Помощь в написании студенческих работ
Антистрессовый сервис

Участие анионных фосфолипидов цитоплазматической мембраны в секреции щелочной фосфатазы Escherichia coli

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Актуальность проблемы. Многие белки, синтезируемые в цитоплазме бактерий, для осуществления своих функций должны транслоцироваться через цитоплазматическую мембрану и занять определенное место в клеточной оболочке бактериальной клетки. В оболочке локализуются белки, участвующие в гидролизе, транспорте и катаболизме питательных веществ, в генерации энергии и анаболических процессах. Секреция или… Читать ещё >

Участие анионных фосфолипидов цитоплазматической мембраны в секреции щелочной фосфатазы Escherichia coli (реферат, курсовая, диплом, контрольная)

Содержание

  • ОБЗОР ЛИТЕРАТУРЫ
  • ГЛАВА 1. ОСНОВНЫЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ СЕКРЕТОРНОГО ПРОЦЕССА У БАКТЕРИЙ
    • 1. 1. Секреторный аппарат Е. col
      • 1. 1. 1. Цитоплазматические факторы секреции
      • 1. 1. 2. Транслокационная АТФ-аза белок SecA
      • 1. 1. 3. Мембранная часть транслокационного аппарата
      • 1. 1. 4. Сигнальные пептидазы
      • 1. 1. 5. Каталитический цикл транслоказы белков-предшественников
    • 1. 2. Особенности первичной структуры секретируемых белков
      • 1. 2. 1. Сигнальные последовательности
      • 1. 2. 2. Особенности структуры зрелой части экспортируемых белков
  • ГЛАВА 2. УЧАСТИЕ ФОСФОЛИПИДОВ В СЕКРЕЦИИ БЕЖА
    • 2. 1. Взаимосвязь секреции белка с составом и метаболизмом фосфолипидов
    • 2. 2. Участие анионных фосфолипидов в формировании сайта связывания и транслокации белка
    • 2. 3. Взаимодействие фосфолипидов с сигнальными последовательностями
    • 2. 4. Абсолютная необходимость анионных фосфолипидов для эффективной транслокации белка in vivo и in vitro
    • 2. 5. Участие анионных фосфолипидов в функционировании белковых компонентов секреторного аппарата
    • 2. 6. Необходимость непосредственного взаимодействия сигнальных последовательностей с анионными фосфолипидами
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
  • ГЛАВА 3. МАТЕРИАЛЫ И МЕТОДЫ
  • ЗЛ. Бактериальные штаммы, бактериофаги и плазмиды
    • 3. 2. Среды и условия культивирования
    • 3. 3. Ферменты и реактивы
    • 3. 4. Методы работы с ДНК
    • 3. 5. Олигонуклеотиднаправленный мутагенез
    • 3. 6. Субклеточное фракционирование
    • 3. 7. Определение скорости превращения предшественника щелочной фосфатазы в зрелую форму in vivo
    • 3. 8. Анализ состава и обмена фосфолипидов
    • 3. 9. Анализ интенсивности переноса глицерофосфата из фосфатидилглицерина на арбутин
    • 3. 10. Выделение предшественников природной и мутантных форм щелочной фосфатазы
    • 3. 11. Приготовление липосом
    • 3. 12. Взаимодействие предшественников природной и мутантных форм щелочной фосфатазы с липосомами.*
    • 3. 13. Аналитические методы
    • 3. 14. Стереохимический анализ
  • ГЛАВА 4. ПОЛУЧЕНИЕ МУТАНТНЫХ ФОРМ ЩЕЛОЧНОЙ ФОСФАТАЗЫ И ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ ИХ СЕКРЕЦИИ
    • 4. 1. Введение направленных мутаций в ген щелочной фосфатазы
    • 4. 2. Изучение транслокации мутантных форм щелочной фосфатазы через цитоплазматическую мембрану
      • 4. 2. 1. Замены заряженных аминокислот в N-концевом домене зрелой полипептидной цепи PhoA не влияют на эффективность ее транслокации через мембрану
      • 4. 2. 2. Замены положительно заряженной аминокислоты в N-концевом домене сигнального пептида prePhoA снижают эффективность секреции
      • 4. 2. 3. Замены аминокислот вблизи места отщепления сигнального пептида приводят к полному ингибированию созревания prePhoA и его заякориванию в цитоплазматической мембране
  • ГЛАВА 5. ИЗУЧЕНИЕ БЕЛОК-ЛИПИДНЫХ ВЗАИМОДЕЙСТВИЙ В ПРОЦЕССЕ ТРАНСЛОКАЦИИ prePhoA ЧЕРЕЗ БАКТЕРИАЛЬНЫЕ МЕМБРАНЫ IN VIVO И IN VITRO
    • 5. 1. Секреция мутантных prePhoA с отщепляемым сигнальным пептидом не влияет на состав и обмен фосфолипидов
    • 5. 2. «Заякоривание» мутантных prePhoA в цитоплазматической мембране сопровождается накоплением анионных фосфолипидов и усилением их обмена
    • 5. 3. Положительно заряженный аминокислотный остаток в N-концевом домене сигнального пептида prePhoA участвует во взаимодействии с анионными фосфолипидами in vivo
    • 5. 4. Положительный заряд N-концевого домена сигнального пептида необходим для эффективного взаимодействия prePhoA с модельными фосфолипидными мембранами in vitro
    • 5. 5. Наличие положительно заряженного аминокислотного остатка в N-концевом домене сигнального пептида повышает стабильность предполагаемого комплекса «СП — анионный фосфолипид»
  • ЗАКЛЮЧИТЕЛЬНОЕ ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
  • ВЫВОДЫ

Актуальность проблемы. Многие белки, синтезируемые в цитоплазме бактерий, для осуществления своих функций должны транслоцироваться через цитоплазматическую мембрану и занять определенное место в клеточной оболочке бактериальной клетки. В оболочке локализуются белки, участвующие в гидролизе, транспорте и катаболизме питательных веществ, в генерации энергии и анаболических процессах. Секреция или экспорт белков лежит в основе биогенеза надмолекулярных клеточных структур и осуществлении взаимодействия клетки с окружающей средой. Таким образом, без выяснения молекулярного механизма секреции белков невозможно решить многие проблемы клеточной биологии и биотехнологии.

Состояние проблемы. Интенсивные исследования секреции белков у бактерий в течение последних 10−15 лет позволили охарактеризовать основные этапы этого процесса. Белки, предназначенные для экспорта из цитоплазмы, синтезируются в виде предшественников, содержащих экспортные сигналы или сигнальные последовательности, отщепляемые после завершения транслокации. Именно в сигнальных последовательностях содержится информация о взаимодействии с мембраной и компонентами секреторного аппарата, осуществляющего перенос гидрофильной молекулы белка через гидрофобную мембрану. Секреторный аппарат Escherichia coli состоит из семи Sec белков (см. Wickner, Leonard, 1996). Этапы, осуществляемые секреторным аппаратом, включают в себя узнавание белков, предназначенных для экспорта, направление их к мембране и последующую транслокацию через нее.

В то же время, установить точный молекулярный механизм секреции белков нельзя без выяснения роли мембранных фосфолипидов, определяющих барьерные свойства биологических мембран. С другой стороны, структурная, метаболическая и механическая динамичность фосфолипидов может способствовать транслокации белка через мембрану.

На основе данных о корреляции секреции белка с изменениями состава и обмена фосфолипидов (Евдокимова, Несмеянова, 1977; Землянухина и др., 1981), в нашей лаборатории была впервые предложена модель вовлечения фосфолипидов в этот процесс (Nesmeyanova, 1982). Модель предусматривала прямое взаимодействие белков-предшественников с анионными фосфолипидами с участием положительно заряженных аминокислот N-конца сигнального пептида и зрелой полипептидной цепи. В настоящее время показано, что анионные фосфолипиды, составляющие всего 20% фосфолипидов мембран, абсолютно необходимы для встраивания сигнальных пептидов в модельные липидные мембраны (Demel et al., 1990), эффективной транслокации белка в мембранные везикулы in vitro (Kusters et al., 1991; Kusters et al., 1994) и функционирования отдельных компонентов секреторной машины (Lill et al., 1990). Однако, до сих пор не было получено доказательств непосредственного взаимодействия сехретируемого белка с анионными фосфолипидами in vivo.

Целью данной работы было изучение роли положительно заряженных аминокислотных остатков щелочной фосфатазы E. coli в транслокации этого белка через мембрану и во взаимодействии с анионными фосфолипидами. Для этого необходимо было решить следующие задачи:

1) получить мутантные формы щелочной фосфатазы с заменами положительно заряженных аминокислот, предположительно участвующих во взаимодействии с анионными фосфолипидами;

2) изучить влияние этих замен на эффективность транслокации белка in vivo;

3) изучить особенности взаимодействия мутантных белков с фосфолипидами in vivo и in vitro;

4) провести стереохимический анализ взаимодействия сигнального пептида природной щелочной фосфатазы и ее мутантных форм с анионными фосфолипидами.

Научная новизна работы: Впервые показано прямое взаимодействие секретируемого белка с анионными фосфолипидами в живой бактериальной клетке в процессе транслокации белка через цитоплазматическую мембрану. Более того, обнаружено, что изменения структуры белка или фосфолипидов, нарушающие это взаимодействие, приводят как к снижению эффективности транслокации белка через мембрану in vivo, так и к снижению эффективности встраивания сигнальной последовательности в модельные фосфолипидные мембраны in vitro. Совокупность полученных в работе данных позволяет с большой долей уверенности утверждать, что роль положительно заряженного аминокислотного остатка в N-концевом домене сигнального пептида заключается в обеспечении стабильности комплекса «сигнальный пептид — анионный фосфолипид», необходимой для эффективной инициации секреции белка.

Научно-практическое значение работы: Научно-практическое значение работы состоит в том, что в ней получены результаты, углубляющие понимание механизма секреции белков у бактерий. Выявленные в работе закономерности могут использоваться в качестве теоретических основ для разработки путей оптимизации секреции гомологичных и гетерологичных белков клетками микроорганизмов, широко применяемой для получения полипептидов, необходимых в медицине и народном хозяйстве.

Научно-методическое значение работы заключается в том, что в ней применен новый способ получения мутантных форм щелочной фосфатазы E.coli. Для этого разработан простой метод введения мутаций в ген phoA, позволяющий избежать этап гибридизации с меченным мутагенным олигонуклеотидом и вести прямой отбор мутантных клонов по окраске на чашке с субстратом щелочной фосфатазы. Кроме того, предложен новый удобный способ сравнительной оценки содержания фосфатидилглицерина в цитоплазматической мембране E.coli.

ОБЗОР ЛИТЕРАТУРЫ ГЛАВА 1. ОСНОВНЫЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ СЕКРЕТОРНОГО ПРОЦЕССА У БАКТЕРИЙ.

Одним из центральных процессов жизнедеятельности бактериальной клетки является секреция белков в различные клеточные компартменты. В грам-отрицательных бактериях белки должны экспортироваться в три основных компартмента клеточной оболочки: цитоплазматическую мембрану, периплазматическое пространство и внешнюю мембрану. Начальные стадии экспорта всех белков, а именно — встраивание в и перенос через цитоплазматическую мембрану, происходят по общему механизму. Этот процесс оказался консервативным среди бактериальных видов, причем грам-положительные бактерии и архебактерии применяют одинаковый клеточный аппарат для секреции белков. Более того, основным компонентам экспортной машины, локализованным в цитоплазматической мембране бактерий, соответствуют гомологи в эукариотических клетках. От дрожжей Saccharomyces cerevisae до микросом поджелудочной железы собаки, транслокационный аппарат в мембране эндоплазматического ретикулума включает гомологи, по крайней мере, двух компонентов секреторной машины прокариот (Hartmann et al, 1994). Секреторный аппарат Escherichia coli включает цитоплазматические шаперонины: белки SecB, GroEL/ES, DnaK и другие, мембранный комплекс SecY/E/G/D/F/YajC, транслокационную АТФ-азу белок SecA и анионные фосфолипиды (Wickner, Leonard, 1996).

Экспорт белков включает в себя следующие основные этапы. Белки, предназначенные для клеточной оболочки, синтезируются с экспортными сигналами или сигнальными последовательностями (СП). В случае периплазматических белков или белков внешней мембраны, эти сигнальные последовательности расположены на N-конце и отщепляются от белка во время транслокации через цитоплазматическую мембрану. В случае белков цитоплазматической мембраны, эти сигналы обычно не отщепляются. У этого класса белков сигнальные последовательности могут располагаться на N-конце или внутри белка и могут служить одновременно и экспортными сигналами и мембранными доменами в «собранном» белке. Сигнальные последовательности узнаются внутри клетки экспортным аппаратом. Это узнавание происходит еще до завершения трансляции белка, хотя транслокация через мембрану не полностью сопряжена с трансляцией. По-видимому, экспорт белка начинается только после синтеза значительной части полипептидной цепи (Randall, 1983). Более того, в некоторых случаях транслокацию белка можно наблюдать после завершения его трансляции и освобождения из рибосомы (Lee, Beckwith, 1986). Этот посттрансляционный экспорт наблюдается при каких-либо нарушениях экспорта, например, при снижении эффективности сигнальной последовательности из-за мутации. В противоположность этому, секреция белка в эукариотических клетках тесно сопряжена с трансляцией.

выводы.

1. Показано, что замены аминокислот в N-концевом домене зрелой полипептидной цепи, изменяющие заряд этого домена, не влияют на эффективность секреции PhoA и обмен фосфолипидов в клетках, секретирующих мутантные формы PhoA.

2. Замены положительно заряженного лизина в N-конце сигнального пептида на незаряженный аланин или отрицательно заряженную глутаминовую кислоту снижают скорость транслокации prePhoA in vivo и ухудшают его взаимодействие с модельными липидными мембранами in vitro.

3. Эффективность взаимодействия prePhoA с модельными мембранами прямо пропорционально зависит от содержания анионных фосфолипидов в мембране.

4. Обнаружено прямое неопосредованное взаимодействие положительно заряженного Lys (-20) prePhoA с анионными фосфолипидами in vivo. Накопление анионных фосфолипидов в клетках Е. coli, вызванное «заякориванием» непроцессируемого мутантного prePhoA в цитоплазматической мембране, наблюдается только при наличии положительного заряда в N-концевом домене белка-предшественника.

5. В результате стереохимического анализа взаимодействия сигнального пептида prePhoA с молекулой анионного фосфолипида установлено, что остаток положительно заряженной аминокислоты в положении -20 prePhoA может участвовать в стабилизации комплекса «N-конец сигнального пептидаанионный фосфолипид», предположительно формируемого при инициации секреции.

Полученные результаты свидетельствуют в пользу того, что электростатическое взаимодействие сегрегируемого белка-предшественника с анионными фосфолипидами является одним из условий эффективной транслокации белка через цитоплазматическую мембрану E.coli.

Показать весь текст

Список литературы

  1. М.В., Несмеянова М. А. Энергизация мембраны в процессе секреции белков у грамотрицательных бактерий. Докл. Акад. наук СССР, «Биохимия», 1986, т.288, с.1247−1250.
  2. М.В., Сузина Н. Е., Несмеянова М. А. Особенности обмена фосфолипидов и ультраструктурной организации цитоплазматической мембраны E.coli в процессе секреции щелочной фосфатазы. Биол. мембраны, 1985а, т.2, с.367−375.
  3. O.A., Несмеянова М. А. Фосфолипидный состав клеток и мембран E.coli в условиях репрессии и дерепрессии биосинтеза щелочной фосфатазы. Биохимия. 1977, т.42, с. 1791−1799.
  4. E.H., Зайцева Е. М., Бахланова И. В., Горелов В. И., Кузьмин Н. П., Крюков В. М., Ланцов В. А. Клонирование и характеристика гена гесА из Pseudomonas aeruginosa. Генетика, 1986, N11, с.2721−2727.
  5. O.A., Колычева В. В., Несмеянова М. А. Влияние липотропных агентов спиртов на биосинтез и репрессию секретируемой щелочной фосфатазы у E.coli. Биохимия, 1981, т.46, е.92−99.
  6. З.Н., Карамышев A.JL, Ксензенко В. Н., Несмеянова М. А. Анализ влияния замен Lys (-20) в сигнальном пептиде щелочной фосфатазы на секрецию этого фермента. Биохимия, 1996, т.61, с.745−754.
  7. П.Миллер Дж. Эксперименты в молекулярной генетике. М.: Мир, 1976, 436 с.
  8. М.А., Богданов М. В., Колот М. Н., Землянухина O.A., Кулаев И. С. Взаимодействие щелочной фосфатазы с кислыми фосфолипидами клеток E.coli и икусственных мембран. Биохимия, 1982, т.47, с.671−677.
  9. М.А., Евдокимова O.A. Фосфолипиды E.coli и активность щелочной фосфатазы. Биохимия, 1979, т.44, с. 1512−1520.
  10. М.А., Крупянко В. И., Калинин А. Е., Кадырова Л. Ю. Выделение и некоторые свойства мутантных щелочных фосфатаз E.coli. Биохимия, 1996, т.61, с.89−99.
  11. Akita M., Sasaki S., Matsuyama S., Mizushima S. SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in E. coli. j. Biol. Chem., 1990, v.265, p.8164−8169.
  12. Akiyama Y., Ito K. Topology analysis of the SecY protein, an integral membrane protein involved in protein export in E.coli. EMBO J., 1987, v.6, p.3465−3470.
  13. Ames G.F., Spudish E., Nicaido H. Lipids membrane of Salmonella typhimurium and Escherichia colt structure and metabolism. J. Bacterid., 1968, v.95, p.833−843.
  14. Andersson H., von Heijne G. A 30-residue-long «export initiation domain» adjacent to the signal sequence is critical for protein translocation across the inner membrane oiE.coli. Proc. Natl. Acad. Sci. USA, 1991, v.88, p.9751−9754.
  15. Andersson H., von Heijne G. Membrane protein topology: effects of deltap. H+ on the translocation of charged residues explain the 'positive inside' rule. EMBO J., 1994, v.13, p.2267−2272.
  16. Arkowitz R.A., Wickner W. SecD and SecF are required for the proton electrochemical gradient stimulation of preprotein translocation. EMBO J., 1994, v.13, p.954−963.
  17. Bachmann B.J. Derivations and genotypes of some mutant derivatives of E. coli K12. In: Escherichia coli and Salmonella typhimurium: Cellular and molecular biology (F.C. Neidhardt, ed.), American Society for Microbiology, Washington, 1987, p.1190−1219.
  18. Barkocy-Gallagher G.A., Bassford P.J., Jr. Synthesis of precursor maltose-binding protein with proline in the +1 position of the cleavage site interferes with the activity of E. coli signal peptidase I in vivo. J. Biol. Chem., 1992, v.267, p.1231−1238.
  19. Beacham I.R., Taylor N.S., Youell M. Enzyme secretion in E. coli: synthesis of alkaline phosphatase and acid hexose phosphatase in the absence of phospholipid synthesis. J. Bacterid., 1976, v. 128, p.522−527.
  20. Bieker K.L., Phillips G.J., Silhavy T.J. The sec and prl genes of E.coli. J. Bioenerg. Biomembr., 1990, v.22, p.291−310.
  21. Bilgin N., Lee J.N., Zhu H.-Y, Dalbey R., von Heijne G. Mapping of catalitically important domains in E. coli leader peptidase. EMBO J., 1990, v.9, p.2712−2722.
  22. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell. Biol., 1975, v.67, p.835−851.
  23. Blondel A., Bedouelle H. Export and purification of a cytoplasmic dimeric protein of fusion to the maltose-binding protein of E.coli. Eur. J. Biochem., 1994, v.193, p.325−330.
  24. Bosch D., Boer P., Bitter W., Tommasen J. The role of the positively charged N-terminus of the signal sequence of E. coli outer membrane protein PhoE in export. -Biochim. Biophys. Acta, 1989, v.979, p.69−76.
  25. Boyd D., Beckwith J. The role of charged amino acids in the localization of secreted and membrane proteins. Cell, 1990, v.62, p. 1031−1033.
  26. Breukink E., Demel R.A., De Korte-Kool G., de Kruijff B. SecA insertion into phospholipids is stimulated by negatively charged lipids and inhibited by ATP: a monolayer study. Biochemistry, 1992, v.31, p. 1119−1124.
  27. Briggs M.S., Cornell R.G., Dluhy R.A., Gierasch L.M. Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science, 1986, v.233, p.206−208.
  28. Brundage L., Fimmel C.J., Mizushima S., Wickner W. SecY, SecE, and Band 1 form the membrane-embedded domain of E. coli preprotein translocase. J. Biol. Chem., 1992, v.267, p.4166−4170.
  29. Brunger, A.T. X-PLOR, Version 3.1,1992, Yale University Press, New Haven.
  30. Brunner J. New photolabeling and crosslinking methods. In: Photochemical labeling, 1993, p.483−514.
  31. Cabelli R.J., Chen L., Tai P.C., Oliver D.B. SecA protein is required for secretory protein translocation into E. coli membrane vesicles. Cell, 1988, v.55, p.683−692.
  32. Cabelli R.J., Dolan K.M., Qian L., Oliver D.B. Characterization of membrane-associated and soluble states of SecA protein from wild-type and SecA51(TS) mutant strains of E.coli. J. Biol. Chem., 1991, v.266, p.24 420−24 427.
  33. Cashman J.S., Webster R.E. Effect of cessation of phospholipid synthesis on the synthesis of a specific membrane-associated bacteriophage protein in E.coli. J. Bacterid, 1977, v. 129, p. 1245−1249.
  34. Chamberlain B.K., Webster R.E. Lipid-protein interactions in E.coli. Membrane-associated fl bacteriophage coat protein and phospholipid metabolism. J. Biol. Chem., 1976, v.251, p.7739−7745.
  35. Chang C.N., Inouye H., Model P., Beckwith J. Processing of alkaline phosphatase precursor to the mature enzyme by on E. coli inner membrane preparation. J. Bacterid., 1980, v. 142, p.726−728.
  36. Collier D.N., Bassford P.J., Jr. Mutations that improve export of maltose-binding protein in SecB" cells of E.coli. J. Bacteriol., 1989, v.171, p.4640−4647.
  37. Cornell D.G., Dluhy R.A., Briggs M.S., McKnight C.J., Gierasch L.M. Conformations and orientations of a signal peptide interacting with phospholipid monolayers. Biochemistry, 1989, v.28, p.2789−2797.
  38. Cunningham K., Lill R., Crooke E., Rice M., Moore K., Wickner W., Oliver D. SecA protein, a peripheral membrane protein of the E. coli plasma membrane, is essential for the functional binding and translocation of proOmpA. EMBO J., 1989, v.8, p.955−959.
  39. Cunningham K., Wickner W. Specific recognition of the leader region of precursor proteins is required for the activation of the translocation ATPase of E.coli. Proc. Natl. Acad. Sci. USA, 1989, v.86, p.8630−8634.
  40. Dalbey R.E. In vivo protein translocation into or across the bacterial plasma membrane. In: Methods Cell Biol., 1991, v.34, p.39−60.
  41. Dalbey R.E., von Heijne G. Signal peptidases in prokaryotes and eukaiyotes a new protease family. — Trends Biochem. Sci., 1992, v. 17, p.474−478.
  42. Demel R.A., Goormaghtigh E., de Kruijff B. Lipid and peptide specificities in signal peptide lipid interactions in model membranes. — Biochim. Biophys. Acta, 1990, v.1027, p.155−162.
  43. Douville K., Price A., Eichler J., Economou A., Wickner W. SecYEG and SecA are the stoichiometric components of preprotein translocase. J. Biol. Chem., 1995, v.270, p.20 106−20 111.
  44. Driessen A.J.M. Precursor protein translocation by the E. coli translocase is directed by the protonmotive force. EMBO J., 1992, v. l 1, p.847−853.
  45. Driessen A.J.M. SecA, the peripheral subunit of the E. coli precursor protein translocase, is functional as a dimer. Biochemistry, 1993, v.32, p. 13 190−13 197.
  46. Driessen A.J.M. How proteins cross the bacterial cytoplasmic membrane. J. Membrane Biol., 1994, v.142, p.145−159.
  47. Duong F., Wickner W. Distinct catalytic roles of the Sec YE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J., 1997a, v. 16, p.2756−2768.
  48. Duong F., Wickner W. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J., 1997b, v.16, p.4871−4879.
  49. Economou A., Pogliano J.A., Beckwith J., Oliver D.B., Wickner W. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell, 1995, v.83, p. 1171−1181.
  50. Eichler J., Wickner W. Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation. Proc. Natl. Acad. Sci. USA, 1997, v.94, p.5574−5581.
  51. Emr S.D., Hanley-Way S., Silhavy T.J. Suppressor mutations that restore export of a protein with a defective signal sequence. Cell, 1981, v.23, p.79−88.
  52. Emr S.D., Silhavy T.J. Importance of secondary structure in the signal sequence for protein export. Proc. Natl. Acad. Sci. USA, 1983, v.80, p.4599−4603.
  53. Fandl J.P., Cabelli R., Oliver D., Tai P.C. SecA supresses the temperature-sensitive SecY24 defect in protein translocation in E. coli membrane vesicles. Proc. Natl. Acad. Sci. USA, 1988, v.85, p.8953−8957.
  54. Fikes J.D., Bassford P.J., Jr. Export of unprocessed maltose-binding protein to the periplasm of E. coli cells. J. Bacterid., 1987, v.169, p.2352−2359.
  55. Fine J.B., Sprecker H. Unidimensional thin-layer chromatography of phospholipids on boric acid-impregnated plates. J. Lipid Res., 1982, v.23, p.660−663.
  56. Fujiki Y., Hubbard A.L., Fowler S., Lazarow P.B. Isolation of intracellular membranes by means of sodium carbonate treatment. J. Cell Biol., 1982, v.93, p.97−102.
  57. Gardel C., Johnson K., Jacq A., Beckwith J. The secD locus of E. coli codes for two membrane proteins required for protein export. EMBO J., 1990, v.9, p.3209−3216.
  58. Geller B.L., Mowa N.R., Wickner W. Both ATP and the electrochemical potential are required for optimal assembly of pro-OmpA into E. coli inner membrane vesicles. -Proc. Natl. Acad. Sci. USA, 1986, v.83, p.4219−4222.
  59. Hall M.N., Gabay J., Schwartz M. Evidence for a coupling of synthesis and export of an outer membrane protein in E.coli. EMBO J., 1983, v.2, p.15−19.
  60. Hanada M., Nishiyama K., Mizushima S., Tokuda H. Reconstitution of an efficient protein translocation machinery comprising SecA and the three membrane proteins, SecY, SecE and SecG (pl2). J. Biol. Chem., 1994, v.269, p.23 625−23 631.
  61. Hartl F.-U., Lecker S., Schiebel E., Hendrick J.P., Wickner W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell, 1990, v.63, p.269−279.
  62. Hartl F.-U., Wiedmann M. Procariotic secretion: a signal recognition particle in E.coli. Curr. Biol., 1993, v.3, p.86−89.
  63. Hartman E., Sommer T., Prehn S., Gorlich D., Jentsch S., Rapoport T. Evolutionary conservation of components of the protein translocation apparatus. Nature (London), 1994, v.367, p.654−657.
  64. Heacock P.N., Dowhan W. Construction of a lethal mutation in the synthesis of the major acidic phospholipids of E.coli. J. Biol. Chem., 1987, v.262, p. 13 044−13 049.
  65. Hendrick J.P., Wickner W. SecA protein needs both acidic phospholipids and SecY/E protein for functional, high-affinity binding to the E. coli plasma membrane. -J. Biol. Chem., 1991, v.266, p.24 596−24 600.
  66. Hoffschulte H.K., Drees B., Muller M. Identification of a soluble SecA/SecB complex by means of a subfractionated cell-free export system. J. Biol. Chem., 1994, v.269, p.12 833−12 839.
  67. Inouye H., Beckwith J. Synthesis and processing of alkaline phosphatase precursor in vitro.- Proc. Natl. Acad. Sci. USA, 1977, v.74, p. 1440−1444.
  68. Inouye H., Michaelis S., Wright A., Beckwith J. Cloning and restriction mapping of alkaline phosphatase structural gene (phoA) of E. coli and generation of deletion mutant in vitro. J. Bacterid., 1981, v.146, p.668−675.
  69. Jackson B.J., Kennedy E.P. The biosynthesis of membrane-derived oligosacharides. A membrane-bound phosphoglycerol transferase. J. Biol. Chem., 1983, v.258, p.2394−2398.
  70. Joly J.C., Wickner W. The SecA and SecY subunits of translocase are the nearest neighbors of a translocating preprotein, shielding it from phospholipids. EMBO J., 1993, v.12, p.255−263.
  71. Kajava A.V., Bogdanov M.V., Nesmeyanova M.A. Stereochemical analysis of interaction of signal peptide with phospholipids at the initiation of protein translocation across the membrane. J. Biomol. Struct. & Dynamics, 1991, v.9, p.143−157.
  72. Kamitani S., Akiyama Y., Ito K. Identification and characterization of an E. coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme.-EMBO J., 1992, v. 11, p.57−62.
  73. Kato M., Tokuda H., Mizushima S. In vitro translocation of secretory proteins possessing no charges at the mature domain takes place efficiently in a protonmotive force-dependent manner. J. Biol. Chem., 1992, v.267, p.413−418.
  74. Kimura E., Akita M., Matsuyama S., Mizushima S. Determination of a region in SecA that interacts with presecretory proteins in E.coli. J. Biol. Chem., 1991, v.266, p.6600−6606.
  75. Kleina L.G., Masson J.-M., Normanly J., Abelson J., Miller J.H. Construction of E. coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. J. Mol. Biol., 1990, v.213, p.705−717.
  76. Kontinen V.P., Tokuda H. Overexpression of phosphatidylglycerophosphate syntase restores protein translocation in a secG deletion mutant of E. coli at low temperature. FEBS Lett., 1995, v.364, p.157−160.
  77. Kumamoto C.A., Beckwith J. Evidence for specificity at an early step in protein export in E.coli. J. Bacteriol., 1985, v.163, p.267−274.
  78. Kusters R., Breukink E., Gallusser A., Kuhn A., de Kruijff B. A dual role for phosphatidylglycerol in protein translocation across E. coli inner membrane. J. Biol. Chem., 1994, v.269, p.1560−1563.
  79. Kusters R., Dowhan W., de Kruijff B. Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted E. coli inner membrane vesicles. J. Biol. Chem., 1991, v.266, p.8569−8662.
  80. Kusulcawa N., Yura T., Ueguchi C., Akiyama Y., Ito K. Effects of mutations in heat-shock genes groES and groEL on protein export in E.coli. EMBO J., 1989, v.8, p.3517−3521.
  81. Laemmli U.K. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature, 1970, v.227, p.680−685.
  82. Lee C., Beckwith J. Cotranslational and posttranslational protein translocation in procaryotic systems. Annu. Rev. Cell Biol., 1986, v.2, p.315−336.
  83. Lee C., Li P., Inouye H., Beckwith J. Genetic studies on the inability of J3-galactosidase to be translocated across the E. coli cytoplasmic membrane. J. Bacterid., 1989, v.171, p.4609−4616.
  84. Li P., Beckwith J., Inouye H. Alteration of the amino terminus of the mature sequence of a periplasmic protein can severely affect protein export in E.coli. Proc. Natl. Acad. Sci. USA, 1988, v.85, p.7685−7689.
  85. Lill R., Crooke E., Guthrie B., Wickner W. The «trigger factor cycle» includes ribosomes, presecretory proteins and the plasma membrane. Cell, 1988, v.54, p.1013−1018.
  86. Lill R., Cunningham K., Brundage L., Ito K., Oliver D., Wickner W. SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of E.coli. EMBO J., 1989, v.8, p.961−966.
  87. Lill R., Dowhan W., Wickner W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell, 1990, v.60, p.271−280.
  88. Liu G., Topping T.B., Randall L.L. Physiological role during export for the retardation of folding by the leader peptide of maltose-binding protein. Proc. Natl. Acad. Sci. USA, 1989, v.86, p.9213−9217.
  89. Looman A.C., Bodlaender J., Comstock L.J., Eaton D., Jhurani P., de Boer H.A., van Knippenberg P.H. Influence of the codon following the AUG initiation codon on the expression of a modified lacZ gene in E.coli. EMBO J., 1987, v.6, p.2489−2492.
  90. Lowrv O.H., Rosebrough N.J., Farr A.L., Randall R, J. Protein measurement with the Folin-phenol reagent. J. Biol. Chem., 1951, v. 193, p.265−275.
  91. Luirink J., High S., Wood H., Giner A., Tollervey D., Dobberstein B. Signal-sequence recognition by an E. coli ribonucleoprotein complex. Nature, 1992, v.359, p.741−743.
  92. Luirink J., ten Hagen-Jongman C.M., van der Weijden C.C., Oudega B., High S., Wood H., Dobberstein B., Kusters R. An alternative protein targeting pathway in E. coli: studies on the role of FtsY. EMBO J., 1994, v. 13, p.2289−2296.
  93. Maclntyre S., Freudl R., Degen M., Hindennach I., Henning U. The signal sequence of an E. coli outer membrane protein can mediate translocation of a not normally secreted protein across the plasma membrane. J. Biol. Chem., 1987, v.262, p.8416−8422.
  94. Martoglio B., Hofmann M.W., Brunner J., Dobberstein B. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterllay toward the lipid bilayer. Cell, 1995, v.81, p.207−214.
  95. Matsuyama S., Fujita Y., Mizushima S. SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of E.coli. EMBO J., 1993, v.12, p.265−270.
  96. Matsuyama S., Fujita Y., Sagara K., Mizushima S. Biochim. Biophys. Acta, 1992, v. 1122, p.77−84.
  97. Matsuyama S., Kimura E., Mizushima S. Complementation of two overlapping fragments of SecA, a protein translocation ATPase of E. coli, allows ATP binding to its amino-terminal region. J. Biol. Chem., 1990a, v.265, p.8760.-8765.
  98. Michaelis S., Hunt J.F., Beckwith J. Effects of signal sequence mutations on the kinetics of alkaline phosphatase export to the periplasm in E.coli. J. Bacterid, 1986, v. 167, p. 160−167.
  99. Michaelis S., Inouye H., Oliver D., Beckwith J. Mutations that alter the signal sequence of alkaline phosphatase in. E.coli. -J. Bacteriol., 1983, v.154, p.366−374.
  100. Mitchell C., Oliver D. Two distinct ATP-binding domains are needed to promote protein export by E. coli SecA ATPase. Mol. Microbiol., 1993, v. 10, p.483−497.
  101. Mi lira T., Mizushima S. Separation by density gradient centrifugation of two types of membrane from spheroplast membrane of E. coli K12. Biochim. Biophys. Acta, 1968, v.150, p.159−161.
  102. Mothes W., Heinrich S.U., Graf R., Nilsson I.-M., von Heijne G., Brunner J., Rapoport T. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell, 1997, v.89, p.523−533.
  103. Murphy C.K., Beckwith J. Residues essential for the function of SecE, a membrane component of the E. coli secretion apparatus, are located in a conserved cytoplasmic region. Proc. Natl. Acad. Sci. USA, 1994, v.91, p.2557−2561.
  104. Nesmeyanova M.A. On the possible participitation of acid phospholipids in the translocation of secreted proteins through the bacterial cytoplasmic membrane. -FEBS Lett., 1982, v.142, p.189−193.
  105. Nesmeyanova M.A., Bogdanov M.V. Participation of acid phospholipids in protein translocation across the bacterial cytoplasmic membrane. FEBS Lett., 1989, v.257, p.203−207.
  106. Nishiyama K., Hanada M., Tokuda J. Disruption of the gene encoding pl2 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of E. coli at low temperature. EMBO J., 1994, v.13, p.3272−3277.
  107. Nishiyama K., Kabuyama Y., Akimaru J., Matsuyama S., Tokuda H., Mizushima S. SecY is an indispensable component of the protein secretory machinery of E.coli. Biochim. Biophys. Acta, 1991, v.1065, p.89−98.
  108. Nishiyama K., Mizushima S., Tokuda H. A novel membrane protein involved in protein translocation across the cytoplasmic membrane of E.coli. EMBO J., 1993, v.12, p.3409−3415.
  109. Nishiyama K.-i., Suzuki T., Tokuda H. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell, 1996, v.85, p.71−81.
  110. Nouwen N., Tommassen J., de Kruijff B. Requirement for conformational flexibility in the signal sequence of precursor protein. J Biol Chem., 1994, v.269, p.16 029−16 033.
  111. Novak P., Dev I.K. Degradation of a signal peptide by protease VI and oligopeptidase A. J. Bacteriol., 1988, v. 170, p.5067−5075.
  112. Osborn M.J., Gander J.E., Parisi E., Carson J. Mechanism of assembly of outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J. Biol. Chem., 1972, v.247, p.3962−3972.
  113. Osborne R.S., Silhavy T.J. PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J., 1993, v. 12, p.3391−3398.
  114. Phillips G.J., Silhavy T.J. The E. coli ffli gene is necessary for viability and efficient protein export. Nature (London), 1992, v.359, p.744−746.
  115. Pogliano J.A., Beckwith J. SecD and SecF facilitate protein export in E.coli. -EMBO J., 1994b, v.13, p.554−561.
  116. Pogliano K.J., Beckwith J. Genetic and molecular characterization of the E. coli secD operon and its products. J. Bacterid., 1994a, v. 176, p.804−814.
  117. Powers T., Walter P. Co-translational protein targeting catalyzed by the E. coli signal recognition particle and its receptor. EMBO J., 1997, v. 16, p.4880−4886.
  118. Randall L.L. Translocation of domains of nascent periplasmic proteins across the cytoplasmic membrane is independent of elongation. Cell, 1983, v.33, p.231−240.
  119. Randall L.L. Peptide binding by chaperone SecB: implications for recognition of normative structure. Science, 1992, v.257, p.241−245.
  120. Rapoport T.A. Science, 1992, v.258, p.931−936.
  121. Ribes V., Romisch K., Giner A., Dobberstein B., Tollervey D. E. coli 4.5S RNA is part of a ribonucleoprotein particle that has properties related to signal recognition particle. Cell, 1990, v.63, p.591−600.
  122. Roussel A., Inisan A.G. TURBO-FRODO, Version 4.3, 1993, Bio-Graphics, Marseille, France.
  123. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning. A laboratory manual. -Cold Spring Harbor Laboratory, New York, 1989, v. 1−3, 1626 p.
  124. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-teimination inhibitors. Proc. Natl. Acad. Sci. USA, 1977, v.74, p.5463−5467.
  125. San Millan J.L., Boyd D., Dalbey R., Wickner W., Beckwith J. Use of phoA fusions to study the topology of the E. coli inner membrane protein leader peptidase. -J. Bacterid., 1989, v. 171, p.5536−5541.
  126. Sato K., Mori H., Yoshida M., Tagaya M., Mizushima S. Short hydrophobic segments in the mature domain of proOmpA determine its stepwise movement during translocation across the cytoplasmic membrane of E.coli. J. -Biol. Chem., 1997, v.272, p.5880−5886.
  127. Schatz P.J., Beckwith J. Genetic analysis of protein export in E.coli. Annu. Rev. Genet., 1990, v.24, p.215−248.
  128. Schatz P. J., Bieker K.L., Ottemann K.M., Silhavy T.J., Beckwith J. One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J., 1991, v.10, p.1749−1757.
  129. Schatz P.J., Riggs P.D., Jacq A., Fath M.J., Beckwith J. The secE gene encodes an integral membrane protein required for protein export in E.coli. Genes Dev., 1989, v.3, p.1035−1044.
  130. Schiebel E., Driessen A.J.M., Hartl F.U., Wickner W. DeltaUH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell, 1991, v.64, p.927−939.
  131. Schnaitman C.A. Solubilization of the cytoplasmic membrane of E. coli by triton X-100. J. Bacteriol., 1971, v.108, p.545−552.
  132. Shibuya I. Metabolic regulations and biological functions of phospholipids in E.coli. Prog. Lipid Res., 1992, v.31, p.245−299.
  133. Simon S.M., Blobel G. Signal peptides open protein-conducting chanels in E.coli. -Cell, 1992, v.69, p.677−684.
  134. Stader J., Gansheroff L.J., Silhavy T.J. New suppressors* of signal-sequence mutations, prlG, are linked tightly to the secE gene of. Genes Dev., 1989, v.3, p.1045−1052.
  135. Suzuki T., Itoh A., Ichihara S., Mizushima S. Characterization of the sppA gene coding for protease IV, a signal peptide peptidase of E.coli. J. Bacteriol., 1987, v.169, p.2523−2528.
  136. Tai P.C., Tian G., Xu H., Lian J.P., Yu J.N. In vitro protein translocation into E. coli inverted membrane vesicles. In: Methods Cell Biol., 1991, v.34, p. 167−187.
  137. Takahara M., Sagai H., Inouye S., Inouye M. Secretion of human superoxide dismutase in E.coli. Bio Technology, 1988, v.6, p. 195−198.
  138. Tani K., Shiozuka K., Tokuda H., Mizushima S. In vitro analysis of the process of translocation of proOmpA across the E. coli cytoplasmic membrane. J. Biol. Chem., 1989, v.264, p.18 582−18 588.
  139. Tanji Y., Geimity J., Pollitt S., Inouye M. Effect of OmpA signal peptide mutations on OmpA secretion, synthesis, and assembly. J. Bacterid., 1991, v. 173, p. 1997−2005.
  140. Teschke C.M., Kim J., Song T., Park S., Park C., Randall L.L. Mutations that affect the folding of ribose-binding protein selected as suppressors of a defect in export in E.coli. J. Biol. Chem., 1991, v.266, p. l 1789−11 796.
  141. Tokuda H., Akimaru J., Matsuyama S., Nishiyama K., Mizushima S. Purification of SecE and reconstitution of SecE-dependent protein translocation activity. FEBS Lett., 1991, v.279, p.233−236.
  142. Topping T.B., Randall L.L. Determination of the binding frame within a physiological ligand for the chaperone SecB. Protein Sci., 1994, v.3, p.730−736.
  143. Torriani A. Influence of inorganic phosphate in the formation of phosphatase by E.coli. Biochim. Biophys. Acta, 1960, v.38, p.460−466.
  144. Torriani A. Alkaline phosphatase from E.coli. In: Procedures in nucleic acid research (Cantoni, G.L. and Davis, R., Eds.), Harper and Row, Publishers, New York, 1966, p.224−234.
  145. Tschantz W.R., Sung M., Delgado-Partin V.M., Dalbey R.E. A serine and a lysine residue implicated in the catalytic mechanism of the E. coli leader peptidase. -J. Biol. Chem., 1993, v.268, p.27 349−27 354.
  146. Uchida K" Mori H., Mizushima S. J. Biol. Chem., 1995, v.270, p.30 862−30 868.
  147. Ulbrandt N.D., London E., Oliver D.B. Deep penetration of a portion of E. coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding. J. Biol. Chem., 1992, v.267, p. 15 184−15 192.
  148. Watanabe M., Blobel G. Site specific antibodies against the PrlA (SecY) protein of E. coli inhibit protein export by interfering with plasma membrane binding of preproteins. Proc. Natl. Acad. Sci. USA, 1989a, v.86, p.1895−1899.
  149. Watanabe M., Blobel G. Cytosolic factor purified from E. coli is necessary and sufficient for the export of a protein and is a homotetramer of SecB. Proc. Natl. Acad. Sci. USA, 1989b, v.86, p.2728−2732.
  150. Wickner W., Driessen A.J.M., Hartl F.-U. The enzymology of protein translocation across the E. coli plasma membrane. Annu. Rev. Biochem., 1991, v.60, p.101−124.
  151. Wickner W., Leonard M. R. E. coli preprotein translocase. J. Biol. Chem., 1996, v.271, p.29 514−29 516.
  152. Wolfe P.B., Wickner W., Goodman J.M. Sequence of the leader peptidase gene of E. coli and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem., 1983, v.258, p.12 073−12 080.
  153. Yamagata H., Daishima K., Mizushima S. Cloning and expression of a gene coding for the prolipoprotein signal peptidase of E.coli. FEBS Lett., 1983, v. 158, p.301−304.
  154. Yamane K., Mizushima S. Introduction of basic amino acid residues after the signal peptide inhibits protein translocation across the cytoplasmic membrane of E.coli. J. Biol. Chem., 1988, v.263, p.19 690−19 696.
  155. Особую благодарность выражаю Игорю Эдуардовичу Грановскому.
Заполнить форму текущей работой