Помощь в написании студенческих работ
Антистрессовый сервис

Выделение и свойства эндоглюканаз и ксиланаз Chaetomium cellulolyticum

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Нейтральные целлюлазы и гемицеллюлазы могут использоваться для модификации поверхности субстратов как в составе природного мультиферментного комплекса, продуцируемого микроорганизмами, так и в индивидуальном виде. В связи с чем логичным представляется начинать исследование с изучения свойств мультиферментного комплекса, с последующим более детальным изучением индивидуальных компонентов. При этом… Читать ещё >

Выделение и свойства эндоглюканаз и ксиланаз Chaetomium cellulolyticum (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • ЛИТЕРАТУРНЫЙ ОБЗОР
  • ГЛАВА 1. ЦЕЛЛЮЛАЗЫ
    • 1. 1. Общая характеристика целлюлозы и целлюлолитических ферментов
    • 1. 2. -Свойства 1,4-|3−0-эндоглюканаз
      • 1. 2. 1. Биохимические характеристики 1,4-Р-0-эндоглюканаз из различных источников
      • 1. 2. 2. Субстратная специфичность эндо-1,4-|3−0-глюканаз
      • 1. 2. 3. Температурные и рН-оптимумы, стабильность эндоглюканаз. «Нейтральные» эндоглюканазы. .?
  • ГЛАВА 2. КСИЛАНАЗЫ
    • 1. 2. 1. Общая характеристика ксиланов и ксилан-разрушающих ферментов
    • 2. 2. Свойства эндо-1,4-(3−0-ксиланаз
    • 2. 2. 1. Биохимические свойства эндо-1,4-[3−0-ксиланаз
    • 2. 2. 2. Субстратная специфичность ксиланаз
    • 2. 2. 3. Температурные и рН-оптимумы эндоксиланаз и их стабильность
    • 2. 2. 4. Действие эндоксиланаз на бумажную пульпу
  • ГЛАВА 3. СЕРИНОВЫЕ ПРОТЕАЗЫ ГРИБОВ
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
  • ГЛАВА 4. ОБЪЕКТЫ ИССЛЕДОВАНИЯ И МЕТОДИКА ЭКСПЕРИМЕНТА
    • 4. 1. Исходные вещества
      • 4. 1. 1. Ферментные препараты
      • 4. 1. 2. Субстраты и реактивы
    • 4. 2. Определение активностей ферментов
    • 4. 3. Аналитические методы
    • 4. 4. Выделение и очистка индивидуальных ферментов из ферментных препаратов С. сгИиШуйсит
    • 4. 5. Определение биохимических параметров белков
    • 4. 6. Определение субстратной специфичности выделенных ферментов для их
  • — классификации
    • 4. 7. Методы изучения стабильности, температурных и рН- оптимумов ферментов
    • 4. 8. Изучение адсорбционной способности ферментов на целлюлозе
    • 4. 9. Определение констант Михаэлиса ферментов
    • 4. 10. Анализ изменения молекулярно-массового распределения (ММР) ксилана березы при его гидролизе ксиланазами С. се11и1о1уисит и препарата Есори1р ТХ
    • 4. 11. Анализ состава продуктов ферментативного гидролиза ксиланов березы и овса, КМЦиМКЦ
    • 4. 12. Оценка способности ксиланаз к биоотбеливанию целлюлозной пульпы
    • 4. 13. Определение консервативного участка аминокислотной последовательности ксиланазы с массой 30 кДа С. сеИиШуйсит
    • 4. 14. Анализ ингибирования протеазы С. сеИиЫуИсит
    • 4. 15. Протеолиз гомогенных белков ферментного комплекса С. сеПиЫуИсит под действием протеазы с массой 31 кДа из того же источника
  • РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
  • ГЛАВА 5. СВОЙСТВА ЦЕЛЛЮЛАЗНОГО КОМПЛЕКСА СИаектшт се11и1о1уйсит
    • 5. 1. Активность ферментных комплексов различных штаммов С. се11и1о1уИсит по отношению к разным субстратам. рН и температурные оптимумы
    • 5. 2. Влияние различных факторов на стабильность целлюлазного комплекса
  • С. сеИиШуйсит
    • 5. 3. Адсорбционная способность целлюлаз ферментного комплекса С. сеНиШуйсит
  • ГЛАВА 6. ВЫДЕЛЕНИЕ И ОЧИСТКА ИНДИВИДУАЛЬНЫХ КОМПОНЕНТОВ ФЕРМЕНТНОЙ СИСТЕМЫ С. сеИиШШсит
    • 6. 1. Фракции 1, 2 и 3 после ионообменной хроматографии ферментного препарата
  • — С. сеНиЫуйсит на ОЕАЕ-Тоуореаг
    • 6. 2. Выделение индивидуальных ферментов С. сеПиЫуИсит из фракции 1, полученной в результате ионообменной хроматографии на БЕАЕ-Тоуореаг!
  • ГЛАВА 7. СПЕЦИФИЧНОСТЬ ГОМОГЕННЫХ КОМПОНЕНТОВ ФЕРМЕНТНОГО КОМПЛЕКСА С. сеНиЫуПсит
  • ГЛАВА 8. СВОЙСТВА ЭНДОГЛЮКАНАЗ С МАССАМИ 45 И 55 кДа С. сеПиЫуйсит
  • ГЛАВА 9. СВОЙСТВА КСИЛАНАЗ С МАССАМИ 30, 51 И 60 кДа ИЗ С. сеИиШуНсит
  • ГЛАВА 10. ДЕЙСТВИЕ КСИЛАНАЗ С. сеНиЫуНсит НА ЭВКАЛИПТОВУЮ ПУЛЬПУ. ИЗ
  • ГЛАВА 11. ЩЕЛОЧНАЯ ПРОТЕАЗА ФЕРМЕНТНОГО КОМПЛЕКСА С. сеНиЫуйсит
  • ВЫВОДЫ

