Помощь в написании студенческих работ
Антистрессовый сервис

Закономерности формирования радиационного адаптивного ответа в клетках костного мозга мышей in vivo

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В настоящее время проблема биологического действия малых доз ионизирующих излучений (ИИ) занимает доминирующее место в современной радиационной биологии. Интерес к данной проблеме возник с появлением первых свидетельств того, что сложившиеся научные представления о механизмах и закономерностях действия малых доз ИИ на биологические объекты весьма ограничены и противоречивы. Авария… Читать ещё >

Закономерности формирования радиационного адаптивного ответа в клетках костного мозга мышей in vivo (реферат, курсовая, диплом, контрольная)

Содержание

  • Часть 1. ОБЗОР ЛИТЕРАТУРЫ
  • Глава 1. Д030ВЫЕ ЗАВИСИМОСТИ В ОБЛАСТИ ДЕЙСТВИЯ МАЛЫХ
    • 1. 1. 1. Исследования на клетках бактерий и немлекопитающих
    • 1. 1. 2. Исследования на клетках животных и человека
    • 1. 1. 3. Исследования in vivo
    • 1. 1. 4. Природа нелинейности эффектов при действии малых доз
  • Глава 2. Феномен радиационного адаптивного ответа
    • 1. 2. 1. Радиационный АО in vitro и in vivo
    • 1. 2. 2. Характеристики радиационного АО.2В
    • 1. 2. 3. Перекрестный АО
    • 1. 2. 4. Механизмы АО
  • Часть 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Объект исследования
    • 2. 2. Облучение
    • 2. 3. Обработка веществами
    • 2. 4. Оценка цитогенетического повреждения
  • Часть 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 3. 1. Дозовая зависимость в области малых доз
    • 3. 2. Закономерности формирования АО in vivo
      • 3. 2. 1. Зависимость АО от величины адаптирующей дозы
      • 3. 2. 2. Зависимость АО от мощности адаптирующей дозы
      • 3. 2. 3. Фракционирование адаптирующей дозы
      • 3. 2. 4. Зависимость АО от ЛПЭ адаптирующего излучения
      • 3. 2. 5. Сверхдлительная динамика формирования АО in vivo
  • Адаптирующая доза 10 сГр
  • Адаптирующая доза 20 сГр
  • Адаптирующая доза 40 сГр
  • Зависимость динамики АО от адаптирующей дозы
    • 3. 2. 6. Зависимость АО от возраста животных
    • 3. 2. 7. Индукция перекрестного АО
    • 3. 3. Модификация АО соединениями, обладающими антиоксидантной активностью
    • 3. 3. 1. Модификация АО дигидрокверцетином
    • 3. 3. 2. Модификация АО каталазой
    • 3. 3. 3. АО как тест при скрининге пищевых антиоксидантов

В настоящее время проблема биологического действия малых доз ионизирующих излучений (ИИ) занимает доминирующее место в современной радиационной биологии. Интерес к данной проблеме возник с появлением первых свидетельств того, что сложившиеся научные представления о механизмах и закономерностях действия малых доз ИИ на биологические объекты весьма ограничены и противоречивы. Авария на Чернобыльской АЭС и ее последствия поставили новые вопросы, разрешить которые было невозможно исходя из существующих подходов и знаний о действии ИИ на биоту, полученных, в основном, при изучении больших доз. Все это послужило мощным толчком для интенсификации исследований биологического действия ИИ в диапазоне малых доз.

Эта проблема, кроме фундаментального, теоретического, имеет важное практическое значение, поскольку актуальна не только для узких когорт людей, работающих на ядерных объектах или проживающих вблизи их, но и для всего населения Земли. Радиационное загрязнение окружающей среды вследствие аварий на ядерных объектах приобрело настолько огромные масштабы и охватило такие значительные территории поверхности Земного шара, что является одним из важнейших экологически значимых факторов. Естественный радиационный фон все более увеличивается из-за возрастания его техногенной составляющей. Еще в 1988 г. вклад техногенных источников в среднюю годовую эффективную эквивалентную дозу составлял около 20%.

Несмотря на то, что радиационная биология обладает весьма обширными знаниями о механизмах и закономерностях действия на биоту достаточно высоких доз ИИ, она оказалась не в состоянии однозначно объяснить многие эффекты малых доз, которые принято называть особенностями биологического действия малых доз ИИ. К их числу следует отнести прежде всего повышенную радиочувствительность клеток к действию малых доз радиации и явление адаптивного ответа (АО).

Повышенная радиочувствительность биологических объектов заключается в том, что уровень повреждений, индуцируемый малыми дозами, превышает уровень, получаемый путем экстраполяции экспериментальных дозовых кривых, построенных при действии больших доз ИИ. В последнее время появляется все больше экспериментальных данных о подобной нелинейности кривой «доза-эффект» в области малых доз, что противоречит официальной линейной беспороговой концепции, принятой ранее МКРЗ и НКДАР ООН (Публикация МКРЗ № 26, 1978). Следует, однако, признать, что имеющихся экспериментальных данных недостаточно для пересмотра сложившихся и установленных норм радиационной безопасности, что подчеркивает необходимость проведения дальнейших исследований в этой области.

Что касается другой вышеупомянутой особенности биологического действия малых доз ИИ — АО, суть которого заключается в том, что воздействие ИИ в малой дозе увеличивает радиорезистентность биологического объекта к последующему облучению в высокой дозе, — то проведено большое количество исследований и установлен его общебиологический характер. Так, АО наблюдался у клеток бактерий (Smith, 1976), растений (Cortes et al., 1991), млекопитающих (Ikushima, 1989) и у целых организмов (Фоменко и др., 1991; Zhang, 1995). Однако механизмы, ответственные за индукцию АО, остаются невыясненными. Кроме того, подавляющее большинство исследований данного феномена проводилось в условиях in vitro. Данные относительно АО in vivo ограничены и зачастую противоречивы. Учитывая еще и то, что в последнее время активно стали обсуждаться вопросы практического применения и учета этого феномена при оценках радиационного риска, радиотерапии опухолей и в других сферах человеческой деятельности, становится ясной и обоснованной необходимость всестороннего исследования закономерностей формирования АО именно на системе in vivo.

Задачи исследования.

1. Исследовать форму дозовой зависимости выхода цитогенетического повреждения на системе in vivo в области действия малых доз ИИ.

2. Исследовать такие закономерности формирования радиационного цитогенетического АО в клетках костного мозга мышей in vivo, как зависимость от величины, мощности, режима и типа адаптирующего облучения, времени между адаптирующим и выявляющим облучениями, возраста животных на момент адаптации, а также возможность индукции перекрестного АО агентами разной природы;

3. Исследовать возможность модификации радиационного АО в клетках костного мозга мышей in vivo различными соединениями, обладающими антиоксидантной активностью.

