Помощь в написании студенческих работ
Антистрессовый сервис

Влияние фактора некроза опухоли на цитотоксичность и индукцию апоптоза противоопухолевыми препаратами на клеточных линиях меланом. 
Экспериментальное исследование

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

До недавнего времени считалось, что назначение цитокинов при диссеминированной меланоме основано на возможности стимулировать противоопухолевый иммунный ответ. Однако клинико-иммунологические исследования при совместном применении цитокинов, в частности, интерферона-a и ФНО-а показали, что, по крайней мере, при лечении меланомы они не проявили себя в качестве иммуномодуляторов, тогда как… Читать ещё >

Влияние фактора некроза опухоли на цитотоксичность и индукцию апоптоза противоопухолевыми препаратами на клеточных линиях меланом. Экспериментальное исследование (реферат, курсовая, диплом, контрольная)

Содержание

  • ЧАСТЬ I. ОБЗОР ЛИТЕРАТУРЫ
  • Глава 1. Цитокины — фактор некроза опухоли-а
  • Глава 2. Клеточные культуры как модель экспериментальной онкологии
  • Глава 3. Характеристика индукции апоптоза и белки, контролирующие этот процесс в клетке. ЧАСТЬ II. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
  • Глава 1. Материалы
  • Глава 2. Методы исследования
    • 2. 1. Определение цитотоксической активности -МТТ-тест
    • 2. 2. Метод фиксированного окрашивания ДНК пропидий йодидом (PI) для определения апоптотических клеток
    • 2. 3. Метод двойного прижизненного окрашивания ДНК с использованием Аннексина V-FITC в комбинации с PI
    • 2. 4. Реакция прямой иммунофлюоресценции
      • 2. 4. 1. Окрашивание поверхностных антигенов
      • 2. 4. 2. Окрашивание внутриклеточных маркеров
    • 2. 5. Проточно-цитофлюориметрический анализ
    • 2. 6. Статистическая обработка результатов 39 ЧАСТЬ III. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
  • Глава 1. Цитотоксическое действие противоопухолевых препаратов в сочетании с альнорином на клеточных линиях меланом человека in vitro
    • 1. 1. Цитотксичность ACNU на клеточных линиях меланом в сочетании с альнорином
    • 1. 2. Цитотксичность аранозы на клеточных линиях 43 меланом в сочетании с альнорином
    • 1. 3. Цитотксичность BCNU на клеточных линиях меланом 47 в сочетании с альнорином
    • 1. 4. Цитотксичность DTIC на клеточных линиях меланом 53 в сочетании с альнорином
  • Глава 2. Исследование in vitro на клеточных линиях меланом лекарственно-индуцированного апоптоза противоопухолевыми препаратами в сочетании с альнорином
    • 2. 1. Определение влияния альнорина на индукцию апоптоза BCNU на клеточных линиях меланом методом фиксированного окрашивания ДНК
    • 2. 2. Определение влияния альнорина на индукцию апоптоза DTIC на клеточных линиях меланом методом фиксированного окрашивания ДНК
    • 2. 3. Определение влияния альнорина на индукцию апоптоза BCNU на клеточных линиях меланом методом двойного прижизненного окрашивания ДНК
    • 2. 4. Определение влияния альнорина на индукцию апоптоза DTIC на клеточных линиях меланом методом двойного прижизненного окрашивания ДНК
  • Глава 3. Изучение экспрессии CD95 и белков группы bclна клеточных линиях меланом
    • 3. 1. Экспрессия CD95 на клеточных линиях меланом
    • 3. 2. Экспрессия молекулярно-биологических маркеров семейства bcl-2 на клеточных линиях меланом

Меланома кожи является одной из агрессивных форм злокачественных опухолей, обладающей высокой потенцией местного роста, регионарного метастазирования, способностью к диссеминации по коже, множественному метастазированию. Развитие метастазов в лимфатической системе наблюдается в 70% случаев меланомы, обычно поражаются печень, легкие, мозг и костная ткань. Именно метастазирование на ранних стадиях обусловливают высокую смертность и неэффективность терапии данного заболевания [Плешкан 2011].

Несмотря на достижения последних десятилетий, лечение меланомы кожи остается крайне трудной проблемой. С одной стороны, наружная локализация опухоли, возможность радикального лечения ранних стадий, высокая иммуногенность позволяют рассчитывать на успех в лечении. С другой — высокая частота рецидивов, непредсказуемость клинического течения заболевания и отсутствие эффективности системной терапии делают пессимистичными прогнозы при возникновении прогрессирования болезни [Новик А.В., 2011].