Раньше основное применение целлюлазы и гемицеллюлазы находили в процессах биоконверсии растительного сырья. Это было исторически первым и наиболее очевидным путем их использования. Для этого нужны были ферментные комплексы активные и стабильные в кислом диапазоне рН, причем в этом случае была важна способность ферментов к высокой степени осахаривания субстрата. В настоящее время о’бнаруживаются и преобретают все большую актуальность другие области использования этих ферментов, когда высокие степени гидролиза уже не важны, а на первый план выдвигается способность этих ферментов к специфическому тонкому действию на субстрат (например, их тополитическая или отбеливающая активность). В качестве примера можно привести следующие: 1) процесс удаления целлюлазами печатной краски тонеров с бумаги для ее вторичного использования (деинкинг) — 2) различные виды обработки хлопчатобумажной ткани, улучшающие ее потребительские характеристики- 3) увеличение белизны целлюлозной пульпы под действием гемицеллюлаз, позволяющее значительно снизить количество хлора, используемого для ее отбеливания и, соответственно, уменьшить количество образуемых экологически опасных хлорсодержащих соединений. В силу особенностей упомянутых выше процессов, первичным критерием при поиске наиболее эффективных для них целлюлаз и гемицеллюлаз, является высокая активность и стабильность ферментов в нейтральной и щелочной средах. Но уже на начальных этапах исследования «нейтральных» и «щелочных» ферментов было определено, что далеко не каждый из них способен должным образом воздействовать на поверхность субстрата. К настоящему времени пока неизвестно, какие именно свойства фермента определяют его полезность в указанных процессах — это связано, прежде всего, с недостаточной изученностью «нейтральных» и «щелочных» карбогидраз в целом.

Таким образом, одной из важнейших задач энзимологии карбогидраз в настоящее время является получение как можно более полной характеристики «нейтральных» и «щелочных» целлюлаз и гемицеллюлаз. Это впоследствии должно помочь ответить на вопрос, связана ли тополитическая или отбеливающая активности ферментов с их определенной специфичностью по отношению к различным субстратам, адсорбционной способностью, или с какими — либо другими физико-химическими или биохимическими свойствами.

Нейтральные целлюлазы и гемицеллюлазы могут использоваться для модификации поверхности субстратов как в составе природного мультиферментного комплекса, продуцируемого микроорганизмами, так и в индивидуальном виде. В связи с чем логичным представляется начинать исследование с изучения свойств мультиферментного комплекса, с последующим более детальным изучением индивидуальных компонентов. При этом в процессе исследования свойств карбогидраз в составе комплекса необходимо учитывать наличие таких внутрисистемных эффекторов, способных влиять на их активность и стабильность, как протеазы, продуцируемые теми же микроорганизмами.

Для исследований нами был выбран ферментный комплекс термофильного гриба СкаеЮтшт сеНиШуНсит, показавшего в предварительных экспериментах способность к росту на целлюлозосодержащем сырье при нейтральном значении рН. Целью исследования являлось изучение свойств активных и стабильных в нейтральной среде внеклеточных целлюлаз (эндоглюканаз) и ксиланаз, продуцируемых С. сеНиЫуНсит. Ее осуществление реализовывалось в несколько этапов: определение основных свойств полиферментной системы С. сеИиЫуйсит, ее качественного и количественного составаразработка схемы выделения и очистки индивидуальных компонентов ферментного комплекса С. се11и1о1уйсит изучение биохимических и кинетических свойств выделенных эндоглюканаз и ксиланаз, и выяснение их роли в функционировании ферментного комплекса С. сеПиШуНситсравнительный анализ эффективности действия выделенных ксиланаз на бумажную пульпу (биоотбеливания), и выяснение причин их отбеливающей способностиисследование действия на выделенные ферменты щелочной протеазы С. СеИиЫуисит.

ЛИТЕРАТУРНЫЙ ОБЗОР.

выводы.

1. Исследованы свойства комплекса карбогидраз, продуцируемого С. сеИиЫуйсит и установлена его перспективность как источника активных и стабильных в нейтральной и щелочной среде ксиланаз и целлюлаз.

2. Предложена схема очистки компонентов ферментного комплекса С. сгИиЫуйсит, позволившая выделить шесть ранее не изученных ферментов, гомогенных по данным аналитического электрофореза и изоэлектрофокусирования.

3. Исследована субстратная специфичность очищенных ферментов, на основании которой два из них (45 кДа, р1 6,0 и 55 кДа, р1 4,8) были классифицированы как эндоглюканазы, три (30 кДа, р1 9,1- 51 кДа, р1 8,7 и 60 кДа, р14,7) — как ксиланазы и один (31 кДа, р1 8,9) -как протеаза.

4. Исследованы кинетические свойства эндоглюканаз с массами 45 и 55 кДа. Показано, что эндоглюканаза с массой 55 кДа имеет высокую адсорбционную способность на целлюлозе (Кр =1,4 л/г), а эндоглюканаза с массой 45 кДа на целлюлозе не сорбируется (Кр < 0,01 л/г). Обе эндоглюканазы обладают высокой активностью и стабильностью при нейтральных значениях рН.

5. Определены кинетические характеристики ксиланаз с массами 30, 51 и 60 кДа. Обнаружена необычно высокая для грибных ксиланаз стабильность при щелочных рН ксиланазы с массой 30 кДа и высокая термостабильность ксиланазы с массой 60 кДа. Изучен механизм действия выделенных ксиланаз на полимерные субстраты и установлено, что они являются эндодеполимеразами.

