Помощь в написании студенческих работ
Антистрессовый сервис

Транскрипционная активность в генетических локусах E. coli, содержащих потенциальные промоторы для синтеза антисмысловых РНК

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Сложившаяся к настоящему времени тенденция в аннотации вновь секвенированных геномов предполагает картирование генов вместе с их регуляторными элементами. Это значит, что наряду с компьютерными программами поиска генов, кодирующих белки и нетранслируемые ' РНК, необходимы эффективные алгоритмы для идентификации промоторных участков и сайтов связывания регуляторов. Уже создан целый ряд подобных… Читать ещё >

Транскрипционная активность в генетических локусах E. coli, содержащих потенциальные промоторы для синтеза антисмысловых РНК (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Механизмы регуляции экспрессии бактериальных генов на уровне транскрипции
      • 1. 1. 1. Регуляторные белки прокариот
      • 1. 1. 2. Феномен малых РНК — зачем они нужны клетке?
      • 1. 1. 3. Методические подходы, использованные для поиска малых РНК
    • 1. 2. Особенности структурной организации промоторов
    • 1. 3. Общие представления о механизмах образования транскрипционного комплекса
    • 1. 4. Основные критерии, заложенные в алгоритм поиска стартовых точек транскрипции PlatProm
  • 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • 2. 1. Объекты и методы исследования
      • 2. 1. 1. Компьютерные программы и алгоритмы
      • 2. 1. 2. Бактериальные штаммы и условия культивирования
      • 2. 1. 3. Выделение геномной ДНК E. col
      • 2. 1. 4. Получение радиоактивно меченных олигодезоксирибо-нуклеотидов
      • 2. 1. 5. Амплификация промотор-содержащих фрагментов участков для последующего анализа in vitro и in situ
      • 2. 1. 6. Фракционирование ДНК методом электрофореза в поли-акриламидном геле
      • 2. 1. 7. Экстракция фрагментов ДНК из ПААГ
      • 2. 1. 8. Определение нуклеотидной последовательности фрагментов ДНК по Максаму-Джилберту
      • 2. 1. 9. Оценка способности фрагментов ДНК к образованию комплексов с с70-РНК-полимеразой E. col
      • 2. 1. 10. Локализация сайтов полимераза-промоторного взаимодействия
      • 2. 1. 11. Определение транскрипционной активности промоторов in vitro
      • 2. 1. 12. Клонирование промотор-содержащих фрагментов в вектор pET28b-EGFP
      • 2. 1. 13. Выделение суммарной клеточной фракции РНК
      • 2. 1. 14. Реакция удлинения праймера in vivo
      • 2. 1. 15. Картирование 5'-концов РНК-транскриптов (5'-RACE)
      • 2. 1. 16. Количественная ПЦР
      • 2. 1. 17. Northern-гибридизация
  • 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
    • 3. 1. Выбор генов для экспериментального тестирования
    • 3. 2. Сравнительный анализ данных, полученных in silico, in vitro и in vivo
    • 3. 3. Структурно-функциональный анализ промотор-подобных сайтов, расположенных в гене hns
    • 3. 4. Структурно-функциональный анализ промотор-подобных сайтов в локусе phoR/brnQ
    • 3. 5. Структурно-функциональный анализ промотор-подобных сайтов в локусе wcuR

Хорошо известно, что регуляция экспрессии бактериальных генов может осуществляться на нескольких функциональных уровнях. В первую очередь, в процессе инициации транскрипции. Традиционно считается, что эффективность синтеза РНК контролируется белками — активаторами и репрессорами — общее число которых в бактериальной клетке может быть около 300 [Blattner 1997, Озолинь 2005]. Кроме того, существует еще один класс регуляторов — малые нетранслируемые РНК. Их размер варьирует от 37 до 400 нуклеотидов, а механизмы действия очень разнообразны. Для E. coli в настоящее время изучено 87 регуляторных РНК, большая часть которых кодируется независимыми генами. Данные системного анализа позволяют предположить, что общее их количество в клетке гораздо больше, чем белковых регуляторов транскрипции [Argaman 2001, Saetrom 2005, Tjaden 2006]. При этом только 10 известных нетранслируемых РНК транскрибируются из кодирующих последовательностей в антисмысловом направлении (http ://bi ocvc. ora/ECQLI/). Образуя комплементарные дуплексы с мРНК вблизи инициирующего кодона, они влияют на их ассоциацию с рибосомами и, следовательно, модулируют синтез белкового продукта. При связывании с другими участками матричной РНК, антисмысловые РНК могут изменять их стабильность, поддерживая относительное содержание мРНК на оптимальном для клетки уровне [Storz 2005], Очевидно, что для создания целостной картины клеточного метаболизма желательно иметь информацию обо всех генах, экспрессия которых может регулироваться по антисмысловому механизму. Однако перекрывание со смысловыми последовательностями других генов затрудняет целенаправленный поиск мест кодирования антисмысловых РНК. Тем не менее, некоторые из них были обнаружены среди коротких РНК, а также РНК, взаимодействующих с шапероном Hfq [Zhang 2002, Vogel 2003, Kawano 2005]. Наряду с этим, перспективным может быть поиск по сигналам транскрипции, позволивший обнаружить большую часть известных нетранслируемых РНК в межгенных участках [Argaman 2001, Chen 2002].

Для поиска потенциальных промоторов для аРНК мы использовали разработанную в нашей лаборатории компьютерную программу PlatProm, которая, кроме консервативных.

7ft элементов, распознаваемых осубъединицей РНК-полимеразы, учитывает ряд других структурных особенностей промоторной ДНК, рассматривая ее как единую платформу для взаимодействия и с РНК-полимеразой, и с регуляторными белками [Brok-Volchanski 2006]. В результате сканирования генома E. coli было обнаружено около тысячи потенциальных стартовых точек антисмысловой транскрипции. Многие из них находятся в генах регуляторных белков [Ozoline 2006]. Так как синтезируемые с них РНК могут оказаться вовлеченными в регуляторные сети клетки, именно они стали предметом первоочередного исследования [Tutukina 2007].

1.ФАКТОРЫ ТРАНСКРИПЦИИ И РЕГУЛЯТОРНЫЕ РНК КАК ПОТЕНЦИАЛЬНЫЕ МОДУЛЯТОРЫ ЭКСПРЕССИИ БАКТЕРИАЛЬНЫХ ГЕНОВ (ОБЗОР ЛИТЕРАТУРЫ).