Научная новизна полученных результатов.

На системе in vivo получено экспериментальное подтверждение продемонстрированной ранее in vitro нелинейности дозовой кривой в области действия малых доз ИИ, что позволяет более обоснованно говорить об универсальности данного феномена.

Показана возможность индукции радиационного АО на системе in vivo, что подтверждает общебиологический характер данного явления. Впервые продемонстрирована возможность сверхдлительного сохранения АО на протяжении большей части жизни животных, что меняет наши представления о данном явлении и открывает новые перспективы для его практического применения. Впервые показана независимость способности организма к индукции АО от возраста животного.

Впервые обнаружена возможность индукции АО за счет введения животным in vivo малых концентраций перекиси водорода. Также при исследовании возможности модификации АО впервые показано различное действие веществ, обладающих антиоксидантной активностью, на индукцию радиационного АО in vivo: каталаза предотвращала развитие АО, что подчеркивает существенную роль кислородных радикалов в индукции АО, а дигидрокверцетин, флавоноид растительного происхождения, не модифицировал АО, что позволяет говорить о специфичности действия данного соединения. 7.

Научно-практическое значение работы.

Полученная кривая «доза-эффект» меняет представление об оценке радиационного риска и позволяет более обоснованно подойти к проблеме существующих норм радиационной безопасности, основанных на беспороговой концепции МКРЗ и НКДАР ООН (Публикация МКРЗ № 26, 1978).

Выявленные на системе ш vivo новые характеристики радиационного АО могут найти практическое применение данного явления в клинической практике, например, при радиационной терапии опухолей. Обнаружение сверхдлительного сохранения адаптированного состояния организма на протяжении большей части жизни животных открывает новое направление в биологии — исследование обнаруженного эффекта (стабилизации генома?) и возможности в дальнейшем его использования в медицине.

Результаты исследования модифицирующего действия различных соединений, обладающих антиоксидантной активностью, и индукции перекрестного АО малыми концентрациями перекиси водорода позволяют сузить поиск начальных молекулярных событий при индукции АО, что является одной из фундаментальных проблем молекулярной биологии стресса. Кроме того, возможным практическим применением АО является его использование при скрининге пищевых биологически активных добавок, поскольку, учитывая, что способность к индукции АО отражает адаптационный потенциал организмов и клеток, тест по типу АО позволяет выявлять скрытые изменения в системах поддержания стабильности генома, не выявляемые традиционными методами.

ВЫВОДЫ.

1. Показано, что дозовая зависимость выхода цитогенетических повреждений при у-облучении in vivo имеет сложный ступенчатый характер с первоначальным линейным участком повышенной радиочувствительности и следующим за ним участком плато или индуцированной радиоустойчивости.

2. Установлено, что формирование радиационного АО in vivo характеризуется зависимостью от величины и мощности адаптирующей дозыпри этом большие дозы хронического облучения индуцируют более выраженный АО.

3. Показано, что плотноионизирующие излучения, такие как вторичное излучение от протонов с энергией 70 ГэВ и пи-мезоны, не индуцируют АО, что указывает на участие процессов репарации ДНК в формировании АО.

4. Впервые показана возможность формирования АО при сверхдлительных сроках между адаптирующим и выявляющим облучениями — до 12 мес, что говорит об устойчивости адаптационных изменений в течение жизни животных.

5. Обнаружено, что способность организма к индукции АО in vivo не зависит от возраста животных, что позволяет говорить о сохранении адаптационного потенциала в процессе старения.

6. Впервые показана возможность индукции перекрестного АО низкими концентрациями Н2О2 при последующем /-выявленииэто подтверждает предположение о возможном участии окислительных процессов в индукции АО in vivo.

7. Обнаружено различное действие веществ, обладающих антиоксидантной активностью, на индукцию радиационного АО in vivo: каталаза предотвращала развитие АО, что подчеркивает существенную роль кислородных радикалов в индукции АО, а дигидрокверцетин, флавоноид растительного происхождения, не модифицировал АО, что позволяет говорить о специфичности действия данного соединения.

ЗАКЛЮЧЕНИЕ

.

Исследование дозовой зависимости формирования цитогенетических повреждений в клетках костного мозга мышей при действии малых доз /-излучения in vivo выявило нелинейный характер кривой «доза-эффект». Полученная зависимость характеризуется тремя участками — начальным участком с повышенной радиочувствительностью в диапазоне 0−20 сГр, следующего за ним участка плато (20−35 сГр) и последнего линейного участка с отличным от первого углом наклона. Обнаруженная нами дозовая зависимость соответствует складывающимся представлениям о наличие в клеточных ответах на действие ИИ участков гиперчувствительности и индуцированной радиоустойчивости и подтверждает универсальность такой биологической реакции на действие малых доз.

Показано, что ИИ в малых дозах индуцирует цитогенетический АО в клетках костного мозга мышей in vivo, причем адаптация была возможна как при остром (10, 20 и 40 сГр), так и при хроническом /-облучении (10 и 50 сГр). Степень адаптации в результате хронического облучения была выше при дозе 50 сГр, по сравнению с дозой 10 сГр, что соответствует имеющимся в литературе данным о зависимости АО от мощности адаптирующего облучения in vitro.

Двукратное облучение в дозе 10 сГр не приводит к увеличению степени АО по сравнению с однократным облучением при всех исследованных промежутках времени между двумя дозами 10 сГр (1 сут, 1 и 3,5 мес). Это свидетельствует об исчерпании адаптационного потенциала организма уже после первой острой адаптирующей дозы.

Изучение индукции АО излучениями с разными коэффициентами ЛПЭ показало, что плотноионизирующие излучения (с высоким ЛПЭ), вторичное излучение от протонов с энергией 70 ГэВ и пи-мезоны, не индуцируют АО, что косвенно свидетельствует об участии процессов репарации ДНК в исследуемом явлении.

Показано, что способность к индукции АО не зависит от возраста на момент адаптации. Адаптирующее облучение животных всех исследованных возрастных групп от 2 до 16 мес индуцировало АО при выявляющем облучении как через 1 сут, так и через 1 мес.

Впервые обнаружена возможность сверхдлительного сохранения АО in vivo, индуцированного дозами 10 и 20 сГр. АО наблюдался при всех исследованных промежутках времени между адаптирующим и выявляющим облучениями — от 1 сут.

81 до 12 мес. Причем обнаружена зависимость динамики АО от величины адаптирующей дозы. Так, в отличие от доз 10 и 20 сГр, доза 40 сГр индуцировала АО, который регистрировался через 1 и 14 суток после адаптации и затем исчезал.