У каждого десятого больного меланому выявляют в IV стадии, когда уже имеет место инвазия и метастазирование, и методом лечения является химиотерапия с использованием дакарбазина, производных нитрозомочевины и платины. Эффективность такой терапии остается низкой из-за высокой резистентности клеток меланомы и/или быстрой индукции множественной лекарственной устойчивости при воздействии противоопухолевых препаратов [Беггопе Ь. е1 а1., 1999; Не1тЬасЬ Н. е1 а1., 2003].

Среднегодовой темп прироста заболеваемости меланомой в мире составляет около 5% (в США — 4%, в России — 3,9%) и может считаться одним из самых высоких среди всех злокачественных опухолей, после рака легкого. Ежегодно в нашей стране выявляется около 8000 пациентов с диагнозом меланома кожа. [Давыдов М.И., 2009].

Диссеминированная меланома кожи считается практически инкурабельным заболеванием. При использовании химиотерапии выживаемость больных с метастазами меланомы варьирует от 6 до 12 мес., а 5-летняя выживаемость составляет только 5% [Hersey Р., 2011].

Небольшие успехи химиотерапии послужили стимулом к созданию и изучению комбинирования ее с цитокинами. В клинических исследованиях лечебную активность показали интерлейкин-2 (ИЛ-2), a-интерферон (а-ИФН), фактор некроза опухоли (ФНО). Изучение роли цитокинов в лечении злокачественных новообразований является одним из современных направлений в онкологии.

До недавнего времени считалось, что назначение цитокинов при диссеминированной меланоме основано на возможности стимулировать противоопухолевый иммунный ответ. Однако клинико-иммунологические исследования при совместном применении цитокинов, в частности, интерферона-a и ФНО-а показали, что, по крайней мере, при лечении меланомы они не проявили себя в качестве иммуномодуляторов, тогда как определенная клиническая эффективность была установлена. Отсутствие иммуномодулирующего действия было связано, главным образом, с тем, что у этих больных исходно были слабо выражены нарушения показателей иммунологического статуса. Реализация его противоопухолевых эффектов связана с иными механизмами действия. В литературе имеются данные о том, что ФНО может оказывать цитотоксическое и цитостатическое действие. Тем не менее, его применение в качестве самостоятельного противоопухолевого препарата очень ограничено из-за, во-первых, множества побочных эффектов и, во-вторых, по причине резистентности многих опухолевых клеток к его цитотоксическому действию. На многих экспериментальных моделях, включая ксенотрансплантаты опухолей человека на бестимусных мышах, было показано, что в переносимых дозах сам по себе ФНО очень слабо подавляет или вовсе не подавляет рост опухолей. Однако он проявляет in vivo синергизм с интерфероном-а и с некоторыми противоопухолевыми лекарствами в индукции противоопухолевого ответа.

Среди новых препаратов ФИО большой интерес представляет отечественный рекомбинантный человеческий препарат фактора некроза опухоли альфа — альнорин.

Таким образом, представляет интерес углубления знаний о механизмах гибели опухолевых клеток in vitro при комбинировании химиотерапии с цитокинами, получение экспериментальных доказательств свидетельствующих о повышении эффективности терапии.

ЦЕЛЬ РАБОТЫ.

Целью работы является изучение in vitro эффективности комбинирования альнорина с химиопрепаратами в усилении цитотоксического действия противоопухолевых препаратов и индукции ими апоптоза в клеточных линиях меланом.

ЗАДАЧИ ИССЛЕДОВАНИЯ.

1. Определить чувствительность клеточных линий меланом к цитотоксическому действию химиопрепаратов in vitro.

2. Оценить эффективность комбинирования альнорина с химиопрепаратами в клетках меланом.

3. Оценить лекарственно-индуцированный апоптоз в сочетании с альнорином на клеточных линиях меланом с применением современных методов регистрации апоптоза.

4. Исследовать влияние фактора некроза опухоли-а (альнорин) на экспрессию в клетках меланом маркера апоптоза CD95 и белков — продуктов генов, регулирующих апоптоз: bcl-2 и Ьах.

НАУЧНАЯ НОВИЗНА.