6. Изучена способность очищенных ксиланаз к отбеливанию целлюлозной пульпы. Показано, что по эффективности действия на бумажную пульпу в щелочной среде ксиланаза с массой 30 кДа превосходит другие ксиланазы С. сгИиЫуйсит и один из наиболее эффективных ксиланазных коммерческих препаратов Есори1р ТХ 200. Установлено, что «отбеливающая» способность ксиланаз при действии на целлюлозную пульпу коррелирует с их удельной активностью по отношению к ксилану и операционной стабильностью.

7. Показано, что выделенная протеаза с массой 31 кДа относится к классу сериновых эндопептидаз. Определены условия, при которых протеаза гидролизует карбогидразы белкового комплекса С. се11и1о1уйсит.

Показать весь текст

Список литературы

  1. А.П., Гусаков А. В., Черноглазов В. М. Биоконверсия лигноцеллюлозных материалов, изд-воМГУ, 1995.
  2. Beguin P., Aubert J.-P. The biological degradation of cellulose. FEMS Microbiol. Rev., 1994, v. 13, p.25−58.
  3. Coughlan M.P. Enzymic hydrolysis of cellulose: an overview. Bioresourse Technology, 1992, v. 39, p. 107−115.
  4. Wood T.M. Preparation of crystalline, amorphous, and dyed cellulase substrates. Method Enzymol., 1988, v. 160, p. 19−25.5., Atalla R.H., VanderHart D.L. Native cellulose: a composite of two distinct crystallineforms. Science, 1985, v. 223, p. 283−284.
  5. Clarke A J. Biodegradation of cellulose. Enzymology and Biotechnology., 1997, Technomic Publishing Co. Inc., Lancaster, USA.
  6. Miller G.L., Dean J., Blum R. A study of methods for preparing oligosacharides from cellulose. Arch. Biochem. Biophys., 1960, v.91, p.21−26.
  7. Van Tilbeurgh H., Claeyssens M., De Bruyne C.K. The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEB S Lett., 1982, v. 149, p. 152−156.
  8. Методы изучения и свойства целлюлолитических ферментов. Под. Ред. Варфоломеева С. Д. Итоги науки и техники, сер. Биотехнология, т. 25, Москва, 1993.
  9. Г. В., Кинетика и механизм действия целлюлолитических ферментов на хромогенные субстраты. Дисс. на соискание степени кандидата химических наук. М., МГУ, 1994.
  10. Macarron R., Acebal С., Castillon М.Р., Dominguez J.M., Mata I., Pettersson G., Tomme P., Claeyssence M. Mode of action of endoglucanase III from Trichoderma reesei. Biochem. J., 1993, v. 289, h. 867- 873.
  11. Claeyssence M., Henrissat В., Specificity mapping of cellulolytic enzymes- classification into family of structurally related proteins confirmed by biochemical analysis. Protein Sci., 1992, v. 1, p 1293−1297.
  12. Updegraff D.M. Semimicro determination of cellulose in biological materials. Anal. Biochem., 1969, v. 32, p. 420−423.
  13. Johnson E.A., Sakajoh M., Halliwell G., Madia A., Demain A.L., Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum., Appl. Environ. Microbiol., 1982, v. 43, p. 1125- 1132
  14. Clarkson K.A., Mullins M.M., Simpson C.M. Enzymatic compositions and methods for producing stonewashed look on indigo-died denim fabric. РСТ/ US93/5 700, IPN: WO 93/25 655, 23 December 1993.
  15. H.A., Родионова H.A. Ферментативное расщепление целлюлозы. Усп. Биол. Хим., 1972, т. 13, с. 179−200.
  16. Whitaker D.R. Cellulases. In: The enzymes (Boyer P.D., ed), 3-rd Ed, Acad. Press, New York, 1971, v. 5, p. 273−290.
  17. Emert G.H., Gum E.K., Lang J.A., Liu Т.Н., Brown R.D. Cellulases. Advan. Chem. Ser., 1974, v. 136, p.79−100.
  18. H.A. Ферментативное расщепление целлюлозы. В кн. «Целлюлазы микроорганизмов», М., Наука, 1981, с. 4−40.
  19. Номенклатура ферментов. (Рекомендации Межд. Биохим. Союза) М., ВИНИТИ, 1979, с. 321.
  20. Coughlan М.Р. Cellulose degradation by fungy. In Microbial Enzymes and Biotechnology, 1990, ed. W.M. Fogarty and C.T. Kelly., Elsevier Applied Science, London, p. 1−36.
  21. Coughlan V.P., Ljungdahl L.G. Comparative biochemistry of fungal and bacterial cellulolytic enzymes., 1988, In Biochemistry and Genetics of cellulose degradation, ed. J.-P. Aubert, P. Beguin, J. Millet, Acad. Press, New York, p. 11- 29.
  22. A.A., Рабинович M.JI., Синицын А. П., Чурилова И. В., Григораш С. Ю. Ферментативный гидролиз целлюлозы. Активность и компонентный составцеллюлазных комплексов из различных источников. Биоорг. Химия, 1980, т. 6, стр. 1225−1241.
  23. Wood Т.М. Fungal cellulases. Chem. Soc. Transac., 1992, v. 20, p. 80−89.
  24. Reese E.T., Sue R.G., Levinson H.S. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol., 1950, v. 59, p. 485−497.
  25. Nisizawa K. Mode of action of cellulases., J. Ferment. Technol., 1973, v. 51, p/ 267 304.
  26. В.У. Целлюлоза и ее производные. Ред. Н. Байклз, JI. Сегал. М., 1974, т. 1, с. 214−235.