Впервые показана индукция перекрестного АО in vivo за счет обработки животных низкими концентрациями Н2О2. Внутривенное введение Н2О2 (ОД мл) в концентрациях 1,47 и 14,7 мМ индуцировало АО при последующем выявляющем облучении в дозе 1,5 Гр, что предполагает существенную роль свободных радикалов в запуске механизмов АО. Совместное применение Н2О2 и малых доз /-излучения взаимно не увеличивало степень АО, наблюдаемых при применении этих агентов в отдельности. Это позволяет говорить об общности механизмов АО при адаптации Н2О2 и /-адаптации. Однако, АО при введении Н2О2 наблюдался уже через 1 час после воздействия, что нехарактерно для /-адаптации. Следовательно, в путях индукции АО при действии Н2О2 наличествует некая «быстрая» составляющая, о существовании которой при других типах адаптации неизвестно.

Исследование модифицирующего действия веществ, обладающих антиоксидантной активностью, на формирование АО показало, что каталаза (введение в/в и в/б) предотвращает развитие АО при /-адаптации. Эти результаты подчеркивают роль свободных радикалов в индукции АО. С другой стороны, введение ДГКВ (полифенольное соединение растительного происхождения) не устраняло АО, что указывает на специфику действия данного препарата. В этой связи интересным видится приложение теста на АО как способа проверки адаптационного потенциала организма, могущего служить показателем дестабилизации генома, невыявляемой традиционными методами скрининга.