Впервые установлена in vitro различная чувствительность клеток меланом, происходящих от различных больных, к цитотоксическому и апоптозиндуцирующему действию противоопухолевых препаратов, применяемых в терапии меланомы — дакарбазину (БТ1С), кармустину (ВСЫи), нидрану (ACNU) и аранозе. Впервые продемонстрировано усиление фактором некроза опухоли-а — отечественным препаратом альнориномчувствительности клеток меланом к цитотоксичности этих препаратов. Показана способность фактора некроза опухоли-а в сочетании с противоопухолевыми препаратами индуцировать апоптоз на клеточных линиях меланом. Получены данные о различной экспрессии в клетках белков генов — регуляторов апоптоза.

НАУЧНО-ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ.

Полученные экспериментальные данные могут лечь в основу повышения эффективности противоопухолевой химиотерапии меланомы фактором некроза опухоли (альнорином).

За время выполнения работы в отделении химиотерапии и комбинированного лечения злокачественных опухолей уже получены первые результаты об увеличении безрецидивной и общей выживаемости больных, получавших стандартную терапию в сочетании с альнорином.

ЧАСТЬ I. ОБЗОР ЛИТЕРАТУРЫ.

ВЫВОДЫ:

1. Клетки меланом различаются между собой по чувствительности к цитотоксическому и апоптозиндуцирующему действию противоопухолевых препаратов. Клетки одних и тех же линий меланом обладают различной чувствительностью к разным лекарствам.

2. Чувствительность клеток меланом различных линий к цитотоксическому действию лекарств не совпадает с их чувствительностью к апоптозиндуцирующему действию.

3. На большинстве клеточных линий меланом цитотоксическое действие ВСКТИ и ОТ1С предшествует индукции этими лекарствами апоптоза, что свидетельствует о том, что в основе начального противоопухолевого действия этих препаратов лежат неапопототические механизмы гибели опухолевых клеток.

4. Чувствительность и/или резистентность клеток меланом к цитотоксическому и апоптозиндуцирующему действию ВС№ 1 и БТ1С не коррелирует с количеством клеток, позитивных по экспрессии белков С095, Вс1−2 и Вах.

5. Нецитотоксичные концентрации альнорина усиливают цитотоксическое действие противоопухолевых лекарств АС№ 1, ВСЫИ, ВТ1С и аранозы на клетки меланом.

6. Альнорин на чувствительных клеточных линиях усиливает апоптоз, индуцированный ВСШ и БТ1С только при низких концентрациях этих препаратов. На клеточных линиях нечувствительных к действию химиопрепаратов не вызывает апоптозиндуцирующего действия.

7. Добавление к ВС№ 1 и БТ1С альнорина более эффективно в отношении прямого цитотоксического действия лекарств, чем в отношении индукции ими апоптоза.