  27. Kim D.W., Jang Y.H., Jeong Y.K. Adsorbtion behaviors of two cellobiohydrolases and ' their core proteins from Trichoderma reesei on Avicel PH 101. Biotech. Lett., 1997
  28. SEP, v. 19, № 9, p. 893−897.
  29. Fan L.T., Lee Y.R., Beardmore D.H., Mechanism of enzymatic hydrolisis of cellulose: effect of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng., 1980, v.22, p. 177- 199.
  30. V.H., Fan L.T., Fan L.S. Properties and mode of action of cellulase. In: Products from alkanes. Cellulose and other feedstocks. Berlin: Academie-Verlag., 1981, p. 101−129.
  31. Medve J., Stahlberg J., Tjerneld F. Isotherms for adsorbtion of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose. Appl. Biochem. Biotechnol., 1997, v. 66, № 1, p. 39−56.
  32. Ghose Т.К., Bisaria V.S. Studies on mechanism of enzymatic hydrolysis of cellulosic substances. Biotechnol. Bioeng., 1979, v.21, p.131−146.
  33. Ooshima H., Kurakake M., Kato I., Horano Y. Enzymatic activity of cellulases adsorbed on cellulose and its change during hydrolysis. Appl.Biochem.Biotechnol. 1991, v. 31, № 3, p. 253−266.
  34. Jervis E.J., Haynes C.A., Kilburn D.G. Surface diffusion of cellulases and their isolated binding domains on cellulose. J. Biol. Chem., 1997, v. 272, № 38, p. 24 016−24 023.
  35. A.A., Черноглазое B.M., Рабинович М. Л., Синицын А. П. Роль адсорбционной способности эндоглюканазы в деградации кристаллической и аморфной целлюлозы. Биоорг. химия, 1982, т. 8, № 5, с. 643−650.
  36. VanWyk J.P.H. Cellulase adsorption- desorption and cellulose saccharification during enzymatic hydrolysis of cellulase materials. Biotechnol. Letts, 1997, v. 19, № 8, p. 775 778.
  37. Lee S.B., Shin H.S., Ryu D.G., Mandels M. Adsorption cellulase on cellulose: effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol. Bioeng., 1982, v. 24, p. 2137- 2153.
  38. Murao S., Kanamoto J., Sakamoto R., Arai M., Purification of two carboxymethyl-cellulose hydrolysing enzymes from Aspergillus aceleatus. J. Ferment.Technol., 1979, v. 57, № 3, p. 157−162.
  39. Gilkes N.R., Henrissat В., Kilburn D.G., Miller R.C., Warren R.A.J. Domaine in * microbial (3−1,4-glucanases: Sequence conservation, function, and enzyme families. 1991,
  40. Microbiol. Rev., v. 55, 303−315.
  41. Henrissat B. A classification of glycosyl hydrolases based on amino asid sequence similarities. Biochem. J., 1991, v. 280, p. 309−316.
  42. Henrissat В., Bairosh A. New families in the classification of glycosyl hydrolases based on aminoasid sequence similarities. Biochem. J., 1993, v.293, p300−305.
  43. Henrissat В., Claeyssence M., Tomme P., Lemesle L., Mornon J.- P. Cellulase families revealed by hydrofobic cluster analysis. Gene, 1989, v. 81, p.83−85.
  44. Gilkes N.R., Claeyssens M., Aebersold R., Henrissat В., Meinnke A. Structural and functional relationships in two families of {3−1,4- glycanases. Eur. J. Biochem., 1991, v. 202, p. 367- 377.
  45. Gibbs M.D., Saul D.J., Luthi E., Bergquist P.L., The (3-mannanase from Caldocellum sacharolyticum is part of multidomain enzyme., Appl. Environ. Microbiol., 1992, v. 58, p. 3864−3867.
  46. Torronen A., Kubesec C.P., Henrissat B. Amino asid sequence similarities between low molecular mass endo-(3-l, 4- xylanases and family H cellulases revealed by hydrophobic cluster analysis. FEBS Lett., 1993, v.321, p. 135−139.
  47. Okada H. Comparisons of primery, secondary and tertiary structures of xylanase of Bacillus pumilus and cellulase of Aspergillus aculeatus. In Microbial Utilization of
  48. Renewable Resources. 1991, Intern. Center of Coop. Researh in Biotechnol., Japan, p. l7.
  49. Matsushita O., Russel G.B., Wilson D.B. Cloning and sequencing of a Bacteroides ruminicola (3−1,4-endoglucanase gene. J. Bacterid., 1990, v. 172, p. 3620−3630.
  50. Matsushita O., Russel G.B., Wilson D.B. A Bacteroides ruminicola l, 4-(3-endoglucanase is encoded in two reading frames.. J. Bacterid, 1991, v. 173, p. 69 196 926.
  51. Rouvinen J., Bergfors Т., Teeri Т., Knowles J.K.c., Jones T.A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei., Science, 1990, v. 249, p.380−386.
  52. Juy M., Amit A.G., Alzari P.M., Poljak R.J., Claeyssencs M., Beguin P., Aubert J.-P. ' Crystal structure of a thermostable bacterial cellulose-degrading enzyme. Nature, 1992, v.357, p. 89−91.
  53. Davies G., Tolley S., Wilson K., Schuleine M., Wodlike H.F., Dodson G., Crystallization and preliminary X-ray analysis of a fungal endoglucanase I. J. Mol. Biol., 1992, v 228, p. 970−972.
  54. Pickersgill R.W., Jenkins J.A., Scott M., Connerton I., Hazlewood G.P., Gilbert H.J., Crystallization and preliminary X-Ray analysis of the catalytic domain of Xylanase A from Pseudomonasfluorescence var. Cellulosa. J. Mol. Biol., v. 229, p. 246- 248.