Показать весь текст

Список литературы

  1. С.А. (1995) Критический анализ современных концепций и подходов к оценке биологического действия малых доз ионизирующего излучения. Радиац. биол. Радиоэкол. 35(5):563−571.
  2. С.А., Дикарев В. Г., Дикарева Н. С., Удалова А. А. (1996) Влияниераздельного действия ионизирующего излучения и солей тяжелых металлов на частоту хромосомных аберраций в листовой меристеме ярового ячменя. Генетика. 32(2):272−278.
  3. П.Г., Кознова Л. Б., Акоев И. Г., Невская Г. Ф. (1968) Относительная биологическая активность излучений. Фактор времени облучения. М.: Атомиздат, 1968. — 376 с.
  4. В.Д., Савельева Г. Е. (1992) Выживаемость и репарация однонитевых разрывов в ДНК в /-облученных клетках Escherichia coli при адаптации к метилметансульфонату. Цитология. 34:76−83.
  5. В.Д., Савельева Г. Е. (1994) Репарация УФ-индуцированных пострепликативных пробелов ДНК в клетках Escherichia coli, адаптированных к метилметансульфонату и этилметансульфонату. Цитология. 36:194−199.
  6. А.Н., Кершенгольц Б. М., Курилюк Т. Т., Щербакова Т.М. (1995)
  7. Энзимологические механизмы адаптации растений к условиям повышенного радиационного фона. Радиац. биол. Радиоэкол. 35(3):349−355.
  8. С.И., Аптикаева Г. Ф., Ахмадиева А. Х. и др. (1992) Особенностиреализации цитогенетического повреждения при воздействии малыми дозами облучения на клетки млекопитающих и растений. Радиобиология. 32(1):38−41.
  9. Г. Д., Львова Г. И., Васильева И. М. и др. (1993) Адаптивная репарация, индуцированная малыми дозами /-радиации, в репарационно-дефектных клетках человека. Докл. РАН 329(5):658−660.
  10. Зюзиков Н. А, Корогодин В. И., КорогодинаВ.Л. (1999) Особенности действия малых доз /-излучения на дрожжевые клетки. Радиац. биол. Радиоэкол. 39(6):619−622.
  11. Д.Ю., Заичкина С. И., Аптикаева Г. Ф., Ахмадиева А. Х., Розанова О. М. (1997) Индукция цитогенетического повреждения в клетках костного мозга крыспри комбинированном воздействии хронического и острого /-облучения. Генетика. 33(6):855−857.
  12. Н.В., Сахарова В. В., Рипа Н. В., Колхир В. К., Ребров Л. Б., Тюкавкина H.A. (19 986) Радиопротекторная активность дигидрокверцетина в экспериментах in vivo и in vitro. В сб. «Медицинские биотехнологии» Москва. 1998. № 10. С. 66−70.
  13. В.А., Кузин A.M., Ревин А. Ф., Баранова И. А. (1996) Влияние малых доз синтетического аналога хиноидного радиотоксина на жизнеспособность нормальных и /-облученных животных. Радиац. биол. Радиоэкол. 36(3):349−354.
  14. В.Л., Пантелеева А., Ганичева И., Кузнецова Е., Лазарева Г.,
  15. Л.А., Корогодин В. И. (1997) Влияние мощности дозы слабого у-облучения на митоз и адаптивный ответ клеток. В кн.: Тез. докл. III Радиобиол. съезда, Москва, октябрь 1997. Пущино. Т.1. С. 155.1. Л|
  16. А.Н. (1997) Ингибирование металлотионеином Fe -индуцированного перекисного окисления липидов в липопротеинах яичного желтка. Биохимия. 62(2): 164−166.
  17. А.Н., Сазыкин А. Ю. (1994) Содержание металлотионеинов в костном мозге и печени мышей и в лимфоцитах человека после общего /-облучения. Радиобиология. 34(2):190−195.
  18. К., Мишурова Е. (1994) Влияние хронического предварительногооблучения на скрытые повреждения, индуцированные однократным острым /-облучением крыс. Радиобиология. 34(2):251−256.
  19. A.M. (1995) Идеи радиационного гормезиса в атомном веке. М.:Наука, 1995, 158 с.
  20. О.В. (1990) Комбинированное действие N-Memji-N'-HHTpo-Nнитрозогуанидина и УФ-света на bacillus subtilis. Известия Акад Наук СССР (Биол) 928−931
  21. Н.В. (1957) Об аномальной реакции при малых дозах. Биофизика. 2(1):86−93.
  22. Е., Кропачова К., Рекса Р. (1992) Влияние хронического /-облучения при экспоненциально снижающейся мощности дозы на содержание нуклеиновых кислот в кроветворных органах и крови крыс. Радиобиология. 32(2):304−311.
  23. И.И., Николаев В. А., Готлиб В. И., Афанасьев Г. Г., Козлова JI.E.,
  24. A.M., Терещенко Д. Г., Тронов В. А., Храмцова Е. А. (1994) Адаптивная реакция лимфоцитов крови людей, подвергшихся хроническому воздействию радиации в малых дозах. Радиац. биол. Радиоэкол. 34:805−817.
  25. И.И., Готлиб В. И., Кудряшова О. В., Серебряный A.M., Афанасьев Г. Г., 1996) Нестабильность генома после воздействия радиации в малых дозах (в 10-километроой зоне аварии на ЧАЭС и в лабораторных условиях). Радиац. биол. Радиоэкол. 36:546−560.
  26. И.И., Готлиб В. И., Кудряшова О. В., Антошина М. М., Серебряный A.M. (1998) Свойства потомков облученных клеток. Цитология. 40:467−477.
  27. М.Д., Рамайа Л. К. (1962) Действие ионизирующих излучений на организм. М.1962. Изд-во АН СССР. С.91−106.
  28. Г. М., Сморызанова O.A., Романцова В. А. (1995) Способность низкодозового и низкоинтенсивного ионизирующего излучения вызывать индукцию металлотионеинов. Радиац. биол. Радиоэкол. 35(4):507−511.
  29. A.B. (1991) Текущее состояние проблемы количественной оценкицитогенетических эффектов малых доз радиации. Радиобиология. 31(4):600−605.
  30. Т.М., Семина О. В., Саенко A.C. (1993) Феномен адаптивнойрезистентности к-облучению колониеобразующих единиц (КОЕс): условия проявления в экзотесте. Радиац. биол. Радиоэкол. 33(4):525−528.
  31. A.M., Зоз H.H. (1997) Адаптивный ответ при радиационном мутагенезе у растений и его особенности. В кн.: Тез. докл. III Радиобиол. съезда, Москва, октябрь 1997. Пущино. Т.1. С. 164.
  32. Д.М. (1992) Концепция действия малых доз ионизирующих излучений на клетки и ее возможные приложения к трактовке медико-биологических последствий. Радиобиология. 32(3):382−400.
  33. И.В., Никольский А. В., Котеров А. Н., и др. (1993) Адаптивный ответ лимфоцитов крыс при радиационном воздействии. В кн.: Тез. докл. II Радиобиол. съезда, Киев, сентябрь 1993. Пущино. С. 1047.
  34. JI.A., Кожановская Я. К., Газиев А. И. (1991) Исследование образованиямикроядер в клетках костного мозга хронически облученных мышей при их последующем остром /-облучении. Радиобиология. 31(5):709−715.
  35. Шмакова H. JL, Фадеева Т. А., Красавин Е. А. (1998) Действие малых доз облучения на клетки китайского хомячка. Радиац. биол. Радиоэкол. 38(6):841−847.
  36. JI.X. (1996) Единый механизм инициации эффектов малых дозионизирующего излучения. Радиац. биол. Радиоэкол. 36(6):874−882.
  37. Aghamohammadi S.Z., Savage J.R.K. (1991) A BrdU pulse double-labelling method for studying adaptive response. Mutat. Res. 251:133−141.
  38. Au W.W., Heo M.Y., Chiewchanwit T. (1994) Toxicological interactions between nickel and radiation on chromosome damage and repair. Environ. Health Perspect. 102 Suppl:9:73−77