Показать весь текст

Список литературы

  1. Г. И. Иммунология опухолей человека / Г. И. Абелев // Под ред. Д. Г. Заридзе. Москва.: Научный мир, 2000. — 343 с.
  2. И.В., Фильченко A.A. Прогностическое значение апоптотического и пролиферативного индексов в солидных новообразованиях // Онкология. 2002. 4, 165 -170 с.
  3. А.Ю., Шишкин Ю. В. Иммунологические проблемы апоптоза М.: Эдиториал УРСС, 2002. — 320 с.
  4. О.С. Получение и характеристика клеточных линий меланомы человека для создания противоопухолевых вакцин: Дис. канд. биол. наук: 14.01.12 / О. С. Бурова.-М., 2010, — 120с.
  5. Н. В. Иммунная система при повышенном онкологическом риске и злокачественном росте / Н. В. Васильев, Н. В. Чердынцева, Т. И. Коляда. Томск: Изд-во Томского университета, 2005. — 308 с.
  6. , М. И. Статистика злокачественных новообразований в России и странах СНГ в 2007 г. / М. И. Давыдов, Е. М. Аксель // ВЕСТНИК РОНЦ им. Н. Н. Блохина РАМН. — 2009. Т. 20, № 3. — Прил. 1. — С.11
  7. Кадагидзе 3. Г. Цитокины // Практическая онкология. -2003. -Т.4, № 3. С. 131−139.
  8. С. А., Симбирцев А. С. Цитокины // СПб, Издат. Фолиант -2008,-408с.
  9. Т. Д. К вопросу о контроле безопасности культур клеток, пригодных для заместительной терапии. / Т. Д. Колокольцева, Н. В. Шалунова, Е. М. Петручук // Биопрепараты. 2006. Июнь. — С.8−12
  10. О.И. Требования, предъявляемые к линиям диплоидных клеток, предназначенных для регенеративной медицины. / О. И. Конюшко, В. Б. Хватов, С. В. Смирнов, В. С. Бочарова // Трансплантология. 2009. — С.31−34.
  11. .П. Мишени действия онкогенов и опухолевых супрессоров: ключ к пониманию базовых механизмов канцерогенеза // Биохимия. -2000.-65.-5−33 с.
  12. А.В. Меланома кожи: новые подходы. / А. В. Новик // Практическая онкология. 2001. — Т. 12, № 1., — С. 36 -42.
  13. В. В., Зиновьева М. В., Свердлов Е. Д. Меланома: поверхностные маркеры как первый «порт» адресной доставки терапевтических генов при многоуровневой генной терапии // Молекулярная биология. 2011. — Т. 45, № 3. — С. 416−433.
  14. В.Д., Олескин А. В., Лагунова Е. М. Программируемая клеточная смерть // Биохимия. 2006. — 65. 1029 — 1046 с.
  15. Е.Г., Черткова А. И., Короткова О. В. и др. Модуляция интерфероном-а цитотоксичности и индукции апоптоза доксорубицином и 5-фторурацилом. Иммунология, 2005, том 26, № 1 стр. 16−19.
  16. А.А., Стойка Р. С. Апоптоз и рак, К.: Морион, 1999. -184 с.
  17. Azenshtein Е., Luboshits G., Shina S. et al. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity // Cancer Research. 2002. Vol. 62. — P. 1093−1102.
  18. Adams J.M., Cory S. The Bcl-2 protein family: Arbiter of cell survival. // Science, 1998,281, 1322−26.
  19. Ashkenazi A., Pai R.C., Fong S., et al. Safety of antitumor activity of recombinant soluble Apo-2 ligand // J. Clin. Invest., 1999, 104, 155−62.
  20. Balkwill F. Inflammation and cancer: back toVirnov? // Lancet. -2001. Vol. 357.-P. 539−545.
  21. Basco Z., Everson B.R. and Eluason J. The DNA of Annexin V-binding apoptotic cells are highly fragmented. Cancer Research- 2000. 60: 4623−4628.
  22. P., Strasser A. ВНЗ-only proteins evolutionarily conserved pro-apoptotic Bcl-2 family members essential for initiating programmed cell death. // J. Cell Sci., 2002, 115, 1567−74.
  23. Boehm I. Apoptosis in physiological and pathological skin: implications fortherapy // Curr Mol Med. 2006, Jun 6. 375−94.
  24. Buttke T.M., Sadstrom P.A. Oxidative stress as a mediator of apoptosis // Immunol. Today. 1994. V. 15. P. 7−14.
  25. Bertazza L., Mocellin S. The dual role of tumor necrosis factor (TNF) in cancer biology // Curr Med Chem. 2010. 17. — P. 3337 — 3352.
  26. Blower P. E., Yang C, Fligner M. A., Verducci J. S., Yu L., Richman S., Weinstein J. N. Pharmacogenomic analysis: correlating molecular substructure classes with microarray gene expression data // Pharmacogenomics J. 2002. — V. 2(4). — P. 259−271.