  55. A.A., Рабинович М. Л., Чурилова И. В., Мартьянов В. А., Гусаков А. В., Елякова Л. А. Ферментативный гидролиз целлюлозы. Целлюлазные комплексы морских организмов. Биоорг. Химия, 1983, т. 8, № 11, с. 1490−1496.
  56. Kelly J.A., Sielecki A.R., Sykes B.D., James M.N.G., Philips D.C., X-Ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme., Nature, 1979, v. 282, p. 875−878.
  57. Sinnott M.L., Catalytic mechanisms of enzymic glycosyl transfers. Chem. Rev., V. 90, p. 1171−1202.
  58. Klyosov A.A., Rabinowitch M.L., Morosov A. Biotechnology of the continouse enzymatic conversion of cellulosic materials into glucose. Biogas- 85, February 4−6, 1985.
  59. Sadana J., Lachke A., Patil R. Endo-l, 4-(3- D-glucanases from Sclerotium rolfsii. Purification, substrate specificity and mode of action. Carbohydr. Res., 1984, v. 133, p. 297−312.
  60. Linder W.A., Dennison C., Berry R.K. Purification and properties of carboxymethylcellulase from Sclerotium rolfsii. Biochim. Biophys. Acta, 1983, v. 746, p.160−167.
  61. Pettersson G, Cowling E.B., Porath J. Studies of cellulolytic enzymes. I. Isolation of a low molecular weight cellulase from Polysporus versicolor, Biochim.Biophys.Acta, 1963, v.67, p. 1−8.
  62. Berghem L.E.R, Pettersson L.G., Axio-Fredriksson The mechanism of enzymatic cellulose degradation. Purification and some properties of two different 1,4-|3-glucanohydrolases from Trichoderma viride, Eur.J.Biochem., 1976, v.61, p.621−630.
  63. Kanda T.M., Wakabayashi K., Nisizawa K. Purification and properties of a lower-molecular-weight endocellulase from Irpex lacteus. J.Biochem., 1980, v.87, p. 16 231 634.
  64. Okada G., Nisizawa K. Enzymatic studies on a cellulase system of Trichoderma viride. III. Transglycosylation properties of two cellulase components of random type. J.Biochem., 1975, v.78, № 2, p. 297−306.
  65. Kanda T.M., Wakabayashi K., Nisizawa K. Purification and properties of endo-cellulase of avicelase type from Irpex lacteus. J.Biochem., 1976, v.19, p. 972.
  66. В.И., Чурилова И. В. Исследование гидролазной и трансгликозилазной активности у препарата низкомолекулярной эндоглюканазы целлюлазного комплекса Trichoderma koningii., Прикл. Биохим. Микробиол., 1985, т. 21, № 4, с. 465−470.
  67. Н.А., Мартинович Л. И., Смирнова Н. И., Безбородов A.M. Фракционирование эндо-1,4-(Зглюканаз из Geotrichum candidum ЗС. Прикл.биохим.микробиол., 1985, т. 21, № 1, с.18−24.
  68. Л.Н., Родионова В. К., Акрапов В. А., Пасешниченко В. А., Безбородов А. М. Выделение и характеристика (3-глюкозидазы из гриба Geotrichum candidum ЗС, Прикл.биохим.микробиол., 1980, т. 16, с.46−55.
  69. Creuzet N., Frixon C., Purification and characterisation of an endo-l, 4,-?- glucanase from a newly isolated thermophilic anaerobic bacterium, Biochemie, 1983, v.65, p. 149 156.
  70. Ng T.K., Zeikus J.G., Purification and characterisation of an endoglucanase (1,4-?-D-glucan glucanohydrolase) from Clostridium thermocellum., J. Biochem., № 2, v. 199, p. 341−350.
  71. McGavin M., Forsberg C.W. Isolation and characterization of endoglucanases 1 and 2 from Bacteroides succinogenes S 85., J. Bacteriol, 1988, v. 170, p. 2914−2922.
  72. Yamane K., Suzuki H. Cellulases of Pseudomonas fluorescens var. cellulosa. Method Enzymol., 1988, v. 160, p. 200−210.
  73. Wilson D.B. Cellulases of Thermonospora fusca. Method Enzymol., 1988, v. 160, p.1 314−323.
  74. Murao S., Sakamoto R., Arai M., Cellulases of Aspergilus aculeatus. Method Enzymol., 1988, v.160, p. 274−299.
  75. Hurst P.L., Nielsen P.A., Sullivan P.A., Shepherd M.G. Purification and properties of a cellulase from Aspergillus niger, J. Biochem, 1977, v. 165, p.33−41.
  76. Okada G. Cellulase of Aspergillus niger, Method Enzymol., 1988, v. 160, p. 259−265
  77. Streamer M., Eriksson K.-E., Pettersson L.G., Extracellular enzyme system utilized by the fungus Sporotrichum pulveridentum for the breakdown of cellulose Eur. J. Biochem., 1975, v. 59, p. 607−613.
  78. Niku-Paavola M.-L., Lappalainen T.-M., A new appraisal of the endoglucanases of the fungus Trichoderma reesei, Biochem. J., 1985, v.231,p. 75−81.
  79. Moloney A., McCraae S., Wood T. Isolation and characterization of an endoglucanase from Clostridium thermocellum., J. Biochem., 1981, v. 199, № 2, p.341−350.
  80. Coughlan M.P., Moloney A.P. Isolation of 1,4 -?-D-glucan 4-glucanohydrolase of Talaromyces emersonii, Methods Enzymol., 1988, v. 160, p.363−368.
  81. Voragen A.G.J., Beldman G., Rombouts F.M., Cellulases of mutant strain of Trichoderma viride OM9414, Methods Enzymol., 1988, v. 160, p. 243−251.