  39. E.I., Raaphorst G.P., Mitchell R.E. (1994) Radiation-induced adaptive response for protection against micronucleus formation and neoplastic transformation in C3H 10T1/2 mouse embryo cells. Radiat. Res. 138(Suppl 1):S28-S31.
  40. Bai Y., Chen D. (1993) Accumulative effect of two low doses of irradiation in inducing an adaptive response in human lymphocytes. Mutat. Res. 302(4): 191 -196.
  41. Barquinero J.F., Barrios L., Caballin M.R., Miro R., Ribas M., Subias A., Egozcue J.1995) Occupational exposure to radiation induces an adaptive response in human lymphocytes. Int. J. Radiat. Biol. 67:187−191.
  42. M., Schmid E., Braselmann H., Nahrstedt U. (1989) Absence of adaptive response to low-level irradiation from tritiated thymidine and X-rays in lymphocytes of two individuals examined in serial experiments. Mutat. Res. 227:103−107.
  43. C.A., Mortimer R.K., Wolfe R.G., Tobias C.A. (1954) The relation ofradioresistance to budding in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 49:110−122.
  44. BELLE newsletter (1999) Adaptive response induced by low levels of radiation. Vol.7, No.3.
  45. Belyaev I.Y., Spivak I.M., Kolman A. and Harms-Ringdahl M. (1996) Relationshipbetween radiation induced adaptive response in human fibroblasts and changes in chromatin conformation. Mutat. Res. 358:223−230.
  46. Belyaev I.Y., Harms-Ringdahl M. (1996) Effects of gamma rays in the 0.5−50-cGy range on the conformation of chromatin in mammalian cells. Radiat. Res. 145(6):687−693.
  47. BhattacharjeeD. (1998) Role of radioadaptation on radiation-induced thymic lymphoma in mice. Mutat. Res. 358:231−235.
  48. D.A., Bouvard I., Hughes E.N. (1989) Identification and characterization of X-ray-induced proteins in human cells. Cancer Res. 49:2871−2878.
  49. Boreham D.R., Mitchell R.E.J. (1991) DNA lesions that signal the induction of radioresistance and DNA repair in yeast. Radiat. Res. 128:19−28.
  50. Borodin P.M., Inouye M., Oda S., Ikushima T., Takagishi Y., Yamamura H. (1994)
  51. Radioadaptive response in primary mouse spermatocytes revealed by analysis of synaptonemal complexes Mutat. Res. 310(1): 151−156.
  52. A., Rigaud O., Beaumatin J., Luccioni C. (1997) Modification of antioxidant and nucleotide metabolism in radioadapted cells, in: Proceedings of the 27th Annual Meeting of the ESRB. Radioprotection.32:C 1−420.
  53. S.L. (1980) Laser microirradiation of kinetochores in mitotic PtK2 cells:chromatid separation and micronucleus formation. Cell.Biophysics. 2(2): 139−152.
  54. Cai L. and Liu S.Z. (1990) Induction of cytogenetic adaptive response of somatic and germ cells in vivo and in vitro by low-dose X-irradiation. Int. J. Radiat. Biol. 58:187 194.
  55. Cai L., Wang P., Piao X.G. (1994) Cytogenetic adaptive response with multiple small X-ray doses in mouse germ cells and its biological influence on the offspring of adapted males. Mutat. Res. 324(1−2):13−17.
  56. Cai L., Cherian M.G. (1996) Adaptive response to ionizing radiation-induced chromosome aberrations in rabbit lymphocytes: effect of pre-exposure to zinc, and copper salts. Mutat. Res. 369:233−241.
  57. J. (1967) An unusual form of response in X-irradiated protozoa and a hypothesis as to its origin. Int. J. Radiat. Biol. 12:297−301.
  58. R.J., Taylor N., Cole J., Arlett C.F. (1981) Short-term tests for transplacental^ active carcinogens. I. Micronucleus formation in fetal and maternal mouse erythroblasts. Mutat. Res. 80:141−157.
  59. F., Dominguez J., Mateos J.S., Pinero J., Mateos J.C. (1990) Evidence for anadaptive response to radiation damage in plant cells conditioned with X-rays or incorporated tritium. Int. J. Radiat. Biol. 57:537−542.
  60. F., Dominguez I., Pinero J., Mateos J.C. (1990) Adaptive response in humanlymphocytes conditioned with hydrogen peroxide before irradiation with X-rays. Mutagenesis. 5:555−557.
  61. F., Dominguez J., Flores M.J. (1994) Differences in the adaptive response toradiation damage in GO human lymphocytes conditioned with hydrogen peroxide or low-dose X-rays. Mutat. Res. 30:157−163.
  62. Duell T., Lengfelder E., Fink R. et al. (1995) Effect of activated oxygen species in human lymphocytes. Mutat. Res. 319:3030−308.
  63. Eady J.J., Peacock J.H., McMillan T.J. (1992) Host cell reactivation of gamma-irradiate adenovirus 5 in human cell lines of varying radiosensitivity. Br. J. Cancer. 66:113−118.
  64. L., Eriksson G. (1966) The dose dependence of mutation rates in the rad range, in the light of experiments with higher plants. Acta Radiologica, Suppl., 254:7381.
  65. Eichholtz-Wirth H., Hietel B. (1994) Cisplatin resistance in mouse fibrosarcoma cells after low-dose irradiation in vitro and in vivo. Br. J. Cancer. 70:579−584.
  66. L.Kh. (2000) Hypothesis regarding a membrane-associated mechanism of biological action due to low-dose ionizing radiation. Radiat. Environ. Biophys. 2000 (in press).
  67. G. (1963) Induction of waxy mutants in maize by acute and chronic gamma irradiation. Hereditas. 50:161−178.
  68. Z., Kesavan P.C. (1993) Low-dose radiation-induced adaptive response in bone marrow cells of mice. Mutat. Res. 302(2):83−89.
  69. L.E. (1991) Radiation risk of tissue late effects, a net of consequence of probabilities of various cellular responses. Nuclear Medicine. 18:745−749.
  70. M., Morley A.A. (1985) Measurement of micronuclei in lymphocytes. Mutat. Res. 147:29−36.
  71. Filippovich I.V., SorokinaN.I., RobillardN., Lisbona A., Chatal J.F. (1998) Radiation-induced apoptosis in human tumor cell lines: adaptive response and split-dose effect. Int. J. Cancer. 77(1):76−81.
  72. Fillips B.J., James T.E.B., Anderson D. (1984) Genetic damage in CHO cells exposed to enzymically generated active oxygen species. Mutat. Res. 126:265−271.
  73. M.J., Pinero J., Ortiz T., Pastor N., Mateos J.C., Cortes F. (1996) Both bovine and rabbit lymphocytes conditioned with hydrogen peroxide show an adaptive response to radiation damage. Mutat. Res. 372:9−15.
  74. G., Tano K., Mitra S., Kaini B. (1991) Inducibility of the DNA repair gene encoding 06-methylguanine-DNA methyltransferase in mammalian cells by DNA-damaging treatments. Mol. Cell. Biol. 11:4660−4668.
  75. P.K. (1998) Possible age-dependent adaptive response to a low dose of X-rays in human lymphocytes. Mutagenesis 13:151−152.
  76. Geara F.B., Peters L.J., Ang K.K., Wike L.J., Brock W.A. (1992) Radiosensitivitymeasurement of keratinocytes and fibroblasts from radiotherapy patients. Int. J. Radiat. Oncol. Biol. 24:287−293.
  77. H.B., Ritterhoff R.I. (1961) Mutagenic effect of a 5-R dose of X-rays in Drosophila melanogaster. Science. 133:1366.
  78. D.T. (1989) The initial physical damage produced by ionizing radiation. Int. J. Radiat. Biol. 56:623−634.