Несмотря на то, что геномы бактерий организованы гораздо проще, чем у высших организмов, а механизмы регуляции экспрессии генов прокариот изучаются уже несколько десятилетий, все еще остается очень много непонятного в том, каким образом реализуется адаптация клеток к практически постоянно изменяющимся условиям внешней среды. Кроме того, подобная адаптация, как правило, затрагивает не одну, а сразу несколько регуляторных систем. В последнее время появилось много новых данных, которые не только меняют наше представление о способах опосредованного геномом глобального переключения клеточного метаболизма, но и вносят значительные поправки в общую схему адаптивных реакций. Долгое время основными регуляторами эффективности генной экспрессии считали специальные белки, однако, к настоящему моменту это утверждение уже не является абсолютно бесспорным и может быть пересмотрено. Первым и, во многом, определяющим этапом реализации генетической информации, является транскрипция.

выводы.

1. Способность промотор-содержащих фрагментов ДНК формировать комплексы с РНК-полимеразой коррелирует с максимальным показателем промотор-подобия, рассчитанным для соответствующих областей компьютерной программой PlatProm. Величина коэффециента корреляции (0.63) свидетельствует о высоком предсказательном потенциале PlatProm и об адекватном моделировании им структурно-функциональной организации промотора.

2. Впервые установлено, что в гене hns может начинаться синтез антисмысловой РНК, внутриклеточное содержание который зависит от скорости роста, увеличиваясь при переходе к стационарной фазе.

3. В конце гена phoR и прилегающей межгенной области phoR/brnQ обнаружено, по меньшей мере, 6 промоторов, способных формировать продуктивные комплексы с РНК-полимеразой и вести дивергентный синтез РНК in vitro. Однако в условиях in vivo из них выбирается только один (координата стартовой точки 418 644 в геноме E. coli К12 U00096.2), который может принимать участие в инициации транскрипции гена 6ги?)-мРНК.

4. Впервые картирован промотор гена ихuR (координата стартовой точки 4 552 500) и изучены его структурно-функциональные свойства. Показано, что активность этого промотора зависит от наличия UP-элемента, т. е. модуля, взаимодействующего с а-субъединицами РНК-полимеразы.

5. Обнаружена новая малая РНК длиной ~80 нуклеотидов, синтез которой начинается в термипаторной шпильке iccuR (координата стартовой точки 4 553 390).

ЗАКЛЮЧЕНИЕ

.

Сложившаяся к настоящему времени тенденция в аннотации вновь секвенированных геномов предполагает картирование генов вместе с их регуляторными элементами. Это значит, что наряду с компьютерными программами поиска генов, кодирующих белки и нетранслируемые ' РНК, необходимы эффективные алгоритмы для идентификации промоторных участков и сайтов связывания регуляторов. Уже создан целый ряд подобных алгоритмов, позволяющих обнаруживать промотор-подобные участки как в эукариотических, так и в прокариотических геномах. Они учитывают все известные особенности промоторной ДНК и имеют высокую чувствительность. Однако, при сканировании генома такие алгоритмы имеют тенденцию к генерации большого количества фальшивых позитивов, выбирая потенциальные точки старта транскрипции только по формальным критериям. Для того чтобы приблизить промоторную модель, заложенную в имеющиеся на данный момент алгоритмы, к реально работающей в клетке, необходимо иметь как можно больше экспериментально определенных стартовых точек транскрипции, а также данные об их возможной регуляции различными факторами. Уже сейчас предложено несколько способов [Gama-Castro 2008] тотального определения стартовых точек, но все они требуют дальнейшего усовершенствования. В данной работе было исследовано 9 генетических локусов, 2 из которых содержали ранее неизвестные промоторы перед генами (uxuR, phoR). Наряду с этим, был изучен межгенный участок, который помимо картированного промотора для синтеза bglG-мРНК, содержит еще несколько потенциальных стартовых точек, способных инициировать синтез укороченных РНК-продуктов in vitro. Всего было проверено 14 потенциальных промоторов для антисмысловой транскрипции и 11 — для синтеза РНК-продуктов в одинаковом с перекрывающимся или соседним геном направлении. Оказалось, что все 11 проверенных «сонаправленных» промоторов способны к образованию продуктивного комплекса с РНК-полимеразой, но только 4 из 14 промоторов для антисмысловой транскрипции могут формировать открытый комплекс с ферментом и инициировать синтез РНК in vitro. Это хорошо согласуется с результатом сравнительного анализа сканирования генома in silico и данных по связыванию РНКП in vivo, который показал, что только 55% потенциальных антисмысловых промоторов, предсказанных алгоритмом во внутригенных участках, ассоциированы с сайтами связывания РНКП. Можно предположить, что наличие элонгирующего комплекса, ведущего копирование противоположной нити, создает препятствия для образования транскрипционного комплекса на антисмысловом промоторе. Такая динамическая коллизия вполне вероятна, так как перед ферментом, ведущим синтез РНК, из-за необходимости локального расплетания двойной спирали, создается область положительной суперспирализации, которая затрудняет формирование нового транскрипционного комплекса [Liu 1987]. Понятно, что синтез антисмысловых РНК тоже может снижать эффективность нормальной транскрипции, но в естественных условиях преимущественное связывание РНК-полимеразы с нормальными промоторами могут обеспечить специальные факторы транскрипции, а в условиях in vitro — нет. Возможно, именно поэтому антисмысловой промотор из гена iixuR оказался активным только in vitro. При этом оба потенциальных антисмысловых промотора, расположенные в кодирующей последовательности гена (hns и dps), и не имеющие по соседству промотор-подобных сигналов на другой нити, образовывали продуктивный комплекс с РНКП.

Установлено, что в кодирующей последовательности гена hns может начинаться синтез антисмыслового транскрипта, предположительная длина которого составляет около 140 нуклеотидов. При этом содержание в клетках антисмысловой РНК увеличивается при переходе к стационарному росту, в то время как количество /шя-мРНК значительно снижается. Это предполагает существование регуляторного механизма, обеспечивающего такую негативную корреляцию. Не исключено, что в его основе лежит непосредственное взаимодействие аРНК с мРНК, результатом которого является стабилизация или дестабилизация одной из них.

Очень важные результаты получены при исследовании промоторов из генетического локуса гена phoR. В этой области предсказано много перекрывающихся промоторов и зарегистрировано, по крайней мере, 5 транскрипционных вилок, две из которых соответствуют антисмысловым промоторам и формируются с высокой эффективностью, но синтез РНК in vitro был зарегистрирован только для одного из этих промоторов, а в системе репортерной детекции с использованием плазмиды pET28b-EGFP оба эти промотора оказались неактивными. Таким образом, высокое сродство к РНК-полимеразе и даже способность формировать транскрипционно-компетентные комплексы совсем не гарантируют эффективность транскрипции в клетке.

Из двух дивергентных промоторов, расположенных в 3'- UTR гена uxuR, РНК-полимераза в условиях жесткой конкуренции in vivo выбирает только один — сонаправленный с геном. Он расположен в терминаторной шпильке uxuR и инициирует синтез короткой РНК размером 77−79 нт, которая останавливается на собственном р-независимом терминаторе.

Таким образом, в данной работе исследована транскрипционная активность 9 генетических локусов, содержащих в общей сложности 26 потенциальных промоторов. Впервые картировано 3 новых промотора перед генами, способных инициировать синтез bglG-, brnQи wcuR-мРНК. Обнаружена новая малая РНК — UxuT, транскрибирующаяся из З'-нетранслируемого участка iixuR.

Показать весь текст

Список литературы

  1. Т., Фрич Э., Сэмбрук Дж. (1984) Методы генетической инженерии.Молекулярное клонирование, М.:Мир, 479.
  2. И.С., Часов В. В., Костяницына Е. Г., Пуртов Ю. А. (2001) Детерминированные нуклеотидной последовательностью конформационные изменения промоторной ДНК1 при образовании транскрипционного комплекса, Мол.Биол., 35, 996−1000.
  3. О.Н., Деев А. А. (1998) Неканонические структурные элементы промоторной ДНК и их роль в комплексообразовании с РНК-полимеразой. Молек.быол., 32, 441−446.
  4. О.Н., Деев А. А., Масулис И. С., Часов В. В., Костяницына Е. Г., Пуртов Ю. А., Архипов И. В., Брок-Волчанский А.С. (2002). Уровни структурной организации промоторной ДНК Escherichia coli, .Биофизика, 47, 89−819
  5. О.Н., Шакунов К. С., Тутукина М. Н. (2005) Регуляторы генной экспрессии у бактерий: белковые факторы транскрипции и нетранслируемые РНК. Вестник биотехнологии и физико-химической биологии, 1, 56−65.
  6. В.В., Деев А. А., Масулис И. С., Озолинь О. Н. (2002) А/Т -треки в структуре промоторов Escherichia coli: характер распределения и функциональное значение, Мол.Биол., 36, 682−688.
  7. L., Hershberg R., Vogel J., Bejerano G., Wagner E.G., Margalit H., Altuvia S. (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol., 11, 941−950.
  8. T.A., Iwata A., Nishimura A., Ueda S., Ishihama A. (1999). Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid.
  9. J. Bacteriol. 181. 6361 6370.
  10. K.A., Bown J.A., Busby S.J., Minchin S.D. (1997). Region of Escherichia coli RNA polymerase sigma 70 subunit is responsible for the recognition of the «extended -10″ motif at promoters, The EMBO J., 16, 4034−4040.
  11. Bae W., Xia В., Inouye M., Severinov K. (2000). Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc. Natl. Acad. Sci. USA. 97, 7784−7789.
  12. M.S., Gourse R.L. (1994) Growth rate-dependent control of the rrnB PI core promoter in Escherichia coli. J. Bacteriol. 176. 5560 5564.
  13. E.E., Ross W., Tang H., Gourse R.L., Ebright R.H. (1994) Domain organization of RNA polymerase a-subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding, Cell, 78, 889−896.
  14. Blattner F.R., Punkett III G., Bloch C.A., et al. (1997) The complete genome sequence of Escherichia coli K12. Science, 277, 1453−1462.
  15. S., Severinov K. (2002) Role of the RNA polymerase sigma subunit in transcription initiation, Res.Microbiol., 153, 557−562.
  16. J., Ваше K., Minchin S., Busby S. (1997). Extended -10 promoters, Nucl. Acids Mol.Biol., 11,41−52/
  17. Brok-Volchanski A.S., Masulis I.S., Shavkunov K.S., Lukyanov Y.I., Purtov Yu. A., Kostyanicina E.G., Deev A.A., Ozoline O.N. (2005). Promoter-search software as a tool for prediction novel genes. Kluwer Academic Press
  18. Buc H., McClure W.R. (1985) Kinetic of open complex formation between E. coli RNA polymerase and the lacUV5 promoter, Biochemistry, 24,2712−2723.
  19. R.R., Authony L. (2001) How sigma docks to RNA polymerase and what sigma does, Current Opinion Microbiol., 4, 126−131.
  20. , H. D., Belyaeva T. A., Busby S. J., Minchin S. D. (1996). Temperature- dependence of open-complex formation at two Escherichia coli promoters with extended -10 sequences. Biochem.J. 317,305−311.
  21. R. J., Dubchak I., Holbrook S. R. (2001) A computational approach to identify genes for functional RNAs in genomic sequences. Nucleic Acids Res., 29, 3928 3938.
  22. В., Busby S. (1989) Recognition of nucleotide sequences at the Escherichia coli galactose operon PI promoter by RNA polymerase. Gene, 84,227−236
  23. S., Lesnik E. A., Hall T. A., Sampath R., Griffey R. H., Ecker D. J., Blyn L.B. (2002) A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. Biosystems, 65(2−3), 157−177.
  24. Chen Chin-Yu, Ко Tzu-Ping, Lin Ting-Wan, Chou Chia-Cheng, Chen Chun-Jung, Wang Andrew H.-J. (2005) Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sacld, Nucl. Acids Res., 33, 430−438.
  25. Craig M.L., Suh W.-C., Record M.T.Jr. (1995) HO and Dnase 1 probing of Eo70 RNA polymerase-APR promoter open complex: Mg2+ binding and its structural consequences at the transcription start site, Biochemistry, 34, 15 624−15 632.
  26. S.A., Polyakov A., Pichter C., Zhang G. (1998). Insights into Escherichia coli RNA polymerase 2 to 16A resolution, Cell, 66, 121−128.
  27. C.A., Capp M.W., Record M.T., Saecker R.M. (2004) The effects of upstream DNA on open complex formation by Escherichia coli RNA polymerase, Proc.Natl.Acad.Sci.USA, 102, 285−290.
  28. De Lay N., Gottesman S. (2009) The CRP-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior, J.Bacteriol., 191, 461−476.
  29. N., Rokita S.E., Zheng P. (1997) Natural antisense RNA/target RNA interactions: possible models for antisense oligonucleotide drug design. Nature, 15, 751−753.
  30. De Wulf P., McGuire A.M., Liu X., Lin E.C.C. (2002) Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli., J.Biol.Chem., 277,26 652−26 661.
  31. G.M., Kawula Т.Н. (1998) Enhanced binding of altered H-NS protein to flagellar rotor protein FliG causes increased flagellar rotational speed and hypermotility in Escherichia coli. J.Biol.Chem., 273, 24 030−24 036.
  32. Duval-Valentin G., Ehrich R. (1987) Dynamic and structural characterization of multiple steps during complex formation between E. coli RNA polymerase and the tetR promoter from pSClOl, Nucl.,.Acids Res., 15,575−594.
  33. S.R. (1999) Noncoding RNA genes, Curr Opin.Genet Dev., 9, 695−699.
  34. Т., Behnke D., Bijard H., Gralla J.D. (1994) Stalling of Escherichia coli RNA polymerase at the +6 to +24 region in vivo is associated with tight binding to consensus promoter element, J.Mol.Biol., 239,455−465.
  35. S.T., Gaal Т., Ross W., Gourse R.L. (1998). Identification of an UP-element consensus sequence for bacterial promoters, Proc. Natl. Acad. Sci. USA, 95, 9761−9766.
  36. Favre-Bonte S., Joly В., Forestier Ch. (1999). Consequences of reduction of Klebsiella pneumoniae capsule expression on interactions of this bacterium with epithelial cells. Infect. Immun. 67, 554−561.
  37. FujitaN., Ishihama А.(199б) Reconstitution of RNA polymerase, Methods Enzymol., 273, 121 130.
  38. Gaal Т., Ross W., Blatter E.E., Tang H., Jia X., Kristian V.V., Assa Munt N., Ebright R.H., Gourse R.L. (1996) DNA binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture, Genes Dev., 10, 16−26.
  39. Giuliodori A.M., Brandi A., Gualerzi C.O., Pon S. (2004). Preferential translation of cold-shock mRNAs during cold adaptation. RNA. 10, 265−276.
  40. S.R., Ebright R.H., Nickels В. E. (2009) Direct Detection of Abortive RNA Transcripts in Vivo Science, 324, 927 928.
  41. Gorke B, Vogel J. (2008) Noncoding RNA control of the making and breaking of sugars, Genes Dev., 22, 2914−2925.
  42. Gourse R.L., d’Boer H.A., Nomura M. (1986) DNA determinants of rRNA synthesis in E. coli: growth rate dependent regulation, feedback inhibition, upstream activation, antitermination, Cell, 44, 197−205.
  43. T.M., Gross C.A. (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Anmt. Rev. Microbiol. 57,441−466.
  44. E., Busby S., Minchin S. (1991). Different thermal energy requirementfor open complex formation by Escherichia coli RNA polymerase at two related promoters. Nucleic Acids Res. 19, 6113−6118.
  45. A., Roberts J. (2008) Prevalence of RNA polymerase stalling at E.coli promoters after open complex formation. Mol. Microbiol, 68,17−28.
  46. S.P., Berkmen M.B., Ross W., Gaal Т., Ward C., Gourse R.L. (2006) rRNA promoter recognition by nonoptimal binding of a region 1.2: an additional recognition element for RNA polymerase. Cell. 125, 1069−1082.
  47. Hawley D.K. and McClure W.R. (1983). Compilation and analysis of E. coli promoter RNA sequences, Nucl. Acids Res, 11, 2237−2255.
  48. Hawley D.K. and Reynolds R. (1987). Analysis of Escherichia coli promoter sequences, Nucl. Acids Res., 15,2343−2361.
  49. R., Altuvia S., Margalit H. (2003) A survey of small RNA-encoding genes in Escherichia coli, Nucl.Acids Res., 31, 1813−1820.
  50. G. Z., Stormo G. D. (1996) Escherichia coli promoter sequences: analysis and prediction. Methods Enzymol, 273, 30−42.
  51. A. (2007) Gene-specific regulation by a transcript cleavage factor: facilitating promoter escape, J.Bacteriol., 189,24, 8769−8771.
  52. Hook-Barnard I., Johnson X.B., Hinton D.M. (2006) Escherichia coli RNA polymerase recognition of cr70-dependent promoter requiring a -35 DNA element and an extended -10 TGn motif. J.Bacteriol., 188, 8352−8359.
  53. A.H., Morand C., Wilcox G. (1980). Deoxiribonucleic acid sequence of araBAD promoter mutants of E. coli, J.Bacteriol., 142, 659−662.
  54. Huang X., Lopez de Saro F. J., Helmann J. D. (1997) sigma factor mutations affecting the sequence-selective interaction of RNA polymerase with -10 region single-stranded DNA Nucleic Acids Res., 25, 2603 2609.
  55. Huerta A.M., Collado-Vides J. (2003) Sigma70 Promoters in Escherichia coli: Specific Transcription in Dense Region of Overlapping Promoter-like Signals, J.Mol.Biol., 333, 261 278.
  56. Ivanov V.I., Minchenkova L.E., Chernov B.K., McPhie P., Ryu S., Garges S. (1995) CRP-DNA complex: inducing the a-like form in the binding sites with an extended central spacer, J.Mol.Biol., 245,228−240.
  57. Ishihama A., Yamada M. et al (2006) Nucleoids dynamic in Escherichia coli: a growth phase dependent process. Bangladesh J. Microbiol., 23, 81−88.
  58. C.D., Laprade L., Winston F. (2003) Transcription elongation factors repress transcription initiation from cryptic sites, Science, 301, 1096−1099.
  59. Kawano M., Storz G., Rao B.S., Rosner J.L., Martin R.G. (2005) Detection of low-level promoter activity within open reading frame sequences of Escherichia coli, Nucl. Acids Res., 33, 6268−6276.
  60. Kawano M., Reynolds A.A., Miranda-Rios J., Storz G. (2005) Detection of 5'- and 3'-UTR-derived small RNAs and c/s-encoded antisense RNAs in Escherichia coli, Nucl. Acids Res., 33, 1040−1050.
  61. M., Aravind L., Storz G. (2007) An antisense RNA controls synthesis of an SOS induced toxin evolved from an antitoxin, Mol. Microbiol., 64,738−754.
  62. M., Ishihama A. (1995) Functional map of the alpha subunit of Escherichia coli RNA polymerase: amino acids subsitution within the amino-terminal assembly domain, J.Mol.Biol., 254, 342−349.
  63. M., Yamaguchi I. (1998) Convergent transcription units and their promoters at both ends of Pot2, an inverted repeat transposon from the rice blast fungus. J. Biochem., 124, 268 273.
  64. Knaus R. And Bujard H. (1988). Pi of coli phage lambda an alternative solution for anefficient promoter, The EMBO J., 1, 2919−2923.
  65. Komissarova N. and Kashlev M. (1997). Transcription arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3'end of the RNA intact and extruded, Proc. Natl. Acad. Sci. USA, 94,1755−1760.
  66. Koo H.-S., Wu H.-M., Crothers D.M. (1986) DNA bending at adenin-thymine tracts, Nature, 320, 501−506.
  67. Koo H.-S., Crothers D.M. (1988) Calibration of DNA curvature and unified description of sequence-directadbending, Proc.Natl.Acad.Sci.USA, 85,1763.
  68. Koo H.S., Drak J., Rice J.H., Crothers D.M.(1990) Determination of the extend of DNA bending by an adenin-thymine tract, Biochemistry, 29, 4227−4234.
  69. Krohn M., Wagner R.(1996) Transcriptional pausing of RNA polymerase in the presence of Guanosine tetraphosphate depends on the promoter and gene sequence, J.Biol., Chem., 271, 23 884−23 894.
  70. Krummel В., Chamberlin M.J.(1989) RNA Chain Initiation by Escherichia coli RNA Polymerase. Structural Transition of the Enzyme in Early Ternary Complexes, Biochemistry, 28, 7829−7842.
  71. Т., Shimamoto N. (1996). A brached pathway in the early stage of transcription by Ecoli RNA polymerase, J. Mol. Biol., 256, 449−457.
  72. A.I., Travers A.A. (1985) Stringent control of bacterial transcription. Cell, 41, 6−8.
  73. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. (2007) ClustalW and ClustalX version 2., Bioinformatics, 23(21), 2947−2948.
  74. La Teana A., Brandi A., Falconi M., Spurio R., Pon C. L., Gualerzi C.O.(1991). Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc. Natl. Acad. Sci. USA. 88, 10 907−10 911.
  75. Lavigne M., Kolb A., Buc H. (1992) Transcription activation by cAMP receptor protein (CRP) at the Escherichia coli galPl promoter. Crucial role for the spacing between the CRP binding site and the —10 region, Biochemistry, 31, 9647−9656.
  76. R.A., Cusick M.E., Belfort M. (1998) Riboregulation in Escherichia coli: DsrA acts by RNA: RNA interactions in multiple loci, Proc.Natl.Acad.Sci.USA, 95, 12 456−12 461.
  77. S., Record M. (1990) Structural, Termodinamic and Kinetic studies of the Interaction of Eo70 RNA Polymerase with Promoter DNA, Nucleic Acids and Mol.BioX., 4, 123−150.
  78. S., Margalit H. (1993) Compilation of E.coli mRNA promoter sequences. Nucleic Acids Res., 21, 1507−1516.
  79. Liu C., Bai В., Skogerb0 G., Cai L., Deng W., Zhang Y., Bu Y., Zhao Y., Chen R. (2005) NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res., 33, D112 D115.
  80. Liu L.F., Wang J.C. (1987) Supercoiling of the DNA template during transcription. Proc.Natl.Acad.Sci. USA, 84, 7024−7027.
  81. Liu Y., Kobayashi I. (2007) Negative regulation of EcoRI restriction enzyme gene is associated with intragenic reverse promoters. J.Bacteriol., 189, 6928−6935.
  82. H., Fujita N., Ishihama A. (2000) Competition among seven Escherichia coli sigma subunits: Relative binding affinities to the core RNA polymerase. Nucleic Acids Res., 28, 34 973 503.
  83. Maki K., Uno K., Morita Т., Aiba H. (2008) RNA, but not protein partners, is directly responsible for translational silencing by a bacterial Hfq-binding small RNA, Proc.Natl.Acad.Sci.USA, 105, 10 332−10 337.
  84. P., Paul B.J., Rutherford S.T., Gourse R.L., Osuna R. (2006) DksA is required for growth phase-dependent regulation, growth rate-dependent control, and stringent control offis expression in Escherichia coli. J.Bacteriol., 188, 5775−5782.
  85. P., Gottesman S. (2009) A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. Mol.Microbiol., 72. 551−565.
  86. Т., Frisch E.F., Sambrook J. (1982). Molecular cloning: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Lab.
  87. M. T. Roberts J. W. (2000) Function of transcription cleavage factors GreA and GreB at a regulatory pause site. Mol Cell, 6, 1275−1285.
  88. E., Gottesman S. (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc.Natl.Acad.Sci. USA, 99, 4620 4625.
  89. M., Alieva N., Chenchik A., Lukyanov S. (2003) Amplification of cDNA ends using PCR suppression effect and step-out PCR. Methods Mol Biol. 221,41−49.
  90. A.M., Gilbert W. (1985) Sequencing andlabeled DNA with base-specific chemical cleavages, Methods Enzymol., 230, 679.
  91. McFall S.M. (1997) Dnasel footprinting, DNA bending and in vitro transcription analysis of ClcR and CatR interactions with the clcABD promoter: evidence of a conserved transcription activation mechanism, 5, 965−976.
  92. McNamara P.T., Bolshoy A., Trifonov E.N., Harrington R.E. (1990) Sequence-dependent kinks induced in curved DNA, J.Biomol. Struct.Dymanics., 8, 529−539.
  93. M.J. (1993) In a class of its own the RNA polymerase sigma factor sigma 54 (sigma N). Mol.Microbiol., 10, 903−909.
  94. G.B., Hagerman P.J. (2004) Origin of the intrinsic rigidity of DNA, NucLAcids Res., 32,4055−4059.
  95. J. L., Zheng D., Busby J.W., Minchin S.D. (2003) Identification and analysis of extended -10 promoters in Escherichia coli. Nucleic Acids Res., 31, 4689−4695.
  96. Т., Chou M., Inouye M. (1984) A Unique Mechanism Regulating Gene Expression: Translational Inhibition by a Complementary RNA Transcript (micRNA). Proc.Natl.Acad.Sci. USA, 81,1966- 1970. ,
  97. Moller Т., Franch Т., Udesen С., Gerdes К., Valentin-Hansen P. (2002) Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon Genes Dev., 16, 1696. чЛ
  98. R.A., Landick R. (2003) Tethering a to RNA polymerase reveals high in vivo7П • •activity of с factors and о -dependent pausing at promoter-distal locations, Genes Dev., 17:2839−2851.
  99. K., Chatterji D. (1997). Studies on the omega subunit of Escherichia coli RNA polymerase-its role in the recovery of denatured enzime activity, Eur.J.Biochem., 247,884−889.
  100. K., Fujita N., Ishihama A. (1996) Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element, The EMBOJ., 15,4358−4367.
  101. K.S., Masuda S., Darst S. (2002). Structural Basis of Transcription Initiation: RNA polymerase Holoenzyme at 4A Resolution, Science, 296, 1280−1284.
  102. K.S., Masuda S., Campbell E., Muzzin O., Darst S. (2002). Structural Basis of Transcription Initiation: An RNA polymerase Holoenzyme-DNA Complex, Science, 296, 12 851 290.
  103. Murakami K.S. and Darst S. (2003). Bacterial RNA polymerase: the whole story, Current Opinion in Structural Biology, 13, 31−39.
  104. N., Reyakin А., Ют Yo., Mekler V., Ebright R.H. (2000) Structural organization of the RNA Polymerase-Promoter Open Complex, Cell, 101, 601−611.
  105. Nelson H.C.M., Finch J.T., Luisi B.K., Klug A. (1987) The structure of an oligo (dA)oligo (dT)tract and its biological implications, Nature, 330,221−226.
  106. B.E., Dove S.L., Murakami K.S., Darst S.A., Hochschild A. (2002) Protein-protein and protein-DNA interactions of sigma70 region 4 involved in transcription activation by Xcl. J.Mol.Biol., 324 17−34.
  107. E., Avetissova E., Markovtsov V., Goldfarb A. (1996) Transcription processivity: protein: DNA interactions holding together elongation complex. Science, 273, 211−217
  108. E. (1999). Transcription elongation: structural basic and mechanisms, J.Mol.Biol., 288,1−12.
  109. К., Hara S., Bhasin R., Freundlich M. (1998) Evidence in vivo for autogenous control of the cyclic AMP receptor protein gene (ctp) in Escherichia coli by divergent RNA. J. Bacteriol., 170, 5076−5079.
  110. Oshima Т., Ishikawa S., Kurokawa K, Aiba H, Ogasavvara N. (2006) Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase, DNA res., 3,141−153.
  111. Owens J.T., Miyake R., Chmura A.J., FujitaN., Ishihama A., Meares C.F. (1998). Mapping the o70 subunit contact sites on Escherichia coli RNA polymerase with a cf°- conjugated chemical protease, Proc.Natl.Acad. Sci. USA, 95, 7670−7675.
  112. O.N., Tsyganov M.A. (1995). Structure of open promoter complexes with Escherichia coli RNA polymerase as revealed by the DNAsel footprinting technique: compilation analysis, Nuclleic Acids Res., 23, 4533−4541.
  113. Ozoline O.N., Deev A. A and Archipova M.V. (1997) Non-canonical sequence elements in the promoter structure. Cluster analysis of pomoters recognized by Escherichia coli RNA polymerase, Nucl. Acids Res, 25, 4703−4709.
  114. O., Deev A., Arkhipova M., Chasov V., Travers A. (1999a) Proximal transcribed regions of bacterial promoters have non-random distribution of A/T-tracts. Nucl. Acids Res., 27, 4768−4774
  115. O.N., Deev A.A., Trifonov E.N. (1999b) DNA bendability-a novel Feature in E.coli Promoter Recognition, J.Biol. Struc and Dyn., 16, 825−831.
  116. O.N., Fujita N., Ishihama A. (2000) Transcription activation mediated by the Carboxil-terminal domain of the RNA polymerase a-subunit, J. Biol. Chem., 215, 1119−1127.
  117. O.N., Fujita N., Ishihama A. (2001) Mode of DNA-protein interaction between the C-terminal domain of Escherichia coli RNA-polymerase a-subunit and T7D promoter UP element, Nncl., Acids Res., 29, 4909−4919.
  118. O.N., Fujita N., Ishihama A. (2002) Genome-wide expression profiling of Escherichia coli W3110: microarray and statistic analysis of heat shock regulons. In Bioinformatics of genome regulation and structure, Novosibirsk, 2, 189−191.
  119. B.S., Hatfield G.W. (1996). Transcription activation by protein-induced DNA bending: evidence for a DNA structural transition model, Proc. Nad., Acad.Sci.USA, 93, 11 731 177.
  120. N., Conway T. (1998) What’s for dinner?: Entner-Doudoroff metabolism in Escherichia coli., J. Bacterioh, 180, 3495−3502.
  121. Peretz-Martin J., Rojo F., deLorenzo V. (1994) Promoter responsive to DNA-bending: a common theme in procariotic gene expression, Microbiol Rev., 58, 268−290.
  122. Perocchi F., Xu Z., Clauder-Miinster S., Steinmetz L.M. (2007) Antisense artifacts in transcriptome microaaray experiments are resolved by actinomycin D. Nucl. Acids Res., 35, el28.
  123. S., Severinov K. (2005) Extended -10 motif is critical for activity of cspA promoter but does not contribute to low-temperature transcription, J. Bacteriol., 187, 6584−6589.
  124. A., Severinova E., Darst S. A. (1995) Three-dimensional structure of E. coli core RNA polymerase: promoter binding and elongation conformations of the enzyme. Cell, 83(3), 365−373.
  125. Rasmussen A.A., Johansen J., Nielsen J. S., Overgaard M., Kallipolitis В., Valentin-Hansen P. (2009) A conserved small RNA promotes silencing of the outer membrane protein YbfM, Mol. Microbiol., 72, 566−577.
  126. F., Gottesman S. (2003) Temperature sensing by the dsrA promoter. J. Bacteriol., 185, 6609−6614.
  127. Reppas N., Wade J., Church G. and Struhl K. (2006). The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. Mol. Cell. 24, 747 757.
  128. Ritzenthaler P., Mata-Gilsinger M. (1982) Use of in vitro gene fusions to study the uxuR regulatory gene in Escherichia coli K-12: direction of transcription and regulation of its expression. J. Bacteriol., 150, 1040−1047.
  129. E., Eddy S. R. (2001) Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics, 2, 8.
  130. C., Guthold M., Bustamante C. (1999) Wrapping of DNA around RNA polymerase open complex, The EMBO J., 19, 4464−4475.
  131. D. A., Mironov A.A., Rakhmaninova A.B., Gelfand M.S. (2000) Transcriptional regulation of transport and utilization systems of hexuronides, hexuronates and hexonates in gamma purple bacteria, Mol.Microbiol., 38, 673−683.
  132. S., Kadesh T.R., Chamberlin M.J. (1982) Binding of E.coli RNA polymerase holoenzyme to bacteriophage T7 DNA, J.Mol.Biol., 155,31−51.
  133. Ross W., Gosink K.K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R.L. (1993). A third recognition element in bacterial pomoters. DNA binding by the a-subunit of RNA polymerase. Science, 262,1407−1414.
  134. W., Aiyar S., Salomon J., Gourse R. (1998) Escherichia coli Promoters with UP Elements of Different Strengths: Modular Structure of Bacterial Promoters, J. Bacteriol., 180, 5375−5383.
  135. Ross W., Ernst A., Gourse R.L.(2001) Fine structure of E. coli RNA polymerase-promoter interaction: alhpa subunit binding to the UP element minor groove, Genes Dev., 15, 491−506.
  136. P., Sneve R., Kristiansen K.I., Snove O., Grtinfeld Т., Rognes Т., Seeberg E. (2005) Predicting non-coding RNA genes in Escherichia coli with boosted genomic programming, Nucl.Acids Res., 33,3263−3270
  137. A., Mitchell J. E., Minchin S. D., Busby S. J. (2003) Substitutions in the Escherichia coli RNA polymerase sigma70 factor that affect recognition of extended -10 elements at promoters. FEBS Lett, 544(1−3), 199−205.
  138. Schaefer K.L., McClure W. (1997) Antisense RNA control of gene expression in bacteriophage p22.I. Structures of sar RNA and its target, ant mRNA. RNA, 3, 141−156.
  139. Schnetz K., Rak B. (1988) Regulation of the bgl operon Escherichia coli by transcription antitermination. EMBOJ., 7, 3271−3277.
  140. X., Grishin N.V. (2000) Common fold in helix-haiprin-helix proteins, Nucl., Acids Res., 28,2643−2650.
  141. Selinger D. W., Cheung K., Mei R., Johansson E., Richmond C., Blattner F., Lockhart D., Church D. (2000) RNA expression analysis using a 30-base pair resolution Escherichia coli genome array. Nat. Biotech. 18, 1262−1268.
  142. D.W., Saxena R.M., Cheung K.J., Church G.M., Rosenow C. (2003) Global RNA half-life analysis in Escherichia coli reveals positional partners of transcript degradation. Genome Res. 13, 216−223.
  143. Sen R., Nagai H., Hernandez V.J., Sliimamoto N. (1998) Reduction in abortive transcription from the lambdaPR promoter by mutations in region 3 of the sigma70 subunit of Escherichia coli RNA polymerase,/Biol Chem., 273,9872−9877.
  144. Sen R, Nagari H., Shimomoto N. (2000). Polymerase Arrest at the APr Promoter during Transcripion Initiation, J. Biol. Chemistry, 275, 10 899−10 904.
  145. Sen R, Nagari H., Shimomoto N. (2001). Conformational switching of Escherichia coli RNA polymerase-promoter binary complex is facilitated by elongation factor GreA and GreB, Genes Cell, 6, 389−401.
  146. K.V. (2007) Interaction of bacterial DNA-dependent RNA polymerase with promoters. Mol.Biol. (Moscow) 41, 376−386.
  147. K.S., Masulis I.S., Tutukina M.N., Deev A.A., Ozoline O.N. (2009) Gains and unexpected lessons from genome-scale promoter mapping. Nucleic Acids Res., 37, 4919−4931.
  148. Spiegelman S., Burny A., Das M.R., Keydar J., Schlom J., Travnicek M., Watson K. (1970) DNA-directed DNA polymerase activity in oncogenic RNA viruses. Nature, 227, 1029−1031.
  149. G., Altuvia S., Wassarman К. M. (2005) An abundance of RNA regulators.// Annu.Rev.Biochem., 74, 199−217.
  150. Suh W.C., Ross W., Record M. Т., (1993) Two open complexes and a requirement for Mg2+ to open the lambda PR transcription start site. Science, 259, 358 361.
  151. D., Noel R.J., Raznikoff W.S. (1997) The5 of the Escherichia coli lac promoter: CAP-dependent and CAP-independent transcription, J.Bacteriol., 179,423−429.
  152. Szoke P.A., Allen T.A., deHasseth P.L. (1987). Promoter recognition by Escherichia coli RNA polymerase. Effect of base substitution in the —10 and —35 regions, Biochemistry, 26,6188−6194.
  153. Susa M., Sen R., Shimomoto N. (2002). Generality of the Branched Pathway in Transcription Initiation by Escherichia coli RNA polymerase, J. Biol. Chemistry, 18, 1 540 715 412.
  154. M., Kubori Т., Shimamoto N. (2006) A pathway branching in transcription initiation in Escherichia coli. Mol Microbiol, 59(6), 1807−1817.
  155. Tagami H. and Aiba H. (1998). A common role of CRP in transcription activation: CRP acts transiently to stimulate events leading to open complex formation at a diverse set of pomoters, The EMBO J., 17, 1759−1767.
  156. Tagami H. and Aiba H. (1999). An inactive open complex mediated by an UP element at Escherichia coli promoters, Proc. Natl. Acad. Sci. USA, 96, 7202−7207.
  157. Tan K., Moreno-Hagelsieb H., Collado-Vides J., Stormo G. (2001) A comparative genomics approach to prediction of new members of regulons. Genome Res., 11, 566−584.
  158. Telart F., Bouche J-P. (1992) Regulation of the expression of the cell-cycle gene ftsZ by DicF antisense RNA. Division does not require a fixed number of FtsZ molecules. Mol. Microbiol., 6, 615−620.
  159. D., Grass G. (2009) The Dps protein of Escherichia coli is involved in copper homeostasis. Microbiol.Res.
  160. K.M., Rhodius V.A., Gottesman S. (2007) aE regulates and is regulated by a small RNA in Escherichia coli., J.Bacteriol., 189, 4243−4256.
  161. F., Charpentier В., Branlant C. (2004) The strong efficiency of Escherichia coli gapA PI promoter depends on a complex combination of functional determinants. Biochem J., 383,371−382.
  162. В., Saxena R.M., Stolyar S., Haynor D.R., Kolker E., Rosenow C. (2002) Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays Nucleic Acids Res., 30, 3732 3738.
  163. Tjaden В., Goodwin S. S., Opdyke J. A., Guillier M., Fu D.X., Gottesman S., Storz G. (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Research, 34(9), 2791−2802.
  164. A. (1987) Structure and function of E.coli promoter DNA. CRP. Biochem., 22,181 219.
  165. A. (1991) DNA bending and kinking-sequence dependence of the beta subunit of Escherichia coli RNA polymerase, Current opinion in structural biology, 1,114−122.
  166. A., Schneider R., Muskhelishvili G. (2001) DNA supercoiling and transcription in Escherichia coli: The FIS conncction, Bioche/n., 83,213−817.
  167. Tutukina M.N., Shavkunov K.S., Masulis I.S., Ozoline.O.N. (2007). Intragenic promoterlike sites in the genome of Escherichia coli. Discovery and functional implication. J. Bioinf. Compul. Biol. 5, 549−560.
  168. Udekwu K.I., Darfeuille F., Vogel J., Reimegaard J., Holmkvist E., Wagner E.G.H. (2005) Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA, Genes Dev., 19, 2355−2366.
  169. J.H., Vogel J. (2008) Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol 6(3): e64. doi:10.1371/journal.
  170. J.H., Vogel J. (2007) Translational control and target recognition by Escherichia coli small RNAs in vivo, Nucl.Acids Res., 35,1018−1037.
  171. M.L., Stauffer L.T., Stauffer G.V. (2000) The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in E.coli, Mol. Microbiol, 37, 856−868.
  172. Vassylyev D., Sekine Shun-ichi, Laptenko O., Lee J., Vassylyeva M.N., Borukhov S., Yokoyama S. (2002). Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6A resolution, Nature, 417, 712−719.
  173. Vogel J., Bartels V., Tang Т.Н., Churakov G., Slagter-Jager J., Hiittenhofer A., Wagner E.G.H. (2003) RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria., Nucl. Acids Res., 31, 6435−6443.
  174. M.H., Gronenborn A.M., Clore G.M. (1996) Intercalation, DNA kinking, and the control of transcription, Science, 271, 778−783.
  175. C., Dombroski A.J. (1997) Region 1 of sigma 70 is requered for efficient isomerization and initiation of transcription by E.coli RNA polymerase, J.Mol.Biol., 267, 60−74.
  176. Т., Yamazaki Т., Kyogoku Y. (2000) The structure and the characteristic DNA binding property of the C-terminal domain of the RNA polymerase a-subunit from Thermus thermophilus, J. Bacteriol., 171, 4852−4861.
  177. K.M., Repoila F., Resenow C., Storz G., Gottesman S. (2001) Identification of novel small RNAs using comparative genomics and microarrays, Genes Dev., 15, 1637.
  178. K.M., Storz G. (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell, 101(6), 613−23.
  179. Young M.A., Beveridge D. L (1998) Molecular Dynamics simulation of an oligonucleotide duplex with adenine tracts phased by a full helix turn, J.Mol. Biol., 281, 675−687.
  180. Т., Nagai H., Mori H. (1993) Regulation of the heat-shock response in bacteria. Annu.Rev.Microbiol., 47, 321−350.
  181. E., Denissova L., Meier Т., Gotte M., Heumann H. (1997) Influence of Mg2+ and temperature on formation of the transcription bubble, J.Biol.Chem., 272, 2259−2267.
  182. Zhang G., Campbell E.A. Minakin L» Richter C., Severinov K., Darst S.A. (1999). Crystal structure of Thermus aquaticus core RNA polymerase at 3.3A resolution, Cell, 98, 811−824.
  183. A., Wassarman K.M., Ortega J., Steven A.C., Storz G. (2002) The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell, 9(1), 11−22.
  184. Zhang Y., Zhang Z., Ling L., Shi В., Chen R. (2002) Conservation analysis of small RNA genes in Escherichia coli, Bioinformatics, 20, 599−603.
  185. A., Wassarman К. M., Rosenow C., Tjaden B.C., Storz G., Gottesman S. (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol, 50(4), 1111−1124.
  186. Zhang Y., Xi Z., Hegde R.S., Shakked Z., Crothers D.M. (2004) Prediction indirect readout effects in protein-DNA interaction, Proc.Natl. Acad.Sci.USA, 101, 8337−8341.
  187. G., Ceci P., Ilari A. (2002) Iron and hydrogen peroxide detoxification properties of DNA binding protein from starved cells.// J.Biol.Chem., 277, 27 689−27 696.
  188. V.B. (1983). Specific alignment of nucleosomes on DNA correlates with periodic distribution of purine-pyrimidine and pyrimidine-purine dimers, FEBS Lett., 158:293−297.1. БЛАГОДАРНОСТИ.
  189. Я очень признательна Сергею Вячеславовичу Чернышеву и Валерию Александровичу Яшину за помощь в проведении экспериментов по оценке активности промоторов в репортерной системе.
Заполнить форму текущей работой