ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Π‘Ρ…ΠΎΠ΄Π½Ρ‹Π΅ Ρ‡Π΅Ρ€Ρ‚Ρ‹ Π² ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ… ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции Ρƒ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ ΠΈ эукариот

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚ΡŒΡΡ ΠΊ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡŽ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½Ρ‹Ρ… мРНК, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒΡΡ in vivo Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ†ΠΈΠΈ с ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΌΠΈ мРНК ΠΈ Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ, Π½Π°ΠΌΠΈ Π±Ρ‹Π» ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΉ «ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹ΠΉ» ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ 48S ΠΏΡ€Π΅Π΄Ρ‹Π½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ комплСкса. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ рСконструкции 48S комплСксов ΠΈΠ· ΠΎΡ‡ΠΈΡ‰Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π±Ρ‹Π»ΠΎ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘Ρ…ΠΎΠ΄Π½Ρ‹Π΅ Ρ‡Π΅Ρ€Ρ‚Ρ‹ Π² ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ… ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции Ρƒ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ ΠΈ эукариот (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок сокращСний
  • ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
  • 1. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ трансляции Ρƒ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚
    • 1. 1. Π˜Π½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΡ трансляции
      • 1. 1. 1. ΠŸΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚Ρ‹
      • 1. 1. 2. Π­ΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚Ρ‹
    • 1. 2. Элонгация
    • 1. 3. ВСрминация
  • 2. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ рибосомы
  • 3. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠ°Π»Ρ‹Ρ… рибосомных ΡΡƒΠ±ΡŒΠ΅Π΄ΠΈΠ½ΠΈΡ†
    • 3. 1. Ρ€Π ΠΠš
    • 3. 2. РибосомныС Π±Π΅Π»ΠΊΠΈ
      • 3. 2. 1. Π“ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ рибосомныС Π±Π΅Π»ΠΊΠΈ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚
      • 3. 2. 2. РибосомныС Π±Π΅Π»ΠΊΠΈ, ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ для ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚
      • 3. 2. 3. РибосомныС Π±Π΅Π»ΠΊΠΈ, ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ для эукариот
  • Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
  • 1. IRES-элСмСнт вируса RhPV способСн Π½Π°ΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΡŽΡŽ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΡŽ in vivo
  • 2. БСзлидСрная Π‘1 мРНК способна ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒΡΡ с Π½Π΅Π΄ΠΈΡΡΠΎΡ†ΠΈΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ 80S рибосомой ΠΈ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠΉ ΠœΠ΅Ρ‚-Ρ‚Π ΠΠšΠΈΠœΠ΅Ρ‚ Π² ΠΎΡ‚сутствии Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции
  • 3. Π’Ρ€ΠΎΠΉΠ½ΠΎΠΉ комплСкс 808*Π‘1мРНК*ΠœΠ΅Ρ‚-Ρ‚Π ΠΠš"ΠœΠ΅Ρ‚ являСтся Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ элонгационным комплСксом
  • 4. ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ 48S ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ комплСкса Π½Π° CllacZ мРНК 60 5 НСобычныС трансляционныС свойства Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½ΠΎΠΉ мРНК Π‘1 lacZ
    • 5. 1. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ уровня трансляции Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½ΠΎΠΉ мРНК CllacZ ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ Π΅Π΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π² Π±Π΅ΡΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ трансляционной систСмС
    • 5. 2. Врансляция Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½ΠΎΠΉ мРНК Π‘1 lacZ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ‚ ΠΎΡ‚ ΠΊΠ΅ΠΏΠ°
    • 5. 3. БСзлидСрная мРНК CllacZ эффСктивно транслируСтся ΠΏΡ€ΠΈ частичной ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ eIF
  • 6. Бвойства Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½ΠΎΠΉ мРНК CllacZ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π΅ΠΉ ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒΡΡ с 80S рибосомой
  • ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
  • 1. Π Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹ ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹
  • 2. ΠŸΠ»Π°Π·ΠΌΠΈΠ΄Π½Ρ‹Π΅ конструкции
  • 3. Π“Π΅Π½Π½ΠΎΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Π΅ манипуляции
  • 4. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ РНК-транскриптов
  • 5. Врансляция Π² Π»ΠΈΠ·Π°Ρ‚Π΅ Ρ€Π΅Ρ‚ΠΈΠΊΡƒΠ»ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ°
  • 6. РСконструкция ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΈ ΡΠ»ΠΎΠ½Π³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… комплСксов ΠΈΠ· ΠΎΡ‡ΠΈΡ‰Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ²
  • 7. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½Π°Ρ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ²
  • 8. РНК-трансфСкция
  • Π’Ρ‹Π²ΠΎΠ΄Ρ‹ 83 ΠžΠ±Π·ΠΎΡ€ Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
  • Бписок сокращСний
  • 5. '-НВО 5'-нСтранслируСмая ΠΎΠ±Π»Π°ΡΡ‚ΡŒ
  • JIPK Π»ΠΈΠ·Π°Ρ‚ Ρ€Π΅Ρ‚ΠΈΠΊΡƒΠ»ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ°
  • ΠœΠ΅Ρ‚-Ρ‚Π ΠΠš"ΠœΠ΅Ρ‚ инициаторная Ρ‚Π ΠΠš, заряТСнная ΠΌΠ΅Ρ‚ΠΈΠΎΠ½ΠΈΠ½ΠΎΠΌ- мРНК матричная РНК
  • ΠŸΠΠΠ“ ΠΏΠΎΠ»ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄Π½Ρ‹ΠΉ гСль
  • ПЦР полимСразная цСпная рСакция
  • ΠŸΠ­Π“ ΠΏΠΎΠ»ΠΈΡΡ‚ΠΈΠ»Π΅Π½Π³Π»ΠΈΠΊΠΎΠ»ΡŒ
  • CrPV вирус ΠΏΠ°Ρ€Π°Π»ΠΈΡ‡Π° свСрчка (ΠΎΡ‚ Π°Π½Π³Π». Cricket Paralysis Virus)
  • DTT 1,4-Π΄ΠΈΡ‚ΠΈΠΎ-0,Π¬-Ρ‚Ρ€Π΅ΠΈΡ‚ΠΎΠ»
  • EDTA этилСндиаминтСтраацСтат elF эукариотичСский Ρ„Π°ΠΊΡ‚ΠΎΡ€ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции (ΠΎΡ‚. Π°Π½Π³Π». eucaryotic initiation factor)
  • EMCV вирус энцСфаломиокардита (ΠΎΡ‚ Π°Π½Π³Π». Encephalomyocarditis Virus)
  • GMPPNP Π³ΡƒΠ°Π½ΠΎΠ·ΠΈΠ½-5'-[Π , Ρƒ-ΠΈΠΌΠΈΠ΄ΠΎ]трифосфат
  • GTP Π³ΡƒΠ°Π½ΠΎΠ·ΠΈΠ½-5'-трифосфат
  • GTPa3a Π±Π΅Π»ΠΎΠΊ, Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠΉ GTP
  • HCV вирус Π³Π΅ΠΏΠ°Ρ‚ΠΈΡ‚Π° Π‘ (ΠΎΡ‚ Π°Π½Π³Π». Hepatitis Π‘ Virus)
  • HEPES 4-(2-гидроксиэтил)-1-ΠΏΠΈΠΏΠ΅Ρ€Π°Π·ΠΈΠ½ΡΡ‚Π°Π½ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΎΠ²Π°Ρ кислота
  • HPRI ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ Ρ€ΠΈΠ±ΠΎΠ½ΡƒΠΊΠ»Π΅Π°Π· ΠΈΠ· ΠΏΠ»Π°Ρ†Π΅Π½Ρ‚Ρ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° (ΠΎΡ‚ Π°Π½Π³Π». human placenta ribonuclease inhibitor)
  • Hsp Π±Π΅Π»ΠΎΠΊ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока (ΠΎΡ‚ Π°Π½Π³Π». heat shock protein)
  • I. RES участок Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ посадки рибосомы (ΠΎΡ‚ Π°Π½Π³Π». internal ribosome entry site)
  • RRM Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΉ ΠΌΠΎΡ‚ΠΈΠ², ΡƒΠ·Π½Π°ΡŽΡ‰ΠΈΠΉ РНК (ΠΎΡ‚ Π°Π½Π³Π». RNA recognition motif)
  • RhPV вирус Ρ‡Π΅Ρ€Π΅ΠΌΡƒΡ…ΠΎΠ²ΠΎΠΉ Ρ‚Π»ΠΈ (ΠΎΡ‚ Π°Π½Π³Π». Rhopalosiphum Padi Virus)
  • SDS Π΄ΠΎΠ΄Π΅Ρ†ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚ натрия
  • Tris трис-(гидроксимСтил)-Π°ΠΌΠΈΠ½ΠΎΠΌΠ΅Ρ‚Π°Π½

Π”ΠΎ Π½Π΅Π΄Π°Π²Π½Π΅Π³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΡ‡ΠΈΡ‚Π°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции Ρƒ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ ΠΊΠ°Ρ€Π΄ΠΈΠ½Π°Π»ΡŒΠ½ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹. Π’ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ дСсятилСтиС, ΠΎΠ΄Π½Π°ΠΊΠΎ, появились Π΄Π°Π½Π½Ρ‹Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΡ…ΠΎΠΆΠ΅ Π½Π°Ρ‡Π°Π»ΠΈ «ΠΏΠ΅Ρ€Π΅ΠΊΠΈΠ΄Ρ‹Π²Π°Ρ‚ΡŒ мостик» ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции Ρƒ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ ΠΈ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ нСсмотря Π½Π° ΠΎΡ‚сутствиС Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΠΈ Π² ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ структурС ΠΈ Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹, эукариотичСскиС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ elFl, elFIA ΠΈ eIF5B ΡΠ²Π»ΡΡŽΡ‚ΡΡ структурными ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π°Π½Π°Π»ΠΎΠ³Π°ΠΌΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… IF3, IF1 ΠΈ IF2. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, оказалось, Ρ‡Ρ‚ΠΎ для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… эукариотичСских мРНК, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго вирусного происхоТдСния, нСсомнСнно Π²ΠΎΠ·ΠΌΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ связывания рибосомы Π½Π° ΠΈΡ… ΡΠΏΠ΅Ρ†ΠΈΡ„ичСских Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… участках — Ρ‚.Π½. IRES-элСмСнтах (ΠΎΡ‚ Π°Π½Π³Π» Internal Ribosome Entry Site). Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠ½ΡƒΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ссли Π² ΡΠ»ΡƒΡ‡Π°Π΅ прокариотичСских мРНК внутрСнняя посадка рибосомы Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π±Π΅Π»ΠΊΠ° S1 ΠΈ/ΠΈΠ»ΠΈ наличия Π² Π½ΠΈΡ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π¨Π°ΠΉΠ½Π°-Π”Π°Π»ΡŒΠ³Π°Ρ€Π½ΠΎ, Π° Ρ‚Π°ΠΊΠΆΠ΅ участия Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Ρ€Π΅Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ (IF1, IF2 ΠΈ IF3), Ρ‚ΠΎ IRES-элСмСнты это протяТСнныС участки с Ρ€Π°Π·Π²ΠΈΡ‚ΠΎΠΉ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠΉ структурой. ΠšΠ»Π°ΡΡΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ IRES-элСмСнты РНК пикорнавирусов содСрТат высоко спСцифичСскиС сайты связывания для ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ρ‡Π΅Π³ΠΎ Π½Π΅Ρ‚ Π² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… мРНК. Для ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции Π½Π° Ρ‚Π°ΠΊΠΈΡ… элСмСнтах РНК пикорнавирусов Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ ΠΏΠΎΡ‡Ρ‚ΠΈ всС эукариотичСскиС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции (Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ΅ΠΏ-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° eIF4E), ΠΈ Ρ€ΡΠ΄ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… мРНК-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ². Π“ΠΎΡ€Π°Π·Π΄ΠΎ большСС сходство с Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмой ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°ΡŽΡ‚ IRES-элСмСнт ΠΈΠ· Π ΠΠš вируса Π³Π΅ΠΏΠ°Ρ‚ΠΈΡ‚Π° Π‘ (Hepatitis Π‘ Virus, HCV), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ для образования 40S ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ комплСкса (48S комплСкс) обходится всСго двумя Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ, eIF2 ΠΈ eIF3, ΠΈ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π½ΠΈ ΠΊΠ΅ΠΏΠ°, Π½ΠΈ ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ° сканирования Ρ†Π΅ΠΏΠΈ мРНК ΠΏΡ€ΠΈ Π²Ρ‹Π±ΠΎΡ€Π΅ ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΊΠΎΠ΄ΠΎΠ½Π°. Π”ΠΎ Π½Π΅Π΄Π°Π²Π½Π΅Π³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ IRES-элСмСнт HCV, Π½Π΅ ΡΡ‡ΠΈΡ‚ая совсСм экзотичСского случая IRES-элСмСнта РНК вируса ΠΏΠ°Ρ€Π°Π»ΠΈΡ‡Π° свСрчка {Cricket Paralysis Virus, CrPV), Π³Π΄Π΅ Π½Π΅ Π½ΡƒΠΆΠ½Ρ‹ Π½ΠΈΠΊΠ°ΠΊΠΈΠ΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции ΠΈ Π΄Π°ΠΆΠ΅ инициаторная ΠœΠ΅Ρ‚-Ρ‚Π ΠΠš, Π±Ρ‹Π» ΠΏΠΎ-сущСству СдинствСнным ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ, ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌ сходство Π² ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ… связывания мРНК Ρƒ ΠΏΡ€ΠΎΠΈ эукариот.

Автор диссСртации ΠΈ Π΅Π³ΠΎ ΠΊΠΎΠ»Π»Π΅Π³ΠΈ исходили ΠΈΠ· ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ, Ρ‡Ρ‚ΠΎ сравнСниС Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ структур рибосом ΠΈΠ»ΠΈ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² трансляции, Π½ΠΎ ΠΈ ΡΠ°ΠΌΠΈΡ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² трансляции Ρƒ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ вСсьма ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΌ для Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ понимания этого Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ процСсса. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· этих ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² позволяСт Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅Ρ‚ΠΊΠΎ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΆΠ΅ Π² Π½ΠΈΡ… являСтся сходным, Π° Ρ‡Ρ‚ΠΎ ΠΊΠ°Ρ€Π΄ΠΈΠ½Π°Π»ΡŒΠ½ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ ΠΈ Ρ‚Π΅ΠΌ самым «ΡΡ„ΠΎΠΊΡƒΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ исслСдоватСлСй Π½Π° Π΅Ρ‰Π΅ совсСм нСисслСдованных ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ…. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎΠ΅ сходство Π²ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠΈ мРНК с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠ°ΠΌΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ (ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…).

Нами Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ 'внутрСнняя инициация трансляции для IRES-элСмСнта РНК вируса Ρ‡Π΅Ρ€Π΅ΠΌΡƒΡ…ΠΎΠ²ΠΎΠΉ Ρ‚Π»ΠΈ (Rhopalosiphum Padi Virus, RhPV) Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π±Π΅ΡΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… систСмах, Π½ΠΎ ΠΈ in vivo — ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, всС Π΄Π°Π½Π½Ρ‹Π΅, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π°Π½Π΅Π΅ in vitro ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ рСконструкции ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… комплСксов-ΠΈΠ·-ΠΎΡ‡ΠΈΡ‰Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² (совмСстно с И.М. Π’Π΅Ρ€Π΅Π½ΠΈΠ½Ρ‹ΠΌ) ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‚ «ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½Ρ‹ΠΉ» способ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΡŽ трансляции Ρƒ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚.

ОсновноС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π² Π΄ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π»ΠΎ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции для Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½Ρ‹Ρ… мРНК. Π Π°Π½Π΅Π΅ Π² Π½Π°ΡˆΠ΅ΠΉ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ Π‘Π°Π»Π°ΠΊΠΈΠ½Ρ‹ΠΌ ΠΈ Π΄Ρ€. Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ бСзлидСрная Π‘1 мРНК Ρ„Π°Π³Π° X ΡΠΏΠΎΡΠΎΠ±Π½Π° ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒΡΡ с Π½Π΅Π΄ΠΈΡΡΠΎΡ†ΠΈΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ прокариотичСской 70S рибосомой ΠΈ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠΉ Ρ‚Π ΠΠšΠΈ Π² ΠΎΡ‚стутствиС Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции. Π’ Ρ…ΠΎΠ΄Π΅ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ модСльная бСзлидСрная Π‘1 мРНК способна ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒΡΡ с 80S рибосомой ΠΈ ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΉ синтСз Π² ΠΎΡ‚сутствиС Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции. УстановлСно, Ρ‡Ρ‚ΠΎ связываниС Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½ΠΎΠΉ мРНК с 80S.

1 рибосомой обусловливаСтся располоТСниСм ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ‚Ρ€ΠΈΠΏΠ»Π΅Ρ‚Π° Π½Π° ΡΠ°ΠΌΠΎΠΌ 5' ΠΊΠΎΠ½Ρ†Π΅ мРНК ΠΈ ΠΎΠ΄Π½ΠΎΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ мРНК нСпосрСдствСнно Π·Π° ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½Ρ‹ΠΌ Ρ‚Ρ€ΠΈΠΏΠ»Π΅Ρ‚ΠΎΠΌ.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚ΡŒΡΡ ΠΊ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡŽ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½Ρ‹Ρ… мРНК, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒΡΡ in vivo Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ†ΠΈΠΈ с ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΌΠΈ мРНК ΠΈ Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ, Π½Π°ΠΌΠΈ Π±Ρ‹Π» ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΉ «ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹ΠΉ» ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ 48S ΠΏΡ€Π΅Π΄Ρ‹Π½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ комплСкса. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ рСконструкции 48S комплСксов ΠΈΠ· ΠΎΡ‡ΠΈΡ‰Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ elFl ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π΄Π΅ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ влияниС Π½Π° 48S комплСкс, собранный Π½Π° Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½ΠΎΠΉ мРНК, Ρ‡Ρ‚ΠΎ Π΄Π΅Π»Π°Π΅Ρ‚ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΡŽ трансляции для Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½ΠΎΠΉ мРНК Ρ‡Π΅Ρ€Π΅Π· связываниС с 80S рибосомой ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ.

Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π½Π°ΠΌΠΈ трансляционныС свойства Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½ΠΎΠΉ мРНК Π² Π±Π΅ΡΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ систСмС (JIPK) прСдставили вСсомыС Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρ‹ Π² ΠΏΠΎΠ»ΡŒΠ·Ρƒ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ всС ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ трансляционного Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°, для Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½ΠΎΠΉ мРНК рСализуСтся (хотя Π±Ρ‹ частично) факторнСзависимый ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ Ρ‡Π΅Ρ€Π΅Π· связываниС с 80S рибосомой.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π» ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции Ρƒ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° практичСски полная аналогия Π² ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΠΈ Π±Π΅Π·Π»ΠΈΠ΄Π΅Ρ€Π½ΠΎΠΉ мРНК с 70S ΠΈ 80S рибосомами.

ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹.

Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ рибосомы, ΠΊΠ»ΡŽΡ‡Π΅Π²ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° биосинтСза Π±Π΅Π»ΠΊΠ°, с ΡΠ°ΠΌΠΎΠ³ΠΎ своСго открытия ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°ΡŽΡ‚ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΡ‡Π΅Π½Ρ‹Ρ…. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, слоТно ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ сСбС Π±ΠΎΠ»Π΅Π΅ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΉ процСс Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅, Ρ‡Π΅ΠΌ синтСз ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°, ΠΈ Π±ΠΎΠ»Π΅Π΅ слоТно устроСнный Ρ€ΠΈΠ±ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ комплСкс, ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‰ΠΈΠΉ вмСстС со Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ Π·Π° Π²Ρ‹Π±ΠΎΡ€ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ‚Ρ€ΠΈΠΏΠ»Π΅Ρ‚Π° Π½Π° ΠΌΠ ΠΠš, ΡƒΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΠΉ Ρ†Π΅ΠΏΠΈ ΠΈ Π΅Π΅ Π²Ρ‹ΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ послС окончания Ρ†ΠΈΠΊΠ»Π° трансляции.

Π’ ΠΊΠΎΠ½Ρ†Π΅ 1990 Π³ΠΎΠ΄ΠΎΠ² Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ структуры рибосомы Π±Ρ‹Π» сдСлан настоящий ΠΏΡ€ΠΎΡ€Ρ‹Π² — ΡƒΠ²Π΅Π½Ρ‡Π°Π»ΠΈΡΡŒ успСхом ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠΈ Π·Π°ΠΊΡ€ΠΈΡΡ‚Π°Π»Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠ½ΡƒΡŽ субчастицу ΠΈΠ· Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Thermus thermophilics ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π΅Π΅ Ρ€Π΅Π½Ρ‚Π³Π΅Π½ с Π°Ρ‚ΠΎΠΌΠ½Ρ‹ΠΌ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ. Π’ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅ΠΌ Π±Ρ‹Π»ΠΈ Ρ€Π΅ΡˆΠ΅Π½Ρ‹ структуры Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… прокариотичСских рибосомных ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ† ΠΈ Ρ†Π΅Π»ΠΎΠΉ 70S рибосомы, Π½ΠΎ ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² рибосомы с ΠΌΠ ΠΠš, Ρ‚Π ΠΠš ΠΈ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ. Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСской, ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ рибосому Π΄ΠΎ ΡΠΈΡ… ΠΏΠΎΡ€ Π·Π°ΠΊΡ€ΠΈΡΡ‚Π°Π»Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ ΡƒΠ΄Π°Π»ΠΎΡΡŒ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ врСмя Π±Ρ‹Π» достигнут Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ прогрСсс благодаря Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° криоэлСктронной микроскопии. Бравнивая ΠΈΠΌΠ΅ΡŽΡ‰ΡƒΡŽΡΡ Π°Ρ‚ΠΎΠΌΠ½ΡƒΡŽ структуру прокариотичСской рибосомы со ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΉ эукариотичСской рибосомы, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΡƒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ криоэлСктронной микроскопии, ΠΌΠΎΠΆΠ½ΠΎ с Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎ большой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ надСТности Π²Ρ‹Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒ прСдполоТСния ΠΎ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π΅ послСднСй.

ВсС извСстныС рибосомы Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ ΠΎΡ‡Π΅Π½ΡŒ ΠΏΠΎΡ…ΠΎΠΆΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΈ Π²Π΅ΡΡŒΠΌΠ° схоТи структурно. Однако ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ трансляции Π² ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚Π°Ρ… ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚Π°Ρ… ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ довольно сильно, особСнно Π½Π° ΡΠ°ΠΌΠΎΠΌ слоТном этапС, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅Ρ‚ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ экспрСссии Π΄Π°Π½Π½ΠΎΠΉ ΠΌΠ ΠΠšΡΡ‚Π°Π΄ΠΈΠΈ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ. ЦСль Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±Π·ΠΎΡ€Π° Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ — ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ° Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ сходства (Π²Π²ΠΈΠ΄Ρƒ схоТСсти Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ) ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ (ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½Ρ‹ ΠΈΠ·-Π·Π° ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΠΎ Ρ€Π°Π·Π½Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² трансляции ΠΈ Π±ΠΈΠΎΠ³Π΅Π½Π΅Π·Π° рибосом) прокариотичСской ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСской рибосомы. Для большСй ΠΏΠΎΠ»Π½ΠΎΡ‚Ρ‹ Ρ‚Π°ΠΊΠΎΠ³ΠΎ сравнСния Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ хотя Π±Ρ‹ ΠΊΡ€Π°Ρ‚ΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ основных Ρ‚Ρ€Π΅Ρ… стадий биосинтСза Π±Π΅Π»ΠΊΠ° — ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ, элонгации ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ†ΠΈΠΈ.

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Показано, Ρ‡Ρ‚ΠΎ бСзлидСрная Π‘1 мРНК способна ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒΡΡ с 80S рибосомой Π² ΠΎΡ‚стутствиС Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции.

2. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠΉ комплСкс, ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌΡ‹ΠΉ 80S рибосомой, Π‘1 мРНК ΠΈ ΠœΠ΅Ρ‚-Ρ‚Π ΠΠšΠΈΠœΠ΅Ρ‚, способСн ΡƒΡ‡Π°ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠ»ΠΎΠ½Π³Π°Ρ†ΠΈΠΈ трансляции, Ρ‚. Π΅. являСтся ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½Ρ‹ΠΌ комплСксом.

3. Показано, Ρ‡Ρ‚ΠΎ Π‘1 мРНК способна ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ 48S ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½Ρ‹ΠΉ комплСкс с 40S рибосомой ΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции, ΠΎΠ΄Π½Π°ΠΊΠΎ Π²Ρ‹Ρ…ΠΎΠ΄ Ρ‚Π°ΠΊΠΎΠ³ΠΎ комплСкса сравним с Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠΌ Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠ³ΠΎ 80S ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ комплСкса. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ elFl способСн частично Π΄Π΅ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½Ρ‹ΠΉ комплСкс Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Ρ‚ΠΎΠΌ случаС, Ссли Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ присутствуСт Ρ„Π°ΠΊΡ‚ΠΎΡ€ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ eIF4 °F, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ eIF4 °F ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ эффСкт Π½Π° ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ 48S ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ комплСкса Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии АВР ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ eIF4A.

4. Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ трансляционныС свойства Π‘1 мРНК Π² Π±Π΅ΡΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ систСмС трансляции Π›Π Πš — ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ трансляция Π‘1 мРНК Π½Π΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ся ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ Π΅Π΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ трансляция Π‘1 мРНК Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ‚ ΠΎΡ‚ ΠΏΡ€ΠΈΡΡƒΡ‚ствия ΠΊΠ΅ΠΏ-структуры Π½Π° 5'-ΠΊΠΎΠ½Ρ†Π΅, ΠΈ Ρ‡Ρ‚ΠΎ Π‘1 мРНК способна эффСктивно Ρ‚Ρ€Π°Π½ΡΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ eIF2.

5. Показано, Ρ‡Ρ‚ΠΎ располоТСниС ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ‚Ρ€ΠΈΠΏΠ»Π΅Ρ‚Π° Π½Π° ΡΠ°ΠΌΠΎΠΌ 5' ΠΊΠΎΠ½Ρ†Π΅ мРНК ΠΈ ΠΎΠ΄Π½ΠΎΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Π°Ρ конформация области нСпосрСдствСнно послС ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ‚Ρ€ΠΈΠΏΠ»Π΅Ρ‚Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΌΠΈ мРНК нСпосрСдствСнно ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒΡΡ с 80S рибосомой Π² ΠΎΡ‚сутствии Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции.

6. Π”ΠΎΠΊΠ°Π·Π°Π½Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΊ Ρ‚рансляции нСспСцифичСского IRES-элСмСнта вируса насСкомых RhPV in vivo ΠΈ Π² ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½Π½ΠΎΠΉ бСсклСточной систСмС. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ сдСланный Ρ€Π°Π½Π΅Π΅ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ ΠΊΠ΅ΠΏ-нСзависимом способС ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции Π½Π° Π ΠΠš RhPV, сходным с ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСским ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ трансляции.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Butler J.S., Springer M., Dondon J., Graffe M., Grunberg-Manago M.(1986) Escherichia coli protein synthesis initiation factor IF3 controls its own gene expression at the translational level in vivo. J.Mol.Biol. 192,767−780.
  2. Shine J., Dalgarno L.(1974) The Π—'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc.Natl.Acad.Sci.U S A 71,1342−1346.
  3. Calogero R.A., Pon C.L., Canonaco M.A., Gualerzi C.O.(1988) Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc.Natl.Acad.Sci.U S A 85,6427−6431.
  4. Melancon P., Leclerc D., Destroismaisons N., Brakier-Gingras L.(l 990) The anti-Shine-Dalgarno region in Escherichia coli 16S ribosomal RNA is not essential for the correct selection of translational starts. Biochemistry 29, 3402−3407.
  5. Szer W., Hermoso J.M., Leffler S.(1975) Ribosomal protein SI and polypeptide chain initiation in bacteria. Proc.Natl.Acad.Sci.U S A 72,2325−2329.
  6. Tedin K., Resch A., Blasi U.(1997) Requirements for ribosomal protein S1 for translation initiation of mRNAs with and without a 5' leader sequence. Mol.Microbiol. 25,189 199.
  7. Boni I.V., Isaeva D.M., Musychenko M.L., Tzareva N.V.(1991) Ribosome-messenger recognition: mRNA target sites for ribosomal protein SI. Nucleic Acids Res. 19, 155−162.
  8. Olins P.O., Devine C.S., Rangwala S.H., Kavka K.S.(1988) The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene 73,227−235.
  9. Olins P.O., Rangwala S.H.(1989) A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. J.Biol.Chem. 264,16 973−16 976.
  10. Gallie D.R., Kado C.I.(1989) A translational enhancer derived from tobacco mosaic virus is functionally equivalent to a Shine-Dalgarno sequence. Proc.Natl.Acad.Sci.U S A 86,129−132.
  11. Komarova A.V., Tchufistova L.S., Dreyfus M., Boni I.V.(2005) AU-rich sequences within 5' untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J.Bacteriol. 187,1344−1349.
  12. Gualerzi C.O., Pon C.L.(1990) Initiation of mRNA translation in prokaryotes. Biochemistry 29,5881−5889.
  13. Gualerzi Π‘., Risuleo G., Pon C.L.(1977) Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3. Biochemistry 16,1684−1689.
  14. Wintermeyer W., Gualerzi C.(1983) Effect of Escherichia coli initiation factors on the kinetics of N-Acphe-tRNAPhe binding to 30S ribosomal subunits. A fluorescence stopped-flow study. Biochemistry 22,690−694.
  15. Sussman J.K., Simons E.L., Simons R.W.(1996) Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo. Mol.Microbiol. 21, 347−360.
  16. Haggerty T.J., Lovett S.T.(1997) IF3-mediated suppression of a GUA initiation codon mutation in the recJ gene of Escherichia coli. J.Bacteriol. 179,6705−6713.
  17. Shapkina T.G., Dolan M.A., Babin P., Wollenzien P.(2000) Initiation factor 3-induced structural changes in the 30 S ribosomal subunit and in complexes containing tRNA (f)(Met) and mRNA. J.Mol.Biol. 299, 615−628.
  18. Celano Π’., Pawlik R.T., Gualerzi C.O.(l 988) Interaction of Escherichia coli translation-initiation factor IF-1 with ribosomes. Eur.J.Biochem. 178,351−355.
  19. Stringer E.A., Sarkar P., Maitra U.(1977) Function of initiation factor 1 in the binding and release of initiation factor 2 from ribosomal initiation complexes in Escherichia coli. J.Biol.Chem. 252,1739−1744.
  20. Sundari R.M., Stringer E.A., Schulman L.H., Maitra U.(1976) Interaction of bacterial initiation factor 2 with initiator tRNA. J.Biol.Chem. 251,3338−3345.
  21. Antoun A., Pavlov M.Y., Andersson K., Tenson Π’., Ehrenberg M.(2003) The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. EMBO J. 22,5593−5601.
  22. Tomsic J., Vitali L.A., Daviter Π’., Savelsbergh A., Spurio R., Striebeck P., Wintermeyer W., Rodnina M.V., Gualerzi C.0.(2000) Late events of translation initiation in bacteria: a kinetic analysis. EMBO J. 19,2127−2136.
  23. Iborra F.J., Jackson D.A., Cook P.R.(2004) The case for nuclear translation. J. Cell Sci. 117,5713−5720.
  24. Banerjee A.K.(1980) 5'-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol .Rev. 44,175−205.
  25. Lim L., Canellakis E.S.(1970) Adenine-rich polymer associated with rabbit reticulocyte messenger RNA. Nature 227,710−712.
  26. Kozak M.(1978) How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 15,1109−1123.
  27. Asano K., Clayton J., Shalev A., Hinnebusch A.G.(2000) A multifactor complex of eukaryotic initiation factors, elFl, eIF2, eIF3, eIF5, and initiator tRNA (Met) is an important translation initiation intermediate in vivo. Genes Dev. 14,2534−2546.
  28. Fekete C.A., Applefield D.J., Blakely S.A., Shirokikh N., Pestova Π’., Lorsch J.R., Hinnebusch A.G.(2005) The elFIA C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J. 24,3588−3601.
  29. Olsen D.S., Savner E.M., Mathew A., Zhang F., Krishnamoorthy Π’., Phan L., Hinnebusch A.G.(2003) Domains of elFIA that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J. 22,193−204.
  30. Marintchev A., Wagner G.(2004) Translation initiation: structures, mechanisms and evolution. Q.Rev.Biophys. 37,197−284.
  31. Rogers G.W., Jr., Richter N.J., Merrick W.C.(1999) Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J.Biol.Chem. 274,12 236−12 244.
  32. Rogers G.W., Jr., Lima W.F., Merrick W.C.(2001) Further characterization of the helicase activity of eIF4A. Substrate specificity. J.Biol.Chem. 276,12 598−12 608.
  33. Rogers G.W., Jr., Richter N.J., Lima W.F., Merrick W.C.(2001) Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4 °F. J.Biol.Chem. 276,30 914−30 922.
  34. Rogers G.W., Jr., Komar A. A., Merrick W.C.(2002) eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res.Mol.Biol. 72,307−331.
  35. Yoder-Hill J., Pause A., Sonenberg N. Merrick W.C.(1993) The p46 subunit of eukaryotic initiation factor (eIF)-4 °F exchanges with eIF-4A. J.Biol.Chem. 268,5566−5573.
  36. Altmann M., Muller P.P., Wittmer Π’., Ruchti F., Lanker S., Trachsel H.(1993) A Saccharomyces cerevisiae homologue of mammalian translation initiation factor 4B contributes to RNA helicase activity. EMBO J. 12,3997−4003.
  37. Ray B.K., Lawson T.G., Kramer J.C., Cladaras M.H., Grifo J.A., Abramson R.D., Merrick W.C., Thach R.E.(1985) ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J.Biol.Chem. 260,7651−7658.
  38. Pestova T.V., Kolupaeva V.G.(2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16,2906−2922.
  39. Majumdar R., Maitra U.(2005) Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation. EMBO J. 24,3737−3746.
  40. Kozak M.(l 999) Initiation of translation in prokaryotes and eukaryotes. Gene 234,187−208.
  41. Fletcher C.M., Pestova T.V., Hellen C.U., Wagner G.(1999) Structure and interactions of the translation initiation factor elFl. EMBO J. 18,2631−2637.
  42. Chaudhuri J., Si K., Maitra U.(l997) Function of eukaryotic translation initiation factor 1A (elFl A) (formerly called eIF-4C) in initiation of protein synthesis. J.Biol.Chem. 272, 7883−7891.
  43. Chaudhuri J., Chowdhury D., Maitra U.(1999) Distinct functions of eukaryotic translation initiation factors elFIA and eIF3 in the formation of the 40 S ribosomal preinitiation complex. J.Biol.Chem. 274,17 975−17 980.
  44. Raychaudhuri P., Chaudhuri A., Maitra U.(1985) Formation and release of eukaryotic initiation factor 2 X GDP complex during eukaryotic ribosomal polypeptide chain initiation complex formation. J.Biol.Chem. 260,2140−2145.
  45. Pestova T.V., Lomakin I.B., Lee J.H., Choi S.K., Dever Π’.Π•., Hellen C.U.(2000) The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403, 332−335.
  46. Jackson R.J.(2005) Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem.Soc.Trans. 33,1231−1241.
  47. Komar A.A., Hatzoglou M.(2005) Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J.Biol.Chem. 280,23 425−23 428.
  48. Pestova T.V., Kolupaeva V.G., Lomakin I.B., Pilipenko E.V., Shatsky I.N., Agol V.I., Hellen C.U.(2001) Molecular mechanisms of translation initiation in eukaryotes. Proc.Natl.Acad.Sci.U.S.A. 98,7029−7036.
  49. Ryabova L.A., Pooggin M.M., Hohn T.(2002) Viral strategies of translation initiation: ribosomal shunt and reinitiation. Prog. Nucleic Acid Res.Mol.Biol. 72,1−39.
  50. Ramakrishnan V.(2002) Ribosome structure and the mechanism of translation. Cell 108, 557−572.
  51. Francklyn C., Perona J.J., Puetz J., Hou Y.M.(2002) Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA 8,1363−1372.
  52. Ogle J.M., Brodersen D.E., Clemons W.M., Jr., Tarry M.J., Carter A.P., Ramakrishnan V.(2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897−902.
  53. Rodnina M.V., Wintermeyer W.(2001) Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu.Rev.Biochem. 70,415−435.
  54. Uchiumi Π’., Honma S., Nomura Π’., Dabbs E.R., Hachimori A.(2002) Translation elongation by a hybrid ribosome in which proteins at the GTPase center of the Escherichia coli ribosome are replaced with rat counterparts. J.Biol.Chem. 277,3857−3862.
  55. Kisselev L., Ehrenberg M., Frolova L.(2003) Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J. 22,175−182.
  56. Spahn C.M., Beckmann R., Eswar N., Penczek P.A., Sali A., Blobel G., Frank J.(2001) Structure of the 80S ribosome from Saccharomyces cerevisiae~tRNA-ribosome and subunit-subunit interactions. Cell 107,373−386.
  57. Wuyts J., Van de P.Y., Winkelmans Π’., De W.R.(2002) The European database on small subunit ribosomal RNA. Nucleic Acids Res. 30,183−185.
  58. Wimberly B.T., Brodersen D.E., Clemons W.M., Jr., Morgan-Warren R.J., Carter
  59. A.P., Vonrhein C., Hartsch Π’., Ramakrishnan V.(2000) Structure of the 30S ribosomal subunit. Nature 407, 327−339.
  60. Demianova M., Formosa T.G., Ellis S.R.(1996) Yeast proteins related to the p40/laminin receptor precursor are essential components of the 40 S ribosomal subunit. J.Biol.Chem. 271,11 383−11 391.
  61. Tabb-Massey A., Caffrey J.M., Logsden P., Taylor S., Trent J.O., Ellis S.R.(2003) Ribosomal proteins RpsO and Rps21 of Saccharomyces cerevisiae have overlapping functions in the maturation of the 3' end of 18S rRNA. Nucleic Acids Res. 31,6798−6805.
  62. Ford C.L., Randal-Whitis L., Ellis S.R.(1999) Yeast proteins related to the p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits. Cancer Res. 59,704−710.
  63. Liotta L.A.(1986) Tumor invasion and metastases-role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res. 46, 1−7.
  64. Torok I., Herrmann-Horle D., Kiss I., Tick G., Speer G., Schmitt R., Mechler
  65. B.M.(1999) Down-regulation of RpS21, a putative translation initiation factor interacting with P40, produces viable minute imagos and larval lethality with overgrown hematopoietic organs and imaginal discs. Mol. Cell Biol. 19,2308−2321.
  66. Keppel E., Schaller H.C.(1991) A 33 kDa protein with sequence homology to the 'laminin binding protein' is associated with the cytoskeleton in hydra and in mammalian cells. J. Cell Sci. 100, 789−797.
  67. Valasek L., Mathew A.A., Shin B.S., Nielsen K.H., Szamecz Π’., Hinnebusch A.G.(2003) The yeast eIF3 subunits TIF32/a, NIPl/c, and eIF5 make critical connections with the 40S ribosome in vivo. Genes Dev. 17,786−799.
  68. Ramakrishnan V., Graziano V., Capel M.S.(1986) A role for proteins S3 and S14 in the 30 S ribosomal subunit. J.Biol.Chem. 261,15 049−15 052.
  69. Brandt R., Gualerzi C.O.(1992) Ribosomal localization of the mRNA in the 30S initiation complex as revealed by UV crosslinking. FEBS Lett. 311,199−202.
  70. Takahashi Y., Mitsuma Π’., Hirayama S., Odani S.(2002) Identification of the ribosomal proteins present in the vicinity of globin mRNA in the 40S initiation complex. J.Biochem. 132, 705−711.
  71. Westermann P., Nygard 0.(1984) Cross-linking of mRNA to initiation factor eIF-3,24 kDa cap binding protein and ribosomal proteins SI, S3/3a, S6 and SI 1 within the 48S pre-initiation complex. Nucleic Acids Res. 12, 8887−8897.
  72. Wilson D.M., III, Deutsch W.A., Kelley M.R.(1994) Drosophila ribosomal protein S3 contains an activity that cleaves DNA at apurinic/apyrimidinic sites. J.Biol.Chem. 269,25 359−25 364.
  73. Hegde V., Wang M., Deutsch W.A.(2004) Human ribosomal protein S3 interacts with DNA base excision repair proteins hAPE/Ref-1 and hOGGl. Biochemistry 43,1 421 114 217.
  74. Sandigursky M., Yacoub A., Kelley M.R., Deutsch W.A., Franklin W.A.(1997) The Drosophila ribosomal protein S3 contains a DNA deoxyribophosphodiesterase (dRpase) activity. J.Biol.Chem. 272,17 480−17 484.
  75. Yacoub A., Augeri L., Kelley M.R., Doetsch P.W., Deutsch W.A.(1996) A Drosophila ribosomal protein contains 8-oxoguanine and abasic site DNA repair activities. EMBO J. 15,2306−2312.
  76. Kim S.H., Lee J.Y., Kim J.(2005) Characterization of a wide range base-damage-endonuclease activity of mammalian rpS3. Biochem.Biophys.Res.Commun. 328,962−967.
  77. Saeboe-Larssen S., Lyamouri M., Merriam J., Oksvold M.P., Lambertsson A.(1998) Ribosomal protein insufficiency and the minute syndrome in Drosophila: a dose-response relationship. Genetics. 148,1215−1224.
  78. Jang C.Y., Lee J.Y., Kim J.(2004) RpS3, a DNA repair endonuclease and ribosomal protein, is involved in apoptosis. FEBS Lett. 560, 81−85.
  79. Pogue-Geile K., Geiser J.R., Shu M., Miller C., Wool I.G., Meisler A.I., Pipas J.M.(1991) Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human S3 ribosomal protein. Mol. Cell Biol. 11,3842−3849.
  80. Jantzen H., Schulze 1.(1987) Effect of essential amino acids on the phosphorylation of a 40S ribosomal protein and protein synthesis in Acanthamoeba castellanii. J. Cell Physiol. 130,444−452.
  81. Kim H.D., Lee J.Y., Kim J.(2005) Erk phosphorylates threonine 42 residue of ribosomal protein S3. Biochem.Biophys.Res.Commun. 333,110−115.
  82. Kim T.S., Jang C.Y., Kim H.D., Lee J.Y., Ahn B.Y., Kim J.(2006) Interaction of Hsp90 with Ribosomal Proteins Protects from Ubiquitination and Proteasome-dependent Degradation. Mol.Biol.Cell. 17,824−833.
  83. Markus M.A., Gerstner R.B., Draper D.E., Torchia D.A.(1998) The solution structure of ribosomal protein S4 delta41 reveals two subdomains and a positively charged surface that may interact with RNA. EMBO J. 17,4559−4571.
  84. Spedding G., Draper D.E.(1993) Allosteric mechanism for translational repression in the Escherichia coli alpha operon. Proc.Natl.Acad.Sci.U.S.A. 90,4399−4403.
  85. Tang C.K., Draper D.E.(1989) Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell. 57, 531−536.
  86. Jinks-Robertson S., Nomura M.(1982) Ribosomal protein S4 acts in trans as a translational repressor to regulate expression of the alpha operon in Escherichia coli. J.Bacteriol. 151,193−202.
  87. Stansfield I., Jones K.M., Herbert P., Lewendon A., Shaw W.V., Tuite M.F.(1998) Missense translation errors in Saccharomyces cerevisiae. J.Mol.Biol. 282,13−24.
  88. Dahlgren A., Ryden-Aulin M.(2000) A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie 82,683−691.
  89. Westermann P., Nygard 0.(1983) The spatial arrangement of the complex between eukaryotic initiation factor eIF-3 and 40 S ribosomal subunit. Cross-linking between factor and ribosomal proteins. Biochim.Biophys.Acta. 741,103−108.
  90. Antoine M., Reimers K., Wirz W., Gressner A.M., Muller R., Kiefer P.(2005) Identification of an unconventional nuclear localization signal in human ribosomal protein S2. Biochem.Biophys.Res.Commun. 335,146−153.
  91. Antoine M., Reimers K., Wirz W., Gressner A.M., Muller R., Kiefer P.(2005) Fibroblast growth factor 3, a protein with a dual subcellular fate, is interacting with human ribosomal protein S2. Biochem.Biophys.Res.Commun. 338,1248−1255.
  92. Kowalczyk P., Woszczynski M., Ostrowski J.(2002) Increased expression of ribosomal protein S2 in liver tumors, posthepactomized livers, and proliferating hepatocytes in vitro. Acta Biochim.Pol. 49, 615−624.
  93. Chiao P.J., Shin D.M., Sacks P.G., Hong W.K., Tainsky M.A.(1992) Elevated expression of the ribosomal protein S2 gene in human tumors. Mol.Carcinog. 5,219−231.
  94. Swiercz R., Person M.D., Bedford M.T.(2005) Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3). Biochem.J. 386, 85−91.
  95. Bachand F., Silver P.A.(2004) PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits. EMBO J. 23,2641−2650.
  96. Sylvers L.A., Kopylov A.M., Wower J., Hixson S.S., Zimmermann R.A.(1992) Photochemical cross-linking of the anticodon loop of yeast tRNA (Phe) to 30S-subunit protein S7 at the ribosomal A and P sites. Biochimie. 74,381−389.
  97. Robert F., Brakier-Gingras L.(2003) A functional interaction between ribosomal proteins S7 and SI 1 within the bacterial ribosome. J.Biol.Chem. 278,44 913−44 920.
  98. Dean D., Yates J.L., Nomura M.(1981) Identification of ribosomal protein S7 as a repressor of translation within the str operon of E. coli. Cell. 24,413−419.
  99. Saito K., Mattheakis L.C., Nomura M.(1994) Post-transcriptional regulation of the str operon in Escherichia coli. Ribosomal protein S7 inhibits coupled translation of S7 but not its independent translation. J.Mol.Biol. 235,111−124.
  100. Robert F., Brakier-Gingras L.(2001) Ribosomal protein S7 from Escherichia coli uses the same determinants to bind 16S ribosomal RNA and its messenger RNA. Nucleic Acids Res. 29,677−682.
  101. McKim K.S., Dahmus J.B., Hawley R.S.(1996) Cloning of the Drosophila melanogaster meiotic recombination gene mei-218: a genetic and molecular analysis of interval 15E. Genetics. 144,215−228.
  102. Weijers D., Franke-van D.M., Vencken R.J., Quint A., Hooykaas P., Offringa R.(2001) An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128,4289−4299.
  103. Williams M.E., Sussex I.M.(1995) Developmental regulation of ribosomal protein LI6 genes in Arabidopsis thaliana. Plant J. 8,65−76.
  104. Fukushi S., Okada M., Stahl J., Kageyama Π’., Hoshino F.B., Katayama K.(2001) Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis Π‘ virus. J.Biol.Chem. 276,20 824−20 826.
  105. Jagannathan I., Culver G.M.(2003) Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8. J.Mol.Biol. 330,373−383.
  106. Mougel M., Allmang C., Eyermann F., Cachia C., Ehresmann Π’., Ehresmann C.(1993) Minimal 16S rRNA binding site and role of conserved nucleotides in Escherichia coli ribosomal protein S8 recognition. Eur.J.Biochem. 215,787−792.
  107. Merianos H.J., Wang J., Moore P.B.(2004) The structure of a ribosomal protein S8/spc operon mRNA complex. RNA 10,954−964.
  108. Dean D., Yates J.L., Nomura M.(1981) Escherichia coli ribosomal protein S8 feedback regulates part of spc operon. Nature. 289, 89−91.
  109. Lavoie C., Tarn R., Clark M., Lee H., Sonenberg N., Lasko P.(1994) Suppression of a temperature-sensitive cdc33 mutation of yeast by a multicopy plasmid expressing a Drosophila ribosomal protein. J.Biol.Chem. 269,14 625−14 630.
  110. Bonham-Smith P.C., Oancia T.L., Moloney M.M.(1992) Cytoplasmic ribosomal protein SI5a from Brassica napus: molecular cloning and developmental expression in mitotically active tissues. Plant Mol.Biol. 18,909−919.
  111. Akiyama N. Matsuo Y., Sai H., Noda M., Kizaka-Kondoh S.(2000) Identification of a series of transforming growth factor beta-responsive genes by retrovirus-mediated gene trap screening. Mol. Cell Biol. 20,3266−3273.
  112. Lian Z., Liu J., Li L., Li X., Tufan N.L., Wu M.C., Wang H.Y., Arbuthnot P, Kew M., Feitelson M.A.(2004) Human SI5a expression is upregulated by hepatitis Π’ virus X protein. Mol.Carcinog. 40,34−46.
  113. Yusupov M.M., Yusupova G.Z., Baucom A., Lieberman K., Earnest T.N., Cate J.H., Noller H.F.(2001) Crystal structure of the ribosome at 5.5 A resolution. Science 292,883 896.
  114. Noller H.F., Hoang L., Fredrick K.(2005) The 30S ribosomal P site: a function of 16S rRNA. FEBS Lett. 579, 855−858.
  115. Hoang L., Fredrick K., Noller H.F.(2004) Creating ribosomes with an all-RNA 30S subunit P site. Proc.Natl.Acad.Sci.U.S.A. 101,12 439−12 443.
  116. Malygin A.A., Shaulo D.D., Karpova G.G.(2000) Proteins S7, S10, S16 and S19 of the human 40S ribosomal subunit are most resistant to dissociation by salt. Biochim.Biophys.Acta. 1494,213−216.
  117. Tsugeki R., Kochieva E.Z., Fedoroff N.V.(1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J. 10,479−489.
  118. Zengel J.M., Lindahl L.(1990) Ribosomal protein L4 stimulates in vitro termination of transcription at a NusA-dependent terminator in the S10 operon leader. Proc.Natl.Acad.Sci.U.S.A. 87,2675−2679.
  119. Mogridge J., Mah T.F., Greenblatt J.(1995) A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein. Genes Dev. 9,2831−2845.
  120. Nodwell J.R., Greenblatt J.(1993) Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Cell. 72,261−268.
  121. Friedman D.I., Schauer A.T., Baumann M.R., Baron L.S., Adhya S.L.(1981) Evidence that ribosomal protein S10 participates in control of transcription termination. Proc.Natl.Acad.Sci.U.S.A. 78,1115−1118.
  122. Hermann-Le D.S., Sipiczki M., Thuriaux P.(1994) Suppression of yeast RNA polymerase III mutations by the URP2 gene encoding a protein homologous to the mammalian ribosomal protein S20. J.Mol.Biol. 240,1−7.
  123. Goldstone S.D., Lavin M.F.(1993) Isolation of a cDNA clone, encoding the ribosomal protein S20, downregulated during the onset of apoptosis in a human leukaemic cell line. Biochem.Biophys.Res.Commun. 196,619−623.
  124. David C.L., Keener J., Aswad D.W.(1999) Isoaspartate in ribosomal protein SI 1 of Escherichia coli. J.Bacteriol. 181,2872−2877.
  125. Fewell S.W., Woolford J.L., Jr.(1999) Ribosomal protein S14 of Saccharomyces cerevisiae regulates its expression by binding to RPS14B pre-mRNA and to 18S rRNA. Mol. Cell Biol. 19, 826−834.
  126. Tasheva E.S., Roufa D.J.(1995) Regulation of human RPS14 transcription by intronic antisense RNAs and ribosomal protein S14. Genes Dev. 9,304−316.
  127. Jakovljevic J., de Mayolo P.A., Miles T.D., Nguyen T.M., Leger-Silvestre I., Gas N., Woolford J.L., Jr.(2004) The carboxy-terminal extension of yeast ribosomal protein S14 is necessary for maturation of 43S preribosomes. Mol.Cell. 14,331−342.
  128. Moritz M., Paulovich A.G., Tsay Y.F., Woolford J.L., Jr.(1990) Depletion of yeast ribosomal proteins LI6 or rp59 disrupts ribosome assembly. J. Cell Biol. Ill, 2261−2274.
  129. Ogle J.M., Murphy F.V., Tarry M.J., Ramakrishnan V.(2002) Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721−732.
  130. Wilson D.N., Nierhaus K.H.(2005) Ribosomal proteins in the spotlight. Crit Rev.Biochem.Mol.Biol. 40,243−267.
  131. Synetos D., Frantziou C.P., Alksne L.E.(1996) Mutations in yeast ribosomal proteins S28 and S4 affect the accuracy of translation and alter the sensitivity of the ribosomes to paromomycin. Biochim.Biophys.Acta. 1309,156−166.
  132. Alksne L.E., Anthony R.A., Liebman S.W., Warner J.R.(1993) An accuracy center in the ribosome conserved over 2 billion years. Proc.Natl.Acad.Sci.U.S.A. 90,95 389 541.
  133. Cukras A.R., Southworth D.R., Brunelle J.L., Culver G.M., Green R.(2003) Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA: tRNA complex. Mol.Cell. 12,321−328.
  134. Van L.M., Vanderhaeghen R., De B.M., Bauw G., Villarroel R., Van M.M.(1994) An SI 8 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J. 13,3378−3388.
  135. Mishra-Gorur K., Singer H.A., Castellot J.J., Jr.(2002) The S18 ribosomal protein is a putative substrate for Ca2+/calmodulin-activated protein kinase II. J.Biol.Chem. 277, 33 537−33 540.
  136. Khanna N., Sen S., Sharma H., Singh N.(2003) S29 ribosomal protein induces apoptosis in H520 cells and sensitizes them to chemotherapy. Biochem.Biophys.Res.Commun. 304,26−35.
  137. Khanna N., Reddy V.G., Tuteja N., Singh N.(2000) Differential gene expression in apoptosis: identification of ribosomal protein S29 as an apoptotic inducer. Biochem.Biophys.Res.Commun. 277,476−486.
  138. Zhou Z.D., Bao L., Liu D.G., Li M.Q., Ge Y.Z., Huang Y.L., Liu W.Y.(2003) Low content of protein S29 in ribosomes of human lung cancer cell line a549: detected by two-dimensional electrophoresis. Protein Pept.Lett. 10,91−97.
  139. Yano R., Yura T.(1989) Suppression of the Escherichia coli rpoH opal mutation by ribosomes lacking S15 protein. J.Bacteriol. 171,1712−1717.
  140. Serganov A., Polonskaia A., Ehresmann Π’., Ehresmann C., Patel D.J.(2003) Ribosomal protein S15 represses its own translation via adaptation of an rRNA-like fold within its mRNA. EMBO J. 22,1898−1908.
  141. Braun F., Le D.J., Regnier P.(1998) Ribosomes inhibit an RNase E cleavage which induces the decay of the rpsO mRNA of Escherichia coli. EMBO J. 17,4790−4797.
  142. Haugel-Nielsen J., Hajnsdorf E., Regnier P.(l996) The rpsO mRNA of Escherichia coli is polyadenylated at multiple sites resulting from endonucleolytic processing and exonucleolytic degradation. EMBO J. 15,3144−3152.
  143. Kim K.Y., Park S.W., Chung Y.S., Chung C.H., Kim J.I., Lee J.H.(2004) Molecular cloning of low-temperature-inducible ribosomal proteins from soybean. J.Exp.Bot. 55,1153−1155.
  144. Denis M.G., Chadeneau C., Lecabellec M.T., LeMoullac Π’., LeMevel Π’., Meflah K., Lustenberger P.(1993) Over-expression of the S13 ribosomal protein in actively growing cells. Int.J.Cancer. 55,275−280.
  145. Beaud G., Masse Π’., Madjar J.J., Leader D.P.(1989) Identification of induced protein kinase activities specific for the ribosomal proteins uniquely phosphorylated during infection of HeLa cells with vaccinia virus. FEBS Lett. 259,10−14.
  146. Simitsopoulou M., Avila H., Franceschi F.(1999) Ribosomal gene disruption in the extreme thermophile Thermus thermophilus HB8. Generation of a mutant lacking ribosomal protein SI7. Eur.J.Biochem. 266,524−532.
  147. Dabbs E.R.(1978) Mutational alterations in 50 proteins of the Escherichia coli ribosome. Mol.Gen.Genet. 165, 73−78.
  148. Boni IV, Zlatkin IV, Budowsky EI.(1982) Ribosomal protein SI associates with Escherichia coli ribosomal 30-S subunit by means of protein-protein interactions. Eur. J. Biochem. 121(2), 371−376.
  149. Karlin S., Theriot J., Mrazek J.(2004) Comparative analysis of gene expression among low G+C gram-positive genomes. Proc.Natl.Acad.Sci.U.S.A. 101, 6182−6187.
  150. Sorensen M.A., Fricke J., Pedersen S.(1998) Ribosomal protein SI is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. J.Mol.Biol. 280, 561 569.
  151. Komarova A.V., Tchufistova L.S., Supina E.V., Boni I.V.(2002) Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation. RNA 8,1137−1147.
  152. Boni I.V., Artamonova V.S., Tzareva N.V., Dreyfus M.(2001) Non-canonical mechanism for translational control in bacteria: synthesis of ribosomal protein SI. EMBO J. 20, 4222−4232.
  153. Schnier J., Kitakawa M., Isono K.(l 986) The nucleotide sequence of an Escherichia coli chromosomal region containing the genes for ribosomal proteins S6, SI8, L9 and an open reading frame. Mol.Gen.Genet. 204,126−132.
  154. Arnold R.J., Reilly J.P.(1999) Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal.Biochem. 269,105−112.
  155. Brodersen D.E., Clemons W.M., Jr., Carter A.P., Wimberly B.T., Ramakrishnan V.(2002) Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J.Mol.Biol. 316,725−768.
  156. Persson B.C., Bylund G.O., Berg D.E., Wikstrom P.M.(1995) Functional analysis of the ffh-trmD region of the Escherichia coli chromosome by using reverse genetics. J.Bacteriol. Ill, 5554−5560.
  157. Held W.A., Nomura M.(1975) Escherichia coli 30 S ribosomal proteins uniquely required for assembly. J.Biol.Chem. 250, 3179−3184.
  158. Ryden-Aulin M., Shaoping Z., Kylsten P., Isaksson L.A.(1993) Ribosome activity and modification of 16S RNA are influenced by deletion of ribosomal protein S20. Mol.Microbiol. 7,983−992.
  159. Gotz F., Dabbs E.R., Gualerzi C.0.(1990) Escherichia coli 30S mutants lacking protein S20 are defective in translation initiation. Biochim.Biophys.Acta. 1050, 93−97.
  160. Gotz F" Fleischer C., Pon C.L., Gualerzi C.O.(1989) Subunit association defects in Escherichia coli ribosome mutants lacking proteins S20 and LI 1. Eur.J.Biochem. 183,19−24.
  161. Wirth R., Littlechild J., Bock A.(1982) Ribosomal protein S20 purified under mild conditions almost completely inhibits its own translation. Mol.Gen.Genet. 188,164−166.
  162. Parsons G.D., Donly B.C., Mackie G.A.(1988) Mutations in the leader sequence and initiation codon of the gene for ribosomal protein S20 (rpsT) affect both translational efficiency and autoregulation. J.Bacteriol. 170,2485−2492.
  163. Mackie G.A.(1992) Secondary structure of the mRNA for ribosomal protein S20. Implications for cleavage by ribonuclease E. J.Biol.Chem. 267,1054−1061,
  164. Van D.J., Wijnands R.(1981) The function of ribosomal protein S21 in protein synthesis. Eur.J.Biochem. 118,615−619.
  165. Held W.A., Nomura M., Hershey J.W.(1974) Ribosomal protein S21 is required for full activity in the initiation of protein synthesis. Mol.Gen.Genet. 128,11−22.
  166. Izutsu K., Wada C., Komine Y., Sako Π’., Ueguchi C., Nakura S., Wada A.(2001) Escherichia coli ribosome-associated protein SRA, whose copy number increases during stationary phase. J.Bacteriol. 183,2765−2773.
  167. Maki Y., Yoshida H., Wada A.(2000) Two proteins, YfiA and YhbH, associated with resting ribosomes in stationary phase Escherichia coli. Genes Cells 5,965−974.
  168. Wada A.(1998) Growth phase coupled modulation of Escherichia coli ribosomes. Genes Cells. 3,203−208.
  169. Lutsch G., Stahl J., Kargel H.J., Noll F., Bielka H.(1990) Immunoelectron microscopic studies on the location of ribosomal proteins on the surface of the 40S ribosomal subunit from rat liver. Eur.J.Cell Biol. 51,140−150.
  170. Westermann P., Heumann W., Bommer U.A., Bielka H., Nygard O., Hultin T.(1979) Crosslinking of initiation factor eIF-2 to proteins of the small subunit of rat liver ribosomes. FEBS Lett. 97,101−104.
  171. Nygard O., Nilsson L., Westermann P.(1987) Characterisation of the ribosomal binding site for eukaryotic elongation factor 2 by chemical cross-linking. Biochim.Biophys.Acta. 910,245−253.
  172. Kho C.J., Zarbl H.(1992) Fte-1, a v-fos transformation effector gene, encodes the mammalian homologue of a yeast gene involved in protein import into mitochondria. Proc.Natl.Acad.Sci. U.S.A. 89,2200−2204.
  173. Cui K., Coutts M., Stahl J., Sytkowski A.J.(2000) Novel interaction between the transcription factor CHOP (GADD153) and the ribosomal protein FTE/S3a modulates erythropoiesis. J.Biol.Chem. 275,7591−7596.
  174. Reynaud E., Bolshakov V.N., Barajas V., Kafatos F.C., Zurita M.(1997) Antisense suppression of the putative ribosomal protein S3A gene disrupts ovarian development in Drosophila melanogaster. Mol.Gen.Genet. 256, 462−467.
  175. Jegalian K., Page D.C.(1998) A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature. 394,776−780.
  176. Zinn A.R., Alagappan R.K., Brown L.G., Wool I., Page D.C.(1994) Structure and function of ribosomal protein S4 genes on the human and mouse sex chromosomes. Mol. Cell Biol. 14, 2485−2492.
  177. Watanabe M., Zinn A.R., Page D.C., Nishimoto T.(1993) Functional equivalence of human X- and Y-encoded isoforms of ribosomal protein S4 consistent with a role in Turner syndrome. Nat.Genet. 4,268−271.
  178. Ashworth A., Rastan S., Lo veil-Badge R., Kay G.(1991) X-chromosome inactivation may explain the difference in viability of XO humans and mice. Nature. 351,406 408.
  179. Nygard O., Nilsson L.(1990) Translational dynamics. Interactions between the translational factors, tRNA and ribosomes during eukaryotic protein synthesis. Eur.J.Biochem. 191,1−17.
  180. Hay N., Sonenberg N.(2004) Upstream and downstream of mTOR. Genes Dev. 18,1926−1945.
  181. Raught Π’., Peiretti F., Gingras A.C., Livingstone M., Shahbazian D., Mayeur G.L., Polakiewicz R.D., Sonenberg N., Hershey J.W.(2004) Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBOJ. 23,1761−1769.
  182. Pei L.(l 999) Pituitary tumor-transforming gene protein associates with ribosomal protein S10 and a novel human homologue of DnaJ in testicular cells. J.Biol. Chem. 274, 31 513 158.
  183. Patel H.R., Terada N., Gelfand E.W.(1996) Rapamycin-sensitive phosphorylation of ribosomal protein S17 by p70 S6 kinase. Biochem.Biophys.Res.Commun. 227, 507−512.
  184. Matsson H., Davey E.J., Draptchinskaia N., Hamaguchi I., Ooka A., Leveen P., Forsberg E., Karlsson S., Dahl N.(2004) Targeted disruption of the ribosomal protein SI 9 gene is lethal prior to implantation. Mol. Cell Biol 24,4032−4037.
  185. Ellis S.R., Massey A.T.(2006) Diamond Blackfan anemia: A paradigm for a ribosome-based disease. Med. Hypotheses 66,643−648.
  186. Soulet F., A1 S.T., Roga S., Amalric F., Bouche G.(2001) Fibroblast growth factor-2 interacts with free ribosomal protein SI9. Biochem.Biophys.Res.Commun. 289,591 596.
  187. Sato M., Saeki Y., Tanaka K., Kaneda Y.(1999) Ribosome-associated protein LBP/p40 binds to S21 protein of 40S ribosome: analysis using a yeast two-hybrid system. Biochem.Biophys.Res.Commun. 256, 385−390.
  188. Xu W.B., Roufa D.J.(1996) The gene encoding human ribosomal protein S24 and tissue-specific expression of differentially spliced mRNAs. Gene. 169,257−262.
  189. Bommer U.A., Lutsch G., Stahl J., Bielka H.(1991) Eukaryotic initiation factors eIF-2 and eIF-3: interactions, structure and localization in ribosomal initiation complexes. Biochimie. 73,1007−1019.
  190. Uchiumi Π’., Ogata K.(1986) Cross-linking study on localization of the binding site for elongation factor 1 alpha on rat liver ribosomes. J.Biol. Chem. 261,9668−9671.
  191. Laine R.O., Hutson R.G., Kilberg M.S.(1996) Eukaryotic gene expression: metabolite control by amino acids. Prog. Nucleic Acid Res.Mol.Biol. 53,219−248.
  192. Laine R.O., Shay N.F., Kilberg M.S.(1994) Nuclear retention of the induced mRNA following amino acid-dependent transcriptional regulation of mammalian ribosomal proteins L17 and S25. J.Biol.Chem. 269,9693−9697.
  193. Adilakshmi Π’., Laine R.0.(2002) Ribosomal protein S25 mRNA partners with MTF-1 and La to provide a p53-mediated mechanism for survival or death. J.Biol.Chem. 277, 4147−4151.
  194. Ivanov A.V., Malygin A.A., Karpova G.G.(2004) Human ribosomal protein S26 inhibits splicing of its own pre-mRNA. Mol.Biol.(Mosk). 38,676−683.
  195. Baudin-Baillieu A., Tollervey D., Cullin C., Lacroute F.(1997) Functional analysis of Rrp7p, an essential yeast protein involved in pre-rRNA processing and ribosome assembly. Mol. Cell Biol. 17, 5023−5032.
  196. Revenkova E., Masson J., Koncz C., Afsar K., Jakovleva L., Paszkowski J.(1999) Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress. EMBO J. 18,490−499.
  197. Redman K.L., Rechsteiner M.(1989) Identification of the long ubiquitin extension as ribosomal protein S27a. Nature. 338,438−440.
  198. Chan Y.L., Suzuki K., Wool I.G.(1995) The carboxyl extensions of two rat ubiquitin fusion proteins are ribosomal proteins S27a and L40. Biochem.Biophys.Res.Commun. 215, 682−690.
  199. Olvera J., Wool I.G.(1993) The carboxyl extension of a ubiquitin-like protein is rat ribosomal protein S30. J.Biol.Chem. 268,17 967−17 974.
  200. Nakamura M., Tanigawa Y.(1999) Biochemical analysis of the receptor for ubiquitin-like polypeptide. J.Biol.Chem. 274,18 026−18 032.
  201. Baker R.T., Williamson N.A., Wettenhall R.E.(1996) The yeast homolog of mammalian ribosomal protein S30 is expressed from a duplicated gene without a ubiquitin-like protein fusion sequence. Evolutionary implications. J.Biol.Chem. 271,13 549−13 555.
  202. Davis L., Engebrecht J.(1998) Yeast dom34 mutants are defective in multiple developmental pathways and exhibit decreased levels of polyribosomes. Genetics. 149,45−56.
  203. McCahill A., Warwicker J., Bolger G.B., Houslay M.D., Yarwood S.J.(2002) The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol.Pharmacol. 62, 1261−1273.
  204. Nilsson J., Sengupta J., Frank J., Nissen P.(2004) Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Rep. 5, 1137−1141.
  205. Ron D., Chen C.H., Caldwell J., Jamieson L., Orr E., Mochly-Rosen D.(1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc.Natl.Acad.Sci. U.S.A. 91, 839−843.
  206. Liliental J., Chang D.D.(1998) Rackl, a receptor for activated protein kinase C, interacts with integrin beta subunit. J.Biol.Chem. 273,2379−2383.
  207. Link A.J., Eng J., Schieltz D.M., Carmack E., Mize G.J., Morris D.R., Garvik B.M., Yates J.R., 111(1999) Direct analysis of protein complexes using mass spectrometry. Nat.Biotechnol. 17, 676−682.
  208. Gerbasi V.R., Weaver C.M., Hill S., Friedman D.B., Link А. Π¦2004) Yeast Asclp and mammalian RACK1 are functionally orthologous core 40S ribosomal proteins that repress gene expression. Mol. Cell Biol. 24, 8276−8287.
  209. Sengupta J., Nilsson J., Gursky R., Spahn C.M., Nissen P., Frank 1(2004) Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat. Struct. Mol. Biol 11,957−962.
  210. Baum S., Bittins M., Frey S., Seedorf M.(2004) Asclp, a WD40-domain containing adaptor protein, is required for the interaction of the RNA-binding protein Scpl60p with polysomes. Biochem.J. 380,823−830.
  211. Shor Π’., Calaycay J., Rushbrook J., McLeod M.(2003) Cpc2/RACK1 is a ribosome-associated protein that promotes efficient translation in Schizosaccharomyces pombe. J.Biol.Chem. 278,49 119−49 128.
  212. Balakin A.G., Skripkin E.A., Shatsky I.N., Bogdanov A.A.(1992) Unusual ribosome binding properties of mRNA encoding bacteriophage lambda repressor. Nucleic Acids Π”Π΅Π» 20, 563−571.
  213. Tzareva N.V., Makhno V.I., Boni I.V.(1994) Ribosome-messenger recognition in the absence of the Shine-Dalgarno interactions. FEBS Lett. 337,189−194.
  214. Terenin I.M., Dmitriev S.E., Andreev D.E., Royall E., Belsham G.J., Roberts L.O., Shatsky I.N.(2005) A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry. Mol. Cell Biol 25, 7879−7888.
  215. Merrick W.C.(1979) Purification of protein synthesis initiation factors from rabbit reticulocytes. Methods Enzymol 60, 101−108.
  216. Grifo J.A., Tahara S.M., Morgan M.A., Shatkin A.J., Merrick W.C.(1983) New initiation factor activity required for globin mRNA translation. J.Biol.Chem. 258, 5804−5810.
  217. Schreier M.H., Erni Π’., Staehelin T.(l 977) Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors. J.Mol.Biol. 116,727 753.
  218. Shimizu Y., Inoue A., Tomari Y., Suzuki Π’., Yokogawa Π’., Nishikawa K., Ueda T.(2001) Cell-free translation reconstituted with purified components. Nat. Biotechnol 19, 751 755.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