  82. Goksoyr J. Cellulases from Sporocytophaga myxococcoides, Methods Enzymol., 1988, v.160, p. 338−342.
  83. Stewart J.C., Heptinstall. Cellulase and hemicellulase from Aspergillus fumigatus Fresenius. Methods Enzymol., 1988, v.160, p. 264−274.
  84. Durbin M.L., Lewis L.N., Cellulases in Phaseolus vulgaris, Methods Enzymol., 1988, v.160, p. 342−351.
  85. Sharma P.J., Gupta J.K., Vadehra D.V., Dube D.K., Purification and properties of an endoglucanase from a Bacillus isolate, Enzyme Microb. Technol., 1990, v. 12, p. 132 137.
  86. Paice M., Desrochers M., Rho D., Roy C., Rollin G. Two forms endoglucanases from the basidiomycete Schizophyllum commune and their relationship to oter (3−1,4-glucoside hydrolases. Biotechnol., 1984, v.2, № 6, p.535−539.
  87. Shoumaker S., Watt K., Tsitovsky G., Cox R. Characterisation and properties of cellulases purified from Trichoderma reesei. Biotechnol., 1983, v. l, № 8, p. 687−690.
  88. О.Ф. Каталитические, биохимические и биотехнологические свойства целлюлазного комплекса Penicillium verruculosum и его компонентов., Дисс. на соискание степени кандидата химических наук. М., МГУ, 1995, с. 173 178.
  89. Kanda Т.М., Wakabayashi К., Nisizawa К. Xylanase activity of endo-cellulase of carboxymethyl-cellulase type from Irpex lacteus. J.Biochem., 1976, v.79, p. 989−995.
  90. Hall J., Hazlewood G.P., Barker P.J., Gilbert H.J. Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity, Gene, 1988, v.69, p.29−38.
  91. Kanda T.M., Wakabayashi K., Nisizawa K. Synergystic action of two different types of endo-cellulase components from Irpex lacteus in the hydrolysis of some insoluble celluloses. J.Biochem., 1976, v.79, p. 997−1006.
  92. A.A. Ферменты целлюлазного комплекса. Проблемы биоконверсии растительного сырья. М., Наука, 1986, с.95−136.
  93. О.Е. Биохимические и физико-химические характеристики высокоочищенных эндо-1,4-Р-глюканаз из различных микробных источников. Дисс. на соискание степени кандидата химических наук. М., МГУ, 1986.
  94. Shepherd M.G., Tong G.C., Cole A.L. Substrate specificity and mode of action of the cellulases from the thermophillic fungus Thermoascus aruantiacus.. J.Biochem., 1981, v. 193, p.67−74.
  95. М.Л., Клесов А. А., Березин И. В. Кинетика действия целлюлолитических ферментов из Geotrichum candidum. Вискозиметрический анализ кинетики гидролиза карбоксиметил целлюлозы. Биоорг. Химия, 1977, т. З, № 2, с.405−414.
  96. Eriksson К.-Е., Hallimark В.Н. Kinetic studies of action of cellulase upon sodium carboxymethyl cellulose. Arch. Biochem. Biophys., 1969, v. 133, p.233−237.
  97. Tong G., Gole A., Shepherd M. Purification and properties of the cellulase from thermophilic fungus Thermociscus aurcitiacus. J.Biochem., 1980, v. 191, p.83−94.
  98. G. Halliwell, N. Halliwell Cellulolytic enzyme components of the cellulase complex of Clostridium thermocellum. Diochem. Biophys. Acta, 1989, v. 1989, p.223−229.
  99. Schou C., Rasmussen Gr, Kaltoft M.-B., Henrissat В., Schulein M. Stereochemistry, specifisity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases, Eur. J. Biochem, 1993, v. 217, p. 947−953.
  100. H.A., Мартинович Л. И., Смирнова Н. И., Безбородов AM. Характеристика эндоглюканаз Geotrichum candidum ЗС. Прикл. биохим. микробиол., 1985, т.21., вып. 3, с 309−317.
  101. Hurst P.L., Sullivan P.A., Shepherd M.G. Chemical modification of a cellulase from Aspergillus niger, J. Biochem, 1977, v. 167, p.549−556.
  102. Umezurike G.M. The cellulolytic enzymes of Botryodiplodia theobromae. Separation and characterization of cellulases. Biochem. J., 1979, v. 177, p.9−19.
  103. Wood T.M., McCrae S.J. The purification and properties of the Cl-component of Trichoderma koningii cellulase. Biochem. J., 1972, v. 128, № 7, p. 1183−1192.
  104. Miettinen O., Londesborough J., Cellulases, the genes encoding them and uses there of. PCT, WO 97/14 804, 1997.
  105. Clarkson K. A., Larenas E., Weiss G. Detergent compositions containing substantially pure EG III cellulase., USP, 5, 419, 778, May, 1995.
  106. Clarkson К. A., Larenas E., Weiss G. Detergent composition for treating cotton-containing fabrics containing a surfactant and a cellulase composition containing endoglucanase III from Trichoderma ssp., USP, 5, 290, 474, Mar. 1, 1994.
  107. Hiromi Okoshi, Katsuya Ozaki, Shitsuw Shikata, Kazushi Oshino, Shuji Kawai, Susumu Ito Purification and characterization of multiple carboxymethyl cellulases from Bacillus sp. KSM-522, Agric. Biol. Chem., 54(1), 83−89, 1990.
  108. Schulein M. Enzymatic properties of cellulases from Humicola insolens., J. Biotechnol., 1997, v.57, p.71−81.