  79. , H. Mozdarani H. (1998) A cytokinesis-blocked micronucleus study of theradioadaptive response of lymphocytes of individuals occupationally exposed to chronic doses of radiation. Mutagenesis 13:475−480.
  80. Guntenberg H.-W., Wuttke K., Streffer C., Muller W.-U. (1991) Micronulei in human lymphocytes irradiated in vitro and in vivo. Radiat. Res. 128:276−281.
  81. Gupta R., Uma Devi P. (1985) Protection against radiation -induced chromosome injury by SH-compounds. Acta Radiologica Oncologie. 24:419−426.
  82. H., Misurova E. (1993) The effect of Silymarin and gamma radiation on nucleic acids in rat organs. J. Pharm. Pharmacol. 45(10):910−912.
  83. S.K., Guruprasad K.P., Mahmood R., Vasudev V., Manjunath K.R., Chethan G.K. (1998) Adaptive response to low dose of EMS or MMS in human peripheral blood lymphocytes. Indian J. Exp. Biol. 36:1147−1150.
  84. J.A. (1973) A rapid in vivo test for chromosomal damage. Mutat. Res. 18(2): 187 190.
  85. J.A., Carano A.Y. (1977) The DNA content of micronuclei induced in mouse bone marrow by gamma-irradiation: evidence that micronuclei arise from acentric chromosomal fragments. Mutat. Res. 44(l):63−69.
  86. Heddle J.A., Hite M., Kirkhart B., Mavourinin K., MacGregor J.T., Newell J.W.,
  87. M.F. (1983) The induction of micronuclei as a measure of genotoxicity. A report of the U.S. Environmental Agency Gene-Tox Program. Mutat. Res. 123:61−118.
  88. Heindorff K., Michaelis A., Aurich 0. (1985) Peroxide pretreatment of Vicia faba root-tip meristems results in «clastogenic adaptation» to maleic hydrazide but not to TEA. Mutat. Res. 142(l/2):23−27
  89. Jacobson-Kram D., Williams J.R. (1988) Failure to observe adaptive response to ionizing radiation in mouse bone marrow cells in vivo. Environ. Mol. Mutagen. II (Suppl.II). Abstracts of the 19th Ann. Meeting of EMS. 49−50.
  90. G.C. (1990) Frequency of micronucleated cells in the mouse bone marrow after exposure to various doses of gamma-radiation. Mutat. Res. 230:45−48.
  91. G.C., Ganapathi N.G. (1994) Radiation-induce micronucleus formation in mouse bone marrow after low dose exposures. Mutat. Res. 304:235−242.
  92. P. (1979) Isolation and characterization of Escherichia coli K-12 mutants unable to induce the adaptive response to simple adylating agents. J. Bacteriol. 139:783 791.
  93. D., Ramel C. (1976) Dose response at low doses of X-irradiation and MMS on the induction of micronuclei in mouse erythroblasts. Mutat. Res. 41:311−320.
  94. D., Ramel C. (1978) Factors affecting the induction of micronuclei at low doses of X-rays, MMS and dimethylnitrosamine in mouse erythroblasts. Mutat. Res. 58:51−65.
  95. M.C., Marples B., Johns H. (1993) The response of tissues to very low doses per fraction: a reflection of induced repair? In: J. Denecamp and J.F. Fowler (Eds.) Acute and Long-term Side Effects of Radiotherapy, Wiley, London, pp.27−40.
  96. Joiner M.C., Lambin P., Malaise E.P., Robson T., Arrand J.E., Skov K.A., Marples B.1996) Hypersensitivity to very-low single radiation doses: Its relationship to the adaptive response and induce radioresistance. Mutat. Res. 358:171−183.
  97. B. (1983a) Cross-resistance studies with V79 Chinese hamster cells adapted to the mutagenic or clastogenic effect of N-methyl-N'-nitro-N-nitrosoguanidine. Mutat. Res. 111:341−352.
  98. B. (1983b) Studies on adaptation of V79 Chinese hamster cells to low doses of methylating agents. Carcinogenesis. 4:1437−1443
  99. T., Pyatibrat L., Kalendo G. (1994) Irradiation with He-Ne laser can influence thecytotoxic response of HeLa cells to ionizing radiation. Int. J. Radiat. Biol. 65:691 697.
  100. A.M. (1976) In: J. Booz, H.G. Ebert, B.G.R. Smith (Eds.) 5th Symposium on Microdosimetry, EUR 5452. Luxembourg: Commission of the European Communities, pp. 409−442.
  101. K.T., Memisoglu A., Frenkel D., Liber H.L. (1991) Human lymphocytes exposed to low doses of X-rays are less susceptible to radiation-induced mutagenesis. Mutat. Res. 263:97−201.
  102. Khandogina E.K., Mutovin G.R., Zvereva S.V., Antipov A.V., Zverev D.O. and Akifyev A.P. (1991) Adaptive response in irradiated human lymphocytes: radiobiological and genetical aspects. Mutat. Res. 251:181−186.
  103. H.E., Althaus F.R. (1996) The role of poly(ADP-ribosyl)ation in the adaptive response. Mutat. Res. 358(2):215−221.
  104. T.M. (1984) Multiphase survival response of a radioresistant lepidopteran insect cell line. Radiat. Res. 98. 642−648.
  105. Yu.N., Eliseeva N.A., Kublik L.N., Narimanov A.A. (1996) The effect of low-dose irradiation on proliferation of mammalian cells in vitro. Radiat. Res. 146(3):329−332.
  106. Y., Rienkjkarn M., Etoh H. (1992) Cytogenetic adaptive response of cultured fish cells to low doses of X-rays. J. Radiat. Res. 33:267−274.
  107. P., Marples B., Fertil B., Malaise E.P., Joiner M.C. (1993a) Hypersensitivity of a human tumor cell line to very low dose radiation. Int. J. Radiat. Biol. 63:639−650.
  108. P., Fertil B., Malaise E.P., Joiner M.C. (1994b) Multiphasic survival curves for cells of human tumor cell lines: induced repair or hypersensitive cell population? Radiat. Res. 138: S32-S36.
  109. P., Malaise E.P., Joiner M.C. (1994c) The effect of very low radiation doses on the human bladder carcinoma cell line RT112. Radiother. Oncol. 32:63−72.
  110. Malyapa R.S., Wright W.D., Roti Roti J.L. (1994) Radiation sensitivity correlates with changes in DNA supercoiling and nucleoid protein content in cells of three Chinese hamster cell lines. Radiat. Res. 140(3):312−20.
  111. Mandel R., Ryser H.J.-P. (1987) Mechanisms of synergism in the mutagenicity ofcadmium and N-methyl-N-nitrosourea in Salmonella tiphimurium: the effect of pH. Mutat. Res. 176(1):1−10.
  112. B., Joiner M.C. (1993) The response of Chinese hamster V79 cells to lowradiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat. Res. 133:41−51.
  113. Marples B., Lam G.K.Y., Zhou H., Skov K.A. (1994) The response of Chinese hamster V79−379A cells exposed to negative pi-mesons: evidence that increased radioresistance is dependent on linear energy transfer. Radiat. Res. 138: S81-S84.
  114. Melkonyan HS, Ushakova TE, Umansky SR. (1995) Hsp70 gene expression in mouse lung cells upon chronic gamma-irradiation. Int. J. Radiat. Biol. 68(3):277−80.
  115. A., Takehisa S., Rieger R., Aurich O. (1986) Ammonium chloride and zinc sulfate pretreatment reduce the yield of chromatid aberrations induced by TEM and maleic hydrazide in Vicia faba. Mutat. Res. 173(3): 187−191.
  116. M.L., Smith D.S. (1987) N-methyl-N'-nitro-N-nitrosoguanidine-induced resistance to ionizing radiation. Mol. Gen. Genet. 206:220−225.
  117. H., Saberi A.H. (1994) Induction of cytogenetic adaptive response of mouse bone marrow cells to radiation by therapeutic doses of bleomycin sulfate and actinomycin D as assayed by the micronucleus test. Cancer Lett. 78:141−150.
  118. Muller W.-U., Streffer C., Niederichholz F. (1992) Adaptive response of mouse embryos? Int. J. Radiat. Biol. 62(2):169−175
  119. G., Kalina I., Racekova N. (1995) The adaptive response of peripheral blood lymphocytes to low doses of mutagenic agents in patients with ataxia telangiectasia. Mutat. Res. 348(3):101−104.
  120. T., Yamaoka K. (1999) Low-dose gamma-ray irradiation reduces oxidativedamage induced by CC14 in mouse liver. Free Radic Biol Med. 27(11−12): 132 433.
  121. T., Hashimoto M., Nishioka H. (1991) Cross-adaptive response in Escherichia coli caused by pretreatment with H202 against formaldehyde and other aldehyde compounds. Mutat. Res. 255:265−271.
  122. P. (1964a) Radiosensitivity of Drosophila spermatogonia. II. Protracted doses. Hereditas. 51:13−30.
  123. P. (1964b). Radiosensitivity of Drosophila spermatogonia. III. Comparison ofacute and protracted irradiation efficiencies in relation to cell killing. Mutat. Res. 1:63−76.
  124. Oliveira N.G., Rodrigues A.S., Chaveca T., Rueff, J. (1997) Induction of an adaptive response to quercetin, mitomycin C and hydrogen peroxide by low doses of quercetin in V79 Chinese hamster cells. Mutagenesis. 12:457−462.
  125. Oliveira N.G., Neves M., Rodrigues A.S., Gil O.M., Chaveca T. and Rueff J. (2000) Assessment of the adaptive response induced by quercetin using the MNCB peripheral blood human lymphocytes assay. Mutagenesis 15(l):77−83.
  126. Olivieri G., Bodycote J. and Wolff S. (1984) Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science. 223:594−597.
  127. G. (1999) Adaptive response and its relationship to hormesis and low dose cancer risk estimation. Hum. Exp. Toxicol. 18:440−442.
  128. M., Horvat D. (1992) Chromosomal analysis of Chinese hamster V79 cells exposed to multiple gamma-ray fractions: induction of adaptive response to mitomycin C. Mutat. Res.282(4):259−263.
  129. M.J., Wang L., Hill C.K., Peak J.G. (1991) Comparison of repair of DNA doublestrand breaks caused by neutron or gamma-radiation in cultured human cells. Int. J.Radiat. Biol. 60:891−898.
  130. Pohl-Ruling J., Fischer P., Haas O., et al. (1983) Effect of low-dose acute X-irradiation on the frequencies of chromosomal aberrations in human peripheral lymphocytes in vitro. Mutat. Res. 110(l):71−82.
  131. Powell S., McMillan T.J. (1990) DNA damage and repair following treatment with ionizing radiation. Radiother. Oncol. 19:95−108.
  132. M. (1986) The oxygen effect in radiation inactivation of DNA and enzymes. Int. J. Radiat. Biol. 50(4):573−94.
  133. Redpath J.L. and Antoniono R.J. (1998) Induction of an adaptive response againstspontaneous neoplastic transformation in vitro by low-dose gamma radiation. Radiat. Res. 149:517−520.
  134. R., Michaelis A., Schubert I. (1985) Heat-shocks prior to treatment of Vicia faba root-tip meristems with maleic hydrazide or TEM reduce the yield of chromatid aberrations. Mutat. Res. 143:79−82.
  135. O., Papadopoulo D., Moustacchi E. (1993) Decreased deletion mutation in radioadapted human lymphoblasts. Radiat. Res. 133:94−101.
  136. O., Moustacchi F. (1996) Radioadaptation for gene mutation and the possible molecular mechanisms of the adaptive response. Mutat. Res. 358(2):127−134.
  137. W.L. (1963) Repair from genetic radiation damage. In: Sobels F.H. (Ed.) Pergamon Press, Oxford, pp.205−215.
  138. B., Grillo R., Aillaud M., Bosi A., Olivieri G. (1996) Effects of low-dose (2 cGy) X-ray on cell-cycle kinetics and on induced mitotic delay in human lymphocytes. Mutat. Res. 351(2): 193−197.
  139. L., Cairns J. (1977) A new pathway for DNA repair in Escherichia coli. Nature. 267:281−283.
  140. L., Schwartz J.L. (1980) Evidence for an adaptive DNA repair pathway in CHO and human skin fibroblast cell lines. Nature. 287:861−863.
  141. Sankaranarayanan K., von Duyn A., Loos M.J. and Natarajan A.T. (1989) Adaptiveresponse of human lymphocytes to low-level radiation from radioisotopes or X-rays. Mutat. Res. 211:7−12.
  142. M.S. (1995) On the reaction kinetics of the radioadaptive response in cultured mouse cells. Int. J. Radiat. Biol. 68:281−291.
  143. Schappi-Buchi C. (1994) On the genetic background of the adaptive response to X-rays in Drosophila melanogaster. Int. J. Radiat. Biol. 65:427−435.
  144. W. (1975) The micronucleus test. Mutat. Res. 31 (1):9−15.
  145. Schmid E., Bauchinger M., Nahrstedt. (1989) Adaptive response after X-irradiation in human lymphocytes? Mutagenesis. 4(2):87−89.
  146. B., Lindahl T.A. (1982) A common mechanism for repair of 06-methylguanine in DNA. J. Mol. Biol. 154:169−175.
  147. J.D. (1994) Chromosomal adaptive response in human lymphocytes. Radiat. Res. 138: S9-S12.
  148. J.D. (1995) Adaptive response in human cells, in: U. Hagen, D. Harder, H. Jung, C. Streffer (Eds.) Proceedings of the 10th International Congress of Radiation Research, 2:689−692.
  149. J.D., Afzal V., Wolff S. (1987) Characterization of the adaptive response toionizing radiation induced by low doses of X-rays to human lymphocytes. Radiat. Res. 111:511−517.
  150. Shadley J.D. and Dai G. (1992) Cytogenetic and survival adaptive responses in Gl phase human lymphocytes. Mutat. Res. 265:273−281.
  151. T., Inagaki E., Inagaki H., Nakao Y. (1963) Mutation rates at low dose level in Drosophila melanogaster. J. Radiat. Res. 4:105.
  152. J.D., Wiencke J.K. (1989) Induction of the adaptive response by X-rays is dependent on radiation intensity. Int. J. Radiat. Biol. 56:107−118.
  153. M.L., Datta R., Hallahan D.E., Weichselbaum R.R., Kufa D.W. (1990) Ionizing radiation regulates the expression of c-jun protooncogene. Proc. Natl. Acad. Sci. USA. 87:5663−5666.
  154. Shimizu T., Kato T.J., Tachibana A. and Sasaki M.S. (1999) Coordinated regulation of radioadaptive response by protein kinase C and p38 mitogen-activated protein kinase. Exp. Cell Res. 251:424−432.
  155. S.P., Lavin M.F. (1990) DNA-binding protein activated by gamma radiation in human cells. Mol. Cell. Biol. 10:5279−5285.
  156. K.C., Martignoni K.D. (1976) Protection of Escherichia coli against the lethal effects of ultraviolet and X-irradiation by prior X-irradiation: a genetic and physiology study. Photochem. Photobiol. 24:515−526.
  157. W.P., Stern C. (1948) Experiments to test the validity of the linear Rdose/mutation frequency relation in Drosophila at low dosage. Genetics. 1948. 33:43.
  158. C., Gerber G.B. (1998) Adaptive response to DNA-damaging agents. Biochem. Pharmacol. 55:941−951.
  159. Svistunenko D.A., Ju G.Z., Wei J., Zhang J.S., Liu S.Z. (1992) EPR study of mouse tissues in search for adaptive response to low level whole-body X-irradiation. Int. J. Radiat. Biol. 62(2):327−336.
  160. Teale B.S.S., Khanna K.K., Findik D., Lavin M.F. (1992) Purification and characterization of a DNA-binding protein activated by ionizing radiation. J. Biol. Chem. 267: 10 295−10 300.
  161. B. (1986) Radioprotective effect of certain thiol compounds on the hemopoietic stem cells in Swiss albino mice. PhD thesis (Rajasthan University, Jaipur, India).
  162. H., Kavac R., Altmann H. (1983) UDS and SCE in lymphocytes of personsoccupationally exposed to low levels of ionizing radiation. Health. Phys. 45(1):1−7.
  163. Uma Devi P., Sharma A.S.K.V.S. (1990) Mouse bone-marrow response to low doses of whole-boy gamma-irradiation: induction of micronuclei. Int. J. Radiat. Biol. 57(1):97−101.
  164. Venkat S., Chaubey R.C. and Chauhan P. S. (1996) Radio-adaptive response in human lymphocytes in vitro. Indian J. Exp. Biol. 34:909−912.
  165. Vijayalaxmi, Burkart, W. (1989a) Effect of 3-aminobenzamide on chromosome damage in human blood lymphocytes adapted to bleomycin. Mutagenesis. 4:187−189
  166. Vijayalaxmi, Burkart W. (1989b) Resistance and cross-resistance to chromosome damage in human blood lymphocytes adapted to bleomycin. Mutat. Res. 211:1−5.
  167. Vijayalaxmi, Leal B.Z., Deahl T.S. and Meltz M.L. (1995) Variability in adaptive response to low dose radiation in human blood lymphocytes: consistent results from chromosome aberrations and micronuclei. Mutat. Res. 348:45−50.
  168. G.C. (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48:60−93.
  169. Wang Z.-Q., Saigusa S., Sasaki M.S. (1991) Adaptive response to chromosome damage in cultured human lymphocytesprimed with low doses of X-rays. Mutat. Res. 246:179−186.
  170. Wiencke J.K., Afzal V., Oliviery G., WolffS. (1986) Evidence that the 3H. thymidine-induced adaptive response of human lymphocytes to subsequent doses of X-rays involves the induction of chromosomal repair mechanisms. Mutagenesis. 1:375 380.
  171. Wiese A.G., Pacifici R.E., Davies K.J.A. (1995) Transient adaptation to oxidative stress in mammalian cells. Archives of Biochemistry and Biophysics. 318(1):231−240.
  172. Wojewodzka M., Walicka M., Sochanowicz B., Szumiel I. (1994) Calcium antagonist,
  173. TMB-8, prevents the induction of adaptive response by hydrogen peroxide or X-rays in human lymphocytes. Int. J. Radiat. Biol. 66(1):99−109.
  174. , M., Kruszewski M., Szumiel I. (1997) Effect of signal transductioninhibition in adapted lymphocytes: micronuclei frequency and DNA repair. Int. J. Radiat. Biol. 71:245−252.
  175. A., Tuschl H. (1990) Indication of an adaptive response in C57BL mice pre-exposed in vivo to low doses of ionizing radiation. Mutat. Res. 243(l):67−73.
  176. Wojcik A., Sauer C., Zolzer F., Bauch T. and Muller W.U. (1996) Analysis of DNA damage recovery processes in the adaptive response to ionizing radiation in human lymphocytes. Mutagenesis 11:291−297.
  177. S. (1992) Low-dose exposure and the induction of adaptation, in: T. Sugahara,
  178. A.Sagan, and T. Aoyama (Eds.) Low Dose Irradiation and Biological Defense Mechanisms, Excerpta Medica, Amsterdam-London-New York-Tokyo, pp.21−28.
  179. S., Afzal V., Jostes R.F., Wiencke J.K. (1993) Indications of repair of radon-induced chromosome damage in human lymphocytes: An adaptive response induced by low doses of X-rays. Environ. Health Perspect. 101(Suppl 3): 73−77.
  180. S. (1995) Adaptation of human and other mammalian cells to low doses of radiation. Radiat. Res. 141:115−117.
  181. S. (1996) Aspects of the adaptive response to very low doses of radiation and other agents. Mutat. Res. 358(2):135−42.
  182. S. (1998) The adaptive response in radiobiology: evolving insights and implications. Environ. Health Perspect. 106(Suppl l):277−283.
  183. B.G., Skarsgard L.D. (1994) The response of a human tumor cell line to low radiation doses: evidence of enhanced sensitivity. Radiat. Res. 138: S76-S80.
  184. B.G., Skarsgard L.D. (1996) Low dose hypersensitivity and increasedradioresistance in a panel of human tumor cell lines with different radiosensitivity. Radiat. Res. 146:399−413.
  185. K.I., Kikuchi Y. (1980) A comparison of diameters of micronuclei induced by clastogens and by spindle poisons. Mutat. Res. 71(1):127−131.
  186. K., Edamatsu R., Mori A. (1991) Increased SOD activities and decreased lipid peroxide levels induced by low dose X irradiation in rat organs. Free Radial Biol. Med. ll (3):299−306.
  187. K., Kojima S., Takahashi M., Nomura T., Iriyama K. (1998) Change of glutathione peroxidase synthesis along with that of superoxide dismutase synthesis in mice spleens after low-dose X-ray irradiation. Biochim. Biophys. Acta. 1381(2):265−70.
  188. Yanase S., Hartman P. S., Ito A. and Ishii N. (1999) Oxidative stress pretreatment increases the X-radiation resistance of the nematode Caenorhabditis elegans. Mutat. Res. 426:31−39.
  189. M., Takeda A., Mosonoh J. (1990) Acquired radioresistance after low dose X-irradiation in mice. J. Radiat. Res. 31:256−262.
  190. M., Misonoh J., Hosokawa Y. (1996) Two types of X-ray-inducedradioresistance in mice: Presence of 4 dose ranges with distinct biological effects. Mutat. Res. 358:237−243.
  191. N., Imada H., Kunugita N., Norimura T. (1993) Low-dose radiation-inducedadaptive survival response in mouse spleen T-lymphocytes in vivo. J. Radiat. Res. 34(4):269−277.
  192. J.H., Wiencke J.K., Wolff S. (1989) Inhibition of the adaptive response of human lymphocytes to very low doses of ionizing radiation by the protein synthesis inhibitor cyclohexamide. Mutat. Res. 227(4):257−261.
  193. Yu W., Wang M., Cai L., Jin Y. (1995) Pre-exposure of mice to low dose or low dose rate ionizing radiation reduces chromosome aberrations induced by subsequent exposure to high dose of radiation or mitomycin C. Chin. Med. Sci. J. 10:50−53.103
  194. L. (1995) Cytogenetic adaptive response induced by pre-exposure in human lymphocytes and marrow cells of mice. Mutat. Res. 334:33−37.
  195. Zhou P.K., Liu X.Y., Sun W.Z., Zhang Y.P., Wei K. (1993) Cultured mouse SR-1 cells exposed to low dose of gamma-rays become less susceptible to the induction of mutagenesis by radiation as well as bleomycin. Mutagenesis. 8:109−111.
Заполнить форму текущей работой