binding Proteins: Essential Factors for Initiation Translation. // Cell, 1985, v. 40, p. 223−224.
  169. Sheets M.D., Wickens M. Two Phases in the Addition of a Poly (A)-tail. // Genes & Dev., 1989, v. 3, p. 1401−1412.
  170. Sissoeff I., Grisvard J., Guille E. Studies on metal ions-DNA interactions: specific behavior of reiterativeDNA sequences. //Prog. Biophys. Mol. Biol., 1976, v. 31, p. 165−199.
  171. Smith G.P., Petrenko V.A. Phage Display. // Chem. Rev., 1997, v. 97, p. 391−410.
  172. Smith G.P. Filamentous Fusion Phage: Novel Expression Vectors that Display Cloned Antigens on the Virion Surface. // Science, 1985, v. 228, p. 1315−1317.
  173. Takahashi F., Ebihara Т., Mie M., Yanagida Y., Endo Y., Kobatake E., Aizawa M. Ribosome Display for Selection of Active Dihidrofolate Reductase Mutants Using Immobilazed Methotrexate on Agarose Beads. //FEBS Lett., 2002, v. 514, p. 106−110.
  174. Tarun S.Z., Wells S.E., DeardorfTJ.A., Sachs A.B. Translation Initiation Factor elF4G Mediates In Vitro Poly (A)-Dependent Translation // Proc. Natl. Acad. Sci. USA, 1997, v. 94, p. 9046−9051.
  175. Tarun S.Z., Sachs A.B. Association of the Yeast Poly (A) Tail Binding Protein with Translation Initiation Factor eIF-4G. //EMBO J., 1996, v. 15, p. 7168−7177.
  176. Tarun S.Z.Jr, Sachs A.B. A Common Function for mRNA 5' and 3' Ends in Translation Initiation in Yeast. // Genes & Dev., 1995, v. 9, p. 2997−3007.
  177. Teale J.M., Benjamin D.C. Antibody as Immunological Probe for Studying Refolding of Bovine Serum Albumin. Refolding within Each Domain. // J. Biol. Chem., 1977, v. 252, p. 4521−4526.
  178. Tuerk C., Gold L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 Polymerase. // Sciense, 1990, v. 249, p. 505−510.
  179. Veis A., Kirk T.Z. The Coordinate Synthesis and Cotranslational Assembly of Type I Procollagen. III. Biol. Chem., 1989, v. 264, p. 3884−3889.
  180. Veis A., Leibovich S.J., Evans J., Kirk T.Z. Supramolecular Assemblies of mRNA Direct the Coordinated Synthesis of Type I Procollagen Chains. // Proc. Natl. Acad. Sci. USA, 1985, v. 82, p. 3693−3697.
  181. Vellanoweth R.L., Rabinowitz J.C. Analysis of an mRNA Exhibiting Anomalous Translational Specificity. // J Bacterid., 1991, v. 173, p. 67−72.
  182. Vestergaard В., Van L.B., Andersen G.R., Nyborg J., Buckingham R.H., Kjeldgaard M. Bacterial Polypeptide Release Factor RF2 Is Structurally Distinct from Eucariotic eRFl. // Mol. Cell., 2001, v. 8, p. 1375−1382.
  183. Walton G.M., Gill G.N. Nucleotide Regulation of a Eukaryotic Protein Synthesis Initiation Complex. // Biochim. Biophis. Acta, 1975, v. 390, p. 231−245.
  184. Ward E.S., GussowD., Griffiths A.D., Jones P.T., Winter G. Binding Activities of a Repertoire of Single Immunoglobulin Variable Domains Secreted from Escherichia coli. II Nature, 1989, v. 341, p. 544−546.
  185. Weber L.A., Hickey E.D., Baglioni C. Influence of Potassium Salt Concentration and Temperature on Inhibition of mRNA Translation by 7-Methylguanosine 5'-Monophosphate. // J. Biol. Chem., 1978, v. 253, p. 178−183.
  186. Weber L.A., Hickey E.D., Maroney P. A., Baglioni C. Inhibition of Protein Synthesis by СГ. // J. Biol. Chem., 1977, v. 252, p. 4007−4010.
  187. Wells S.E., Hillner P.E., Vale R.D., Sachs A.B. Circularization of mRNA by Eukariotic Translation Initiation Factors//Mol. Cell, 1998, v. 2, p. 135−140.
  188. Weng S., Gu K., Hammond P.W., Lohse P., Rise C., Wagner R.W., Wright M.C., Kuimelis R.G. Generating Addressable Protein Microarrays with PROfiision Covalent mRNA-Protein Fusion Technology. // Proteomics, 2002, v. 2, p. 48−57.
  189. Wool I.G., Glueck A., Endo Y. Ribotoxin Recognition of Ribosomal RNA and a Proposal for the Mechanism of Translation. // Trends Biochem. Sci., 1992, v. 17, p. 266−269.
  190. Wright P.E., Dyson H.J., Lerner R.A. Conformation of Peptide Fragments of Proteins in Aqueous Solution: Implications for Initiation of Protein Folding. // Biochemistry, 1988, v. 27, p. 7167−7175.
  191. Xu L., Aha P., Gu K., Kuimelis R., Kurz M., Lam Т., Lim A., Liu H., Lohse P., Sun L., Weng S., Wagner R., Lipovsek D. Directed Evolution of High-Affinity Antibody Mimics Using mRNA Display. // Chem. Biol., 2002, v. 9, p. 933.
  192. Yainshchikov V.F., Mishina M., Cominelli F. A Possible Role of IL-lra З'-Untranslated Region in Modulation of Protein Production. // Cytokine, 2002, v. 17, p. 98−107.
  193. YisraeIi J.K., Melton D.A. Synthesis of Long Capped Transcripts in vitro by SP6 and T7 Polymerases. // Meth. Enzymol., 1989, v. 180, p.42−62.
  194. Zavialov A.V., Buckingham R.H., Ehrenberg M. A Post-Termination Ribosomal Complex Is the Guanine Nucleotide Exchange Factor for Peptide Release Factor rf3. // Cell, 2001, v. 107, p. 115−124.
  195. Zhao H., Giver L., Shao Z., Affholter J.A., Arnold F.H. Molecular Evolution by Staggered Extension Process (StEP)/// vitro Recombination. // Nat. Biotechnol., 1998, v. 16, p. 258−261.11 О'}1. СО Т — О’Ъ
Заполнить форму текущей работой