  109. И.В., Окунев ОН., Крюкова Е. Г., Попова Н. Н., Синицын А. П., Черноглазов В. М. Нейтральные целлюлазы мицелиальных грибов: поиск продуцентов и изучение некоторых свойств. Прикл. Биохим. Микробиол., 1997, т. 33, № 4, с. 388−392.
  110. Park J.S., Hitomi J., Horinouchi S., Beppu Т., Identification of two amino acids contributing the high enzyme activity in the alkaline pH range of an alkaline endoglucanase from a Bacillus sp. Prot. Eng., 1993, v.6, p. 921−926.
  111. M.G. Tuohy, C.D. LafFey, M.P. Coughlan Characterization of the individual components of the xylanolytic enzyme system of Talaromyces emersonii. Bioresourse Technology 1994, v.50, p.37−42.
  112. Puis J., Schuseil J. Chemistry of hemicelluloses: relationship beetween hemicellulose structure and enzymes required for hydrolysis. Hemicellulose and hemicellulases. Portland Press Ltd, London, 1993, p. 1−26.
  113. Johanson M.H., Samuelson 0., Reducing end groups in birch xylan and there alkalaine degradation. Wood Sci. Technol. 1977, v. 11, 251 -263.
  114. Wilkie K.C.B. The hemicelluloses of grasses and cereals. .Adv. Carbohydr. Chem. Biochem., 1979, v.36, p.215−264.
  115. Bacon J. S. D., Gordon A. H., Morris E. J., Farmer V.C. Acetyl groups in cell wall preparation. Biochem. J., 1975, v. 149, 485- 487.
  116. Muller- Harvey I., Hartley R. D., Harris P. J., Farmer V. C. Lineage of p-coumaroyl and feruloyl groups to cell wall polisaccharides of barley straw. Carbohydr. Res., 1986, v. 148, p. 71- 85.
  117. Buchert J., Tenkanen M., Kantelinen A., Viicari L., Application of xylanases in the pulp and paper industry., Bioresourse Technol., 1994, v. 50, p.65−72.
  118. Wong K.K.Y., Tan L.U.L., Saddler J.N. Multiplicity of p-l, 4-Xylanase in microorganisms: functions and applications., Microbiol.rev., 1988, v.52, № 3, p.305−317.
  119. Biely P. Biochemical aspects of the production of microbial hemicellulases, Hemicellulose and hemicellulases. Portland Press Ltd, London, 1993, p. 29- 33.
  120. Deshpande V.A., Lachke C., Mishra S., Keskar S., Rao M., Mode of action and properties of xylanase and (3-xylosidase from Neuspora crassa., Biotechnol, Bioeng., 1986, v.28, p.1832−1837.
  121. Biely P., MacKenzie C. R., Puis J., Schneider H., Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan, Biotechnology, 1986, v. 4, p. 731- 733.
  122. Greve L.C., Labavitch J. M., Hungate R. E. a-L-arabinofuranosidase from ruminococus albus 8: purification and possible role in hydrolysis of alfa cell wall. Appl. Environ. Microbiol., 1984, v. 47, p. 1135- 1140.
  123. Puis J., Schmidt O., Granzow C. a-Glucuronidase in two microbial xylanolitic systems. Enzyme Microbiol. Technol., 1987, v.9, p.83−88.
  124. Puis J., Poutanen K. Enzyme Systems for Lignocellulose Degradation, 1989, pl51−165, Elseiver Applied Science Publishers Ltd, London.
  125. Jeffries T.W. Conserved motifs in xylanases for pulp bleaching., IBCs Third Annual Symposium on Commercial enzymes, March 23−24, 1998, Wyndham Emerald Plasa, SanDiego, CA.
  126. Hazlewood G.P., Gilbert H.J., in Xylans & Xylanases, ed. by Visser J., Beldman G., Kusters-van Someren M.A., Voragen A.G.J., ets. Elsevier, Amsterdam: 1992, p. 259 273.
  127. Grepinet O., Chebrou M.-C., Beguin P. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium Thermocellum. J. Bacterid., 1988, v. 170, p. 45 824 588.
  128. Ko E.P., Akatsuka H., Moriyama H., Shinmyo A Site-directed mutagenesis at aspartat and glutamat residues of xylanase from Bacillus pumilus., Biochem.J., 1992, v.288, p.117−121.
  129. Biely p., Kremnicky L., Alfoldi J., Tenkanen M. Stereochemistry of the hydrolysis of glycosidic linkage by endo-?-l, 4-xylanases of Trichoderma reesei., FEBS Lett., 1994, v.354, p.137−140
  130. Panbangred W., Shinmyo A., Kinoshita S., Okada H. Purification and properties of endoxylanase produced by Bacillus pumilus. Agric. Biol. Chem., 1983, v. 47, p. 9571 963.
  131. Paice M.G., Bourbonnais R., Desrochers M., Jurasek L., Yaguchi M. Xylanase gene from Bacillus subtilis: nucleotide sequence and comparison with B. pumilus gene. Arch. Microbiol., 1986, v. 104, p. 201−206.
  132. Gebler J., Gilkes N.R., Claeyssens M., Wilson D.B., Beguin P., Wakarchuk W.W., Kilburn D.G., Miller Jr.R.C., Warren R.A.J., Withers S.G. Stereoselective hydrplysis catalyzed by related ?-1,4 -xylanases. J. Biol. Chem., 1992, v. 267, p. 12 559−12 561.
  133. Biely P., KratkyZ., VranskaM. Eur. J. Biochem., 1981, v. 119, p. 559−564.
  134. Torronen A., Rouvinen J Structural comparison of two major endo-l, 4-xylanases from Trichoderma reesei. Biochemistry, 1995, v. 34, p. 846- 855.
  135. Wong K.K.Y., Tan L.U.L., Saddler J.N. Purification of third distinct xylanase from xylanolytic system of Trichoderma harzianum. Can. J.Microbiol., 1986, v. 32, p.570−576.
  136. Kudo T.A., Ohkoshi A., Horicoshi K. Molecular cloning and expression of xylanase gene of alkalophilic Aeromonas sp. No. 212 in Escherichia coli. J.Gen.Microbiol., 1985, v.131, p.2825−2830.
  137. Lee S.F., Forsberg C. W, Purification and characterization of two endoxylanases from Clostridium thermocellum. Appl. Environ.Microbiol., 1987, v.53, p.644−650.
  138. Marui M., Nakanishi K., Yasui T. Immunological properties and consistuent aminoasids of three xylanases produced inductively from Streptomices sp., Agric.Biol.Chem., 1985, v.49, 3409−3413.
  139. Biely P., Marcovic O., Mislovicova D., Sensitive detection of endo-l, 4-?-glucanases and endo-l-4-?-xylanases in gels. Anai.Biochem., v. 144, p. 147−151.
  140. Fournier R.A., Frederick M.M., Frederick J.M., Reilly P.J. Purification and characterization of endo-xylanases from Aspergillus niger III: an enzyme of pi 3.65, Biotechnol.Bioeng., 1985, v.21, p.539−546.
  141. G. Cleemput, K.V. Laere, M. Hessing, F.V. Leuven, S. Torrekens, J.A.Delcour Identification and characterisation of a novel arabinoxylanase from wheat flour Plant Physiol., 1997, v. 115, p. 1619- 1627.
  142. Haltrich D., Nidetsky B., Kulbe K.D., Steiner W., Zupancic S., Production of fungal «xylanases. Bioresourse Technol., 1996, v.58, p. 137−161.
  143. Biely P. Microbial xylanolitic sistems., Trends Biotechnol., 1985, v.3, p.286−290.
  144. Bailey M.J., Puis J., Poutanen K. Purification and properties of two xylanases from Aspergillus oryzae. Biotechnol. Appl. Biochem., 1991, v. 13, p.380−389.
  145. Slade A.M., Hoj P.B., Morrice N.A., Fincher G.B.. Purification and characterization of three (l-4)-(3-D-xyl and endohydrolases from germinated barley, 1989, Eur. J. Biochem, v. 185, p.533−539.
  146. Tenkanen M., Buchert J., Viicari L., Binding of hemicellulases on isolated polysacharide substrates. Enzyme and Microb.Technol., 1995, v. 17, p. 499−505
  147. Dusterhoft E.-M., Linssen V.A.J.M., Voragen A.G.J., Beldman G., Purification, Characterisation, and properties of two xylanases from Humicola insolens., Enzyme and Microbial Tech., v.20 (6), 1997, 437−445.
  148. Uhlig H Industrial enzymes and their application. John Wiley and sons. 1993.
  149. Tsojibo H., Sakamoto T., Nishino N., Hasegawa T. Purification and properties of three types of xylanases produced by alkalophilic actinomicete. J. Appl. Bacteriol., 1990, v. 69, p. 398−405.
  150. Magnuson T. S., Crawford D.L. Purification and characterisation of an alkaline xylanase from Streptomyces viridosporus T7A., Enzyme and Microbial Techn., 1997., v. 21(3)., pp. 160−164.
  151. Gibert M., Breuil C., Yaguchi M., Saddler J.N. Purification and characterization of xylanase from the termophilic ascomicete Thielavici terrestris 255B, 1992, v.34/35, p.247−256
  152. Dahlberg L. A., Hoist O.P., Anker L. Thermostable xylanase from a strain of
  153. Rhodothermus marinus., Biotechnol. Adv., 1995, v. 13, p. 566−567.145 167 168 169 170 176"172173.174.175.176.177.178.179.180.
  154. Ratto M, Mathrani I.M., Ahring B., Viikari Application of thermostable xylanase of Dictyoglomus sp. in enzymatic treatment of kraft pulps., Appl. Microbiol. Biotechnol., 1994, v.41, p. 130−133.
  155. Breccia J.D., Sineriz F., Baigori M.D., Castro G.R., Hatti-Kaul R. Purification and characterization of thermostable xylanase from Bacillus amyloliquefaciens. Enzyme and Microbial Techn., 1998., v. 22 (1)., pp. 42−49.
  156. ViikarriL, Ranua M., Kantelinen A, Linko M., Sundquist J., Bleaching with enzymes. In
  157. Biotechnology in the pulp and paper industry. Proc.3rd Int.Conf., p.67−69.
  158. Paice M., Gurnagul N., Page D.H., Jurasek L. Mechanism of hemicellulose-directprebleaching of kraft pulps. Enzyme Microbiol. Technol., 1992, v. 14, p.272−276
  159. R.N. Patel, Grabski A.C., Jeffries T. W Chromophore release from craft pulp by purified
  160. Streptomices roseiscleroticus xylanases. Appl. Microbiol, and Biotechnol., 1993, v.39, p.405.412
  161. Kulkarni N., Rao M. Application of xylanase from alkalophilic thermophilic Bacillus sp.,
  162. NCIM 59 in biobleaching of bagasse pulp. J. Biotechnol., 1996, v.51, p. 167−173.
  163. Chen C., Adolphson R, J.F.D. Dean, Eriksson K.L., Adams M.W.W., Westpheling J.
  164. Release of lignin from craft pulp by a hyperthermophylic xylanase from Thermatogamaritima. Enzyme and Microbial Techn., 1997., v. 20., pp. 39−45.
  165. Senior D.J., Mayers P.R., Saddler J.N. The interaction of xylanases with commercialpulps. Biotechