Кинетика газообмена в профиле сфагнового болота: От метаногенеза к эмиссии
Диссертация
Эти данные свидетельствуют: во-первых, колебания температуры атмосферы действительно коррелируют с изменениями концентраций парниковых газовво-вторых, эти концентрации в геологическом масштабе времени подвержены достаточно сильным колебаниям без выраженных тенденций к росту или снижению. Совершенно иную картину можно увидеть, если взглянуть на изменения концентраций тех же газов за последние 250… Читать ещё >
Список литературы
- Заварзин, Г. А. (1995) Микробный цикл метана в холодных условиях. Природа 6,3−14.
- Монин, А.С. and Шишков, Ю.А. (2000) Климат как проблема физики. Успехи физических наук 170, 419−445.
- Орлов Д.С., Минько О. И., Аммосова Я. М., Каспаров С. В., Глаголев М. В. (1987) Методы исследования газовой функции почв// Современные физические и химические исследования почв. М., Изд-во МГУ, с. 118−156.
- Смагин А.В., Смагина М. В., Вомперский С. Э., Глухова Т. В. (2000) Генерирование и выделение парниковых газов в болотах. Почвоведение 9, 1097−1105
- Химическая энциклопедия (1988−1998) Москва: Советская энциклопедия / Большая Российская энциклопедия.
- Шлегель, Г. (1972) Общая микробиология, Москва: Мир.
- Adamsen, A. and King, G. (1993) Methane Consumption in Temperate and Subarctic Forest Soils: Rates, Vertical Zonation, and Responses to Water and Nitrogen. Applied and Environmental Microbiology 59 (2):485−490.
- Arah, J.R.M. and Stephen, K.D. (1998) A model of the processes leading to methane emission from peatland. Atmospheric Environment 32 (19):3257−3264.
- Bartlett, K.B. and Harriss, R.C. (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26, 261−320.
- Beckmann, M. and Lloyd, D. (2001) Mass spectrometric monitoring of gases (CO2, CH4, O2) in a mesotrophic peat core from Kopparas Mire, Sweden. Global Change Biology 7, 171 -180.
- Bellisario, L.M., Bubier, J.L., Moore, T.R. and Chanton, J.P. (1999) Controls on CH4 emissions from a northern peatland. Global Biogeochemical Cycles 13, 81−91.
- Benstead, J. and Lloyd, D. (1996) Spatial and Temporal Variations of Dissolved Gases (CH4, CO2, and 02) in Peat Cores. Microbial Ecology 31, 5766.
- Benstead, J. and King, G.M. (1997) Response of methanotrophic activity in forest soil to methane availability. FEMS Microbiology Ecology 23 (4):333−340.
- Benstead, J. and Lloyd, D. (1994) Direct mass spectrometric measurement of, gases in peat cores. FEMS Microbiology Ecology 13, 233−240.
- Bergman, I., Svensson, B.H. and Nilsson, M. (1998) Regulation of methaneproduction in a Swedish acid mire by pH, temperature and substrate. Soil
- Biology and Biochemistry 30 (6):729−741. t
- Beswick, K.M., Simpson, T.W., Fowler, D., Choularton, T.W., Gallagher, M.W., Hargreaves, K.J., Sutton, M.A. and Kaye, A. (1998) Methane emissions on large scales. Atmospheric Environment 32 (19):3283−3291.
- Billings, W.D., Luken, J.O., Mortensen, D.A. and Peterson, K.M. (1982) Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment. Oecologia 53, 7−11.
- Chidthaisong, A. and Watanabe, I. (1997) Methane formation and emission from flooded rice soil incorporated with 13C-labeled rice straw. Soil Biology and Biochemistry 29 (8): 1173−1181.
- Christensen, T.R., Panikov, N., Mastepanov, M., Joabsson, A., Stewart, A., Oquist, M., Sommerkorn, M., Reynaud, S. and Svensson Bo (2003) Biotic controls on CO2 and CH4 exchange in wetlands a closed environment study. Biogeochemistry 64, 337−354.
- Cicerone, R.J. and Oremland, R.S. (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles 2,299−327.
- Claricoates, J. (1990) Gas production during peat decay. University of London. Doctoral thesis.
- Clymo, R.S. and Reddaway, E.J.F. (1971) Productivity of Sphagnum (bog-moss) and peat accumuation. Hidrobiologia 12, 181−192.
- Conrad, R. (1989) Control of CH4 production in terrestrial ecosystems. In: Andreae, M.O. and Schimel, D.S., (Eds.) Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp. 39−58. Wiley U.K.
- Cowie, G. and Lloyd, D. (1999) Membrane inlet ion trap mass spectrometry for the direct measurement of dissolved gases in ecological samples. Journal of Microbiological Methods 35 (1): 1 -12.
- Crill, P.M., Bartlett, K.B., Harriss, R.C., Gorham, E., Verry, E.S., Sebacher, D.I., Madzar, L. and Sanner, W. (1988) CH4 flux from Minnesota peatlands. Global Biogeochemical Cycles 2, 371−384.
- Crill, P.M., Martikainen, P.J., Nykanen, H. and Silvola, J. (1994) Temperature and N fertilization effects on methane oxidation in a drained peatland soil. Soil Biology and Biochemistry 26, 1331−1339.
- Daulat, W.E. and Clymo, R.S. (1998) Effects of temperature and watertable onthe efflux of methane from peatland surface cores. Atmospheric Environment 32 (19):3207−3218.
- Degn, H. (1992) Membrane inlet mass spectrometry in pure and applied microbiology. Journal of Microbiological Methods 15 (3): 185−197.
- Dinel, H., Mathur, S.P., Brown, A. and Levesque, M. (1988) A Field Study ofthe Effect of Depth on Methane Production in Peatland Waters: Equipment andif
- Preliminary Results. The Journal of Ecology 76 (4): 1083−1091.
- Dise, N.B., Gorham, E. and Verry, E.S. (1993) Environmental factors controlling CH4 emissions from peatlands in northern Minnesota. Journal of Geophysical Research 98, 583−594.
- Dunfield, P., Knowles, R., Dumont, R. and Moore, T.R. (1993) Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biology and Biochemistry 25, 321−326.
- Frenzel, P. and Rudolph, J. (1998) Methane emission from a wetland plant: the role of CH4 oxidation in Eriophorum. Plant and Soil 202,27−32.
- Friborg, Т., Christensen, T.R. and Soegaard, H. (1997) Rapid response of greenhouse gas emission to early spring thaw in a subarctic mire as shown by micrometeorological techniques. Geophysical Research Letters 24, 3061−3064.
- Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L.P. and Fraser, P.J. (1991) Three-dimensional model synthesis of the global methane cycle.
- Journal of Geophysical Research 96, 13 033−13 065.
- Glascock, R.F. (1954) Isotopic Gas Analysis for Biochemists, New York: Academic Press.
- Hargreaves, К, J. and Fowler, D. (1998) Quantifying the effects of water table and soil temperature on the emission of methane from peat wetland at the field scale. Atmospheric Environment 32 (19):3275−3282.
- Hein, R., Crutzen, P.J. and Heinmann, M. (1997) An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemical Cycles 11,43−76.
- Hesslein, R.H. (1976) An in Situ Sampler for Close Interval Pore Water Studies. Limnology and Oceanography 21 (6):912−914.
- Holzapfel-Pschorn, A., Conrad, R. and Seiler, W. (1986) Effects of vegetationon the emission of methane from submerged paddy soils. Plant and Soil 92 223−233.
- Houweling, S., Kaminski, Т., Dentener, F., Lelieveld, J. and Heimann, M. (1999) Inverse modeling of methane sources and sinks using the adjoint of a global transport model. Journal of Geophysical Research 104, 26 137−26 160.
- IPCC (2001) Climate Change 2001. The Scientific Basis. Cambridge: Щ
- Cambridge University Press.
- Joabsson, A. and Christensen, T.R. (2001) Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology 7,919−932.
- Joabsson, A., Christensen, T.R. and Wallen, B. (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology & Evolution 14 (10):385−388.
- Kiehl, J.T. and Dickinson, R.E. (1987) A study of the radiative effects of enhanced atmospheric C02 and CH4 on early Earth surface temperatures. Journal of Geophysical Research 92, 2991−2998.
- King, G.M. (1994) Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Applied and Environmental Microbiology 60 (9):3220−3227.
- King, G.M. (1996) In Situ Analyses of Methane Oxidation Associated with the Roots and Rhizomes of a Bur Reed, Sparganium eurycarpum, in a Maine Wetland. Applied and Environmental Microbiology 62 (12):4548−4555.
- King, J.Y., Reeburgh, W.S. and Regli, S.K. (1998) Methane emission andtransport by arctic sedges in Alaska: Results of a vegetation removal experiment. Journal of Geophysical Research 103 (D22):29 083−29 092.
- Kormann, R., Muller, H. and Werle, P. (2001) Eddy flux measurements of methane over the fen «Murnauer Moos», 11°1 ГЕ, 47°39'N, using a fast tunable diode laser spectrometer. Atmospheric Environment 35, 2533−2544.
- Kramer, H. and Conrad, R. (1993) Measurement of dissolved H2Щconcentrations in methanogenic environments with a gas diffusion probe. FEMS Microbiology Ecology 12, 149−158.
- Lauritsen, F.R. (1990) A new membrane inlet for on-line monitoring of dissolved, volatile organic compounds with mass spectrometry. International Journal of Mass Spectrometry and Ion Processes 95 (3):259−268.
- Liesack, W., Schnell, S. and Revsbech, N.P. (2000) Microbiology of flooded rice paddies. FEMS Microbiology Reviews 24 (5):625−645.
- Lloyd, D., Bohatka, S. and Szilagyi, J. (1985) Quadrupole mass spectrometry in the monitoring and control of fermentations. Biosensors 1, 179−212.
- Lloyd, D., Thomas, K.L., Benstead, J., Davies, K.L., Lloyd, S.H., Arah, J.R.M. and Stephen, K.D. (1998) Methanogenesis and C02 exchange in an ombrotrophic peat bog. Atmospheric Environment 32 (19):3229−3238.
- Lloyd, D., Thomas, K.L., Cowie, G., Tammam, J.D. and Williams, A.G. (2002) Direct interface of chemistry to microbiological systems: membrane inlet mass spectrometry. Journal of Microbiological Methods 48 (2−3):289−302.
- MacDonald, J.A., Fowler, D., Hargreaves, K.J., Skiba, U., Leith, I.D. and Murray, M.B. (1998) Methane emission rates from a northern wetland- response to temperature, water table and transport. Atmospheric Environment 32 (19):3219−3227.
- Maimer, N. (1962) Studies on mire vegetation in the archaean area of southwestern Gotaland (South Sweden). Opera Botanica 7, 1−322.
- McAullife, С. (1971) GC determination of solutes by multiple phase equilibration. Chemical Technology 1, 46−51.
- Mcinerney, M.J. and Bryant, M.P. (1985) Основные принципы анаэробной ферментации с образованием метана. In: Биомасса как источник энергии, pp. 247−265. Москва: Мир
- Moore, T.R. and Dalva (1993) The influence of temperature and water table position on CO2 and CH4 emissions from laboratory columns of peatland soils. Journal of Soil Science 44, 651−664.
- Moore, T.R. and Knowles, R. (1990) CH4 emissions from fen, bog and swamp peatlands in Quebec. Biogeochemistry 11, 45−61.
- Morrissey, L.A. and Livingston, G.P. (1992) Methane emissions from Alaska arctic tundra: an assessment of local spatial variability. Journal of Geophysical Research 97,16 661−16 670.
- Morrissey, L.A., Zobel, D.B. and Livingston, G.P. (1993) Significance of stomatal control on methane release from carex-dominated wetlands. Chemosphere 26 (l-4):339−355.
- Nykanen, H., Heikkinen, J.E.P., Pirinen, L., Tiilikainen, K. and Martikainen, P.J. (2003) Annual CO2 exchange and CH4 fluxes on a subarctic palsa mire during climatically different years. Global Biogeochemical Cycles 17, 10 181 029.
- Oremland, R.S. and Culbertson, C.W. (1992) Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 356 421−423.
- Pandey, P. and Chauhan, R.S. (2001) Membranes for gas separation. Progress in Polymer Science 26 (6):853−893.
- Rothfuss, F., Bijnen, F.G.C., Conrad, R., Harren, F.J.M. and Reuss, J. (1996) Combination of photoacoustic detector with gas diffusion probes for the measurement of methane concentration gradients in submerged paddy soil. Chemosphere 33 (12):2487−2504.
- Rothfuss, F. and Conrad, R. (1994) Development of a gas diffusion probe for the determination of methane concentrations and diffusion characteristics in flooded paddy soil. FEMS Microbiology Ecology 14, 307−318.
- Rothfuss, F. and Conrad, R. (1998) Effect of Gas Bubbles on the Diffusive Flux of Methane in Anoxic Paddy Soil. Limnology and Oceanography 43 (7):1511−1518.
- Saarnio, S., Saarinen, T.I.M.O., Vasander, H. and Silvola, J. (2000) A moderate increase in the annual CH4 efflux by raised CO2 or NH4NO3 supply in a boreal oligotrophic mire. Global Change Biology 6, 137−144.
- Sass, R.L., Fisher, F.M. and Wang, Y.B. (1992) Methane emission from rice fields: the effect of floodwater management. Global Biogeochemical Cycles 6, 249−262.
- Shannon, R.D., White, J.R., Lawson, J.E. and Gilmour, B.S. (1996) Methane Efflux from Emergent Vegetation in Peatlands. Journal of Ecology 84 (2):239−246.
- Shaver, G.R., Johnson, L.C., Cades, D.H., Murray, G., Laundre, J.A., Rastetter, E.B., Nadelhoffer, K.J. and Giblin, A.E. (1998) Biomass and C02 flux in wet sedge tundras: responses to nutrients, temperature, and light. Ecological Monographs 68, 75−97.
- Shneider, S.H. (1989) The changing climate. Scientific American 260, 70−79.
- Sonesson, M. (1980) Ecology of a subarctic mire. Ecological Bulletins 30, Stockholm: Swedish Natural Science Research Council.
- Svensson, B.H. (1973) Methane production in tundra peat. In: Sonesson, M., (Ed.) Progress report 1972. IBP Swedish Tundra Biome Tech. Rep., 14: 154 166.
- Svensson, B.H. (1980) Energy flow through the subarctic mire at Stordalen. Ecological Bulletins 30, 282−302.
- Svensson, B.H. (1984) Different temperature optima for CH4 formation when enrichments from acid peat are supplemented with acetate or hidrogen. Applied and Environmental Microbiology 48, 389−394.
- Thomas, K.L., Benstead, J., Davies, K.L. and Lloyd, D. (1996) Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biology and Biochemistry 28, 17−23.
- Thomas, K.L., Price, D. and Lloyd, D. (1995) A comparison of different methods for the measurement of dissolved gas gradients in waterlogged peat cores. Journal of Microbiological Methods 24, 191−198.
- Torn, M.S. and Chapin, I.F.S. (1993) Environmental and biotic controls over methane flux from Arctic tundra. Chemosphere 26 (l-4):357−368.
- Tyler, S.C. (1991) The global methane budget. In: Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, pp. 17−38. Wasington, D.C.: American Society for Microbiology
- Valentine, D.W., Holland, E.A. and Schimel, D.S. (1994) Ecosystem and physiological controls over methane production in northern wetlands. Journal of Geophysical Research 99, 1563−1571.
- Verma, S.B., Ullman, F.G., Billesbach, D., Clement, R.J., Kim, J. and Verry, E.S. (1992) Eddy correlation measurements of methane flux in a northern peatland ecosystem. Boundary-Layer Meteorology 58, 289−304.
- Vourlitis, G.L., Oechel, W.C., Hastings, S.J. and Jenkins, M.A. (1993) The effect of soil moisture and thaw depth on CH4 flux from wet coastal tundra ecosystems on the north slope of Alaska. Chemosphere 26, 329−337.
- Waldron, S., Hall, A.J. and Fallick, A.E. (1999) Enigmatic stable isotope dynamics of deep peat methane. Global Biogeochemical Cycles 13 (1):93−100.
- Watson, A., Stephen, K.D., Nedwell, D.B. and Arah, J.R.M. (1997) Oxidation of methane in peat: kinetics of CH4 and 02 removal and the role of plant roots. Soil Biology and Biochemistry 29, 1257−1267.
- Whalen, S.C. and Reeburgh, W.S. (1988) A methane flux time series for tundra ^ environments. Global Biogeochemical Cycles 2, 399−409.
- Whiting, G.J. and Chanton, J.P. (1992) Plant-dependent CH4 emissions in a subarctic Canadian fen. Global Biogeochemical Cycles 6, 225−231.
- Wilhelm, E., Battino, R. and Wilcock, R.J. (1977) Low-pressure solubility of gases in liquid water. Chemical Reviews 11 (2):219−262.
- Williams, R.T. and Crawford (1984) CH4 production in Minnesota peatlands. ^ Applied and Environmental Microbiology 47, 1266−1271.