  27. Builles N., Bechetoille N., Justin V., Andri V., Barbara V., Di lorio E, Auxenfans C, Hulmes D. Development of a hemicornea from human primary cell cultures for pharmacotoxicology testing // Cell Biol. Toxicol. 2007. — V. 23(4). — P. 279−292.
  28. Blankenberg F.G., Norfray J.F. Myltimodality molecular imaging of apoptosis in oncology // AJR Am Roentqenol. — 2011. 197, P. 308−17.
  29. Browen I.D., Bowen S.M., Jones A.H. Mitosis and apoptosis: matters of life and death // Chapman and Hall London. 1998. — p. 182.
  30. D., Gaidano G. / Molecular pathophysiology of indolent lymphoma. // Haematologica, 2000, v.85, No.2, 195−201.
  31. Cohen S., Taylor J.M., Mitchell W.M. Characterization of the binding protein for epidermal growth factor // The Journal of biological chemistry 1974 — V. 249(7)-P. 2188−94.
  32. Chowdhary S.A., List A.F. Drug resistance: overview of mechanisms // Enciclopedia of cancer. 1997. -V. 1. P. 610−620.
  33. Makin G., Hicman J.A. Apoptosis and cancer chemotherapy. // Cell Tissue Res. 2000. — Vol.301. — P. 143−152.
  34. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays // J.Immunol.Meth.-1983 -65(1−2). -P. 55−63.
  35. Nicoletti I., Migliorati G., Pagliacci M.C. et al. A rapid and simple methods for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry // J.Immunol.Meth. 1991. — 139. — P. 271−280.
  36. Riccardi G, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry //Nat. Protoc. 2006. — V. 1(3). — P. 1458−1461.
  37. Hannun Y. Apoptosis and dilemma of cancer chemotherapy. // Blood. 1997. -Vol. 89.-P. 1845−1953.
  38. Freshney R. I. Culture of animal cells, a practical approach. Oxford. «IRL
  39. Press Limited». 1989. — P. 277.
  40. G. / The proto-oncogene Bcl-2 and its role in regulating apoptosis. // Nature Medicine, 1997, v.3, No.6, 614−620.
  41. R.G., Hoffbrand A.V. / Biochemical and genetic control of apoptosis: relevance to normal hematopoiesis and hematological malignancies. //Blood, 1999, v.93, No. ll, 3587−3600.
  42. Simonian P.L., Grillot D.A.M., Andrews D.W., Leber B., Nunez G. / Bax homodimerization is not required for bax to accelerate chemotherapy-induced cell death. // The Journal of Biological Chemistry, 1996, v.271, No.50, 3 207 332 077.
  43. Reed J.C./ Double identity for proteins of the Bcl-2 family. // Nature, 1997, v.387, 773−776.
  44. Holbeck S. L. Update on NCI in vitro drug screen utilities // Eur. J. Cancer. -2004.-V. 40(6).-P. 785−793.
  45. Dai Z., Sadee W., Blower P. Chemogenomics of sensitivity and resistance to anticancer drugs // Current Pharmacogenomics. 2007. — V. 5(1). — P. 11−19.
  46. Davila J., Rodriguez R. J., Melchert R. B., Acosta D. Predictive value of in vitro model systems in toxicology // Annu. Rev. Pharmacol. Toxicol. 1998. -V. 38.-P. 63−96.
  47. Dhiman H. K., Ray A. R., Panda A. K. Three-dimensional chitosan scaffoldbased MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen // Biomaterials. 2005. — V. 26(9). — P. 979−986.
  48. Duss S., Andre S., Nicoidaz A. L., Fiche M., Bonnefoi H., Brisken C, Iggo R. An estrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells // Breast Cancer Res. 2007. — V. 9(3). — P. 38.
  49. Kawamoto K. Flow cytometric analysis, mechanism of action and evaluation of viability by antineoplastic agents // Nippon. Rinsho. 1992. — V. 50(10). — P. 2360−2367.
  50. Kim J. B., Stein R., O’Hare M. J. Three-dimensional in vitro tissue culture models of breast cancer a review // Breast Cancer Res. Treat. — 2004. — V. 85,-P. 281−291.
  51. Lee G Y, Kenny P. A., Lee E. H., Bissell M. J. Three-dimensional culture models of normal and malignant breast epithelial cells // Nat. Methods. -2007.-V. 4(4).-P. 359−365.
  52. Marx K. A., O’Neil P., Hoffman P., Ujwal M. L. Data mining the NCI cancer cell line compound GI (50) values: identifying quinone subtypes effective against melanoma and leukemia cell classes // J. Chem. Inf. Comput. Sci. -2003. -V. 43(5). P. 1652−1667.
  53. Mehta J. P., O’Driscoll L., Barron N, Clynes M., Doolan P. A microarray approach to translational medicine in breast cancer: how representative are cell line models of clinical conditions? // Anticancer Res. 2007. — V. 27(3A).- P. 1295−1300.
  54. Ross D. T., Perou C. M. A comparison of gene expression signatures from breast tumors and breast tissue derived cell lines // Dis. Markers. 2001. — V. 17.-P. 99−109.
  55. Segal E., Friedman N., Kaminski N., Regev A., Koller D. From signatures to models: understanding cancer using microarrays // Nat. Genet. 2005. — V. 10,-P. 38−45.
  56. Sklar L. A., Carter M. B., Edwards B. S. Flow cytometry for drug discovery, receptor pharmacology and high-throughput screening // Curr. Opin. Pharmacol. 2007. V. 7(4). — P. 395−403.
  57. Walter-Yohrling J., Morgenbesser S., Rouleau G, Bagley R., Callahan M., Weber W., Teicher B. A. Murine endothelial cell lines as models of tumor endothelial cells // Clin. Cancer Res. 2004. — V. 10(6). — P. 2179−2189.
  58. Watson M. B., bind M. J., Cawhvell L. Establishment of in vitro models of chemotherapy resistance // Anticancer Drags. 2007. — V. 18. — P. 749−754.
  59. Yamori T. Panel of human cancer cell lines provides valuable database for drug discovery and bioinformatics // Cancer Chem. Pharmacol. 2003. — V. 52. — P. 74−79.
  60. Serrone L, Zeuli M. Sega F.M. et al. Dacarbazine-based chemotherapy for matastatic melanoma: thirty-year experience overview. J Exp Clin Cancer Res 2000- 19:21−34
  61. Hersey P., Smalley K. S., Weeraratna A. et al. Meeting report from the 7th International Melanoma Congress, Sydney, November, 2010 // Pigment Cell Melanoma Res. -2011. -Vol.24. -№ l.P.el-el5.
  62. Krammer, P.H. CD95 (APO-l/Fas)-mediated apoptosis: live and let die. // Adv. Immunol. -1999. 71, 163−210
  63. , S., & Golstein, P. The Fas death factor // Science. -1995. -Vol.267. -P.1449−1456.
  64. Trauth B.C., Klas C., Peters A.M., et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis // Science. -1989. -Vol.245.-P.301−305.
  65. S., Ishii A. & Yonehara M. A cell killing monoclonal antibody (anti-Fas) to cell surface antigen co-down-regulated with the receptor to tumor necrosis factor//J.Exp.Med. -1989. -Vol.169. -P. 1747−1756.
  66. Peter M. E and Krammer P-H. Mechanisms of CD95 (APO-l/Fas)-mediated apoptosis // Current Opinion in Immunology. -1998. -Vol.10. -P.545−551.
  67. Yonehara S., Nishimura Y., Kishi S., Ishii A. Expression and function of apoptosis antigen Fas on T-cells in thymus and peryphery. // Tiss. Antigens, 1993,42, 253.
  68. Owen-Schaub L.B. Fas/Apo-1: A cell surface proteinmediating apoptosis. // Cancer Bull., 1994, 46, 141−5.
  69. Zhivotovsky B., Orrenius S. Defects in the apoptotic machinery of cancer cells: role in drug resistance // Seminars in Cancer Biol., 2003, 13, 125−34.
  70. Guimaraes A., Linden R. Programmed cell deaths. Apoptosis and alternative deathstyles // Eur J Biochem. 2004, 271, 1638−50.
  71. Ghobrial I.M., Witziq T.E., Adjei A.A. Targeting apoptosis pathways in cancer therapy // CA Cancer J Clin. 2005, May-Jun, 55., 178−94.
  72. Lowe S.W., Lin A.W. Apoptosis in cancer // Carcinogenesis. 2000. 21, 485 495.
  73. Hersey P. Apoptosis and melanoma: how new insights are effecting the development of new therapies for melanoma // Curr Opin Oncolo. 2006. № 18. P. 189−96.
  74. Schmitt C.A., Lowe S.W. Apoptosis and therapy. // J. Pathol., 1999, 187, 127−37.
  75. Lowe S.W., Ruley H.E., Jacks t., Housman D.E. p53-dependent apoptosis modulate the cytotoxicity of anticancer agents. // Cell, 1993, 74, 954−67.
  76. Kerr J.F. Shrinkage necrosis: a distinct mode of cellular death. // J. Pathol.1971, — 105.- P.13−20.
  77. J.F., Wyllie A.H., Currie A.R. / Apoptosis: a basic biological phenomenon with wideranging implication in tissue kinetiks. // Br. J. Cancer, 1972, 26, 239−57.
  78. Scaffidi C., Fulda S., Srinivasan A., et al. Two CD95 (APO-l/Fas) signaling pathways. // EMBO J., 1998, 17, 1675−87.
  79. Rufmi A., Melino G. Cell death pathology: the war against cancer // Biochem Biophys Ras Commun. 2011. Oct 28, P. 445−450.
  80. Wang C., Youle R. J. The role of mitochondria in apoptosis // Annu Rev Genet.-2009. 43. P. 95−118.
  81. Harris M.H., Thompsom C.B. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permability // Cell Death Differ. 2000, 7. P. 1182−91.
  82. Ulukaya E., Acilan C., Yilmaz Y. Apoptosis: why and how does it occur in biology? // Cell Biochem Funct. 2011. 29. P. 468−80.
  83. Gerspach J., Pfizenmaier K., Wajant H. Therapeutic taegeting of CD95 and the TRAIL death receptors // Recent Pat Anticancer Drug Discoy. 2011. Sep 1. P. 294−310.
  84. Zamzami N., Kroemer G. The mitochondrion in apoptosis: how Pandora s box opens. // Nature Rev. Mol. Cell. Biol., 2001, 2, 67−71.
  85. Martinou J.C., Green D.R. Breaking the mitochondrial barrier. // Nature Rev. Mol. Cell. Biol., 2001, 2, 63−67.
  86. Tsujimoto Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? // Genes Cells, 1998, 3, 697−707.
  87. Thornberry N.A., Lazebnik Y. Caspases: Enemies within. // Science.- 1998.281.- P.1312−15.
  88. Syeed S.A., Vohra H., Gupta A., Ganguly N.K. Apoptosis: Molecular machinery. // Curr. Science, 2001, 80, N 3, 349−60.
  89. Green D.R., Kroemer G. The central executioner of apoptosis: mitochondria or caspases? // Trends Cell Biol., 1998, 8, 267−71.
  90. Rieber M., Mary Strasberg Rieber. N-Acetylcysteine enhances UV-mediated caspase-3 activation, fragmentation of E2F-4, and apoptosis in human C8161melanoma: inhibition by ectopic Bcl-2 expression. Biochemical Pharmacology, 2003, 65. P. 1593−1601.
  91. Willis S., Day C.L., Hinds M.G., Huang D.C.S. The Bcl-2-regulated apoptotic pathway. J Cell Sci. 2003. 116. P. 4053−4056.
  92. Muracami T, Li X, and Cong J et al. Induction of apoptosis by 5-Azacytidine: Drug Concentration-dependent Differences in Cell Cycle Specificity. Cancer Res. -1995. Vol.55. P.3093−3098.
  93. Fu Y.F., Fan T.J. Bcl-2 family proteins and apoptosis. Acta Biochim Biophys Sin. 2002. 34, — P. 389−394.
  94. Earnshaw W.C. Nuclear changes in apoptosis. // Curr.Opin. Cell Biol. -1995.-Vol.7.-P.337−343.
  95. Kuwana T., Mackey M.R., Perkins G., et al. Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell. 2002. 111. P. 331−342.
  96. Koopman G., Reutelingsperger C.P.M., Kuijten G.A.M., Keehnen R.M.J., Pals S.T. & van Ors M.H.J. Annexin V for Flow Cytometric Detection of124phosphatidylserine exspression on B cells undergoing apoptosis // Blood. -1994. Vol.84. -P.1415−1420.
  97. Labat-Moleur F., Guillerment C., Lorimier P. TUNEL apoptic cell detection in tissue sections: critical evaluation and improvement // The Journal of Histochemistry & Cytochemistry. -1998. -Vol.46 (3). -P.327−334.
  98. Negoescu A., Lorimier P., Labat-Moleur F. et al. TUNEL: Improvement and evaluation of the method for in situ apototic cell identification // BIOCHEMICA. -1997. -No.2.
  99. Godard T., Deslandes E., Lebailly P. et al. Early detection of staurosporine-induced apoptosis // Histchem. Cell Biol. -1999. -Vol.112. P. 155−161.
  100. Kobayashi, H., Takemura, Y., Miyachi, H. // Novel approaches to reversing anti-cancer drug resistance using gene-specific therapeutics. Hum. Cell 2001, 14, 172−184.
  101. Kastan M.B., Berkovich E. p53: a two-faced cancer gene // Nature Cell Biology. 2007. 9. P. 489 — 491.
  102. Karst A.M., Li G., BH3-only proteins in tumorigenesis and malignant melanoma// Cell. Mol. Life Sci. 2007. 64, P. 318−330.
  103. Erster S. et al. In Vivo Mitochondrial p53 Translocation Triggers a Rapid First Wave of Cell Death in Response to DNA Damage That Can Precede p53 Target Gene Activation // Molecular And Cellular Biology, 2004., Aug., P. 6728−6741.
  104. Wei M.C., Zong W.X., Cheng E.H., et al. Proapototic Bax and Bak: a requisite gateway to mitochondrial dysfunction and death // Science. 2001.-292, P. 727−730.
  105. Levine A.J., W Hu and Z Feng. The P53 pathway: what questions remain to be explored? // Cell Death and Differentiation. 2006. — 13, P. 1027−1036.
  106. Seth R., Yang C., Kaushal V., et al. 2005. P53-dependent caspase-2activation in mitochondrial release of apoptosis-indusing factor and its role in renal tubular epithelial cell injury // J. Biol. Chem. 2005. 280, P. 3 123 031 239.
  107. Jurgensmeier, J.M., Xie Z., Deveraux Q., Ellerby L., Bredesen D., and Reed J.C. Bax directly induces release of cytochrome с from isolated mitochondria // Proc. Natl. Acad. Sci. USA. 1998. 95. P. 4997−5002.
  108. Kluck, R.M., E. Bossy-Wetzel, D.R. Green, and D.D. Newmeyer. The release of cytochrome с from mitochondria: a primary site for Bcl-2 regulation of apoptosis//Science. 1997. 275. P. 1132−1136.
  109. Slavina E.G., Chertkova A.I., Gutorov S.L., et al. The interferonotherapy in cancer treatment: some aspects of mechanisms of action. Int.J.Cancer, 2002, SI2, p.449−450
  110. Isaack A., Lindemann J., Virus interference. I. The Interferon // Proc. Roy. Soc. Series B. 1957. — V. 147. — P. 258−267.
  111. Yoshimura A. Signal transduction of inflammatory cytokines and tumor development // Cancer Sci. 2006. — V. 97. — P. 439−447.
  112. Moore K.W., Malefyt R.W., Coffman R.L., O’Garra A. Interleukin-10 and the Interleukin-10 receptor // Annu Rev Immunol 2001. — V.19. — P.683−765.
  113. Luboshits G., Shina S., Kaplan S. et al. Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted
  114. RANTES) in advanced breast carcinoma//Cancer Res. 1999. Vol. 59. -P.4681−4687.
  115. Yu P., Lee Y., Liu W. et al. Priming of naive T-cells inside tumors leads to eradication of established tumors // Nat. Immunol. 2004. — V. 5. — P. 141 149.
  116. Morgan D.A., Ruscetti F.W., Gallo R.C. Selective in vitro growth of T lymphocytes from normal human bone marrows // Science 1976. -V.193, N4257.-P. 1007−1008.
  117. Liu R., Paxton W., Choe S. et al. Homozygous defect in HTV-l-coreceptor accounts for resistance of some multiply-exposed individuals to HTV-1 infection // Cell. 1996. Vol. 86.- P. 367−377.
  118. Ossina N.K., Cannas A., Powers V., et al. Interferon-y modulates a p53-independent apoptotic pathway by apoptosis-related gene expression // J.Biol.Chem., 1997.-V. 272. P. 16 351−16 357.
  119. Wadler S., Schwartz E.I., Antineoplastic activity of combination of interferon and cytotoxic agents agaunst experimental and human malignancies: a review. Cancer Research. 1990, — V. 50. P. 3473−3486.
  120. Lakour S., Hammann A., Wotava A. et al. Anticancer agents sensitize tumor cells to TNFrelated apoptosisinducing ligandmediated Caspase8 activation and apoptosis // Cancer Res. 2001. — Vol. 61. — P. 1645−1651.
  121. Meier B., Radeke H. H., Sell S. et al. Human fibroblasts relase reactive oxygen species in response to interleukin-1 or tumor necrosis factor-alpha // Biochem. J. 1989. V. 263. P. 539−545.
  122. Yamauchi N., Kuriyama H., Watanabe H., et al. Intracellular hydroxyl radical production induced by recombinant human tumor necrosis factor and its implication in the killing of tumor cells in vitro // Cancer Res. 1989. V. 49. P. 1671.
  123. Mocellin S., Nitti D. TNF and cancer: two sides of the coin // Front Biosci. 2008.-Jan. l.P. 2774−83.
  124. Van Horssen R., Ten Hagen T.L., Eggermont M.M. TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility // Oncologist. 2006. Apr. 11. P. 397−408.
  125. Wang X., Lin Y. Tumor necrosis factor and cancer, buddies or foes? // Acta Pharmacol Sin. 2008. Nov. 29. P. 1275−88.
Заполнить форму текущей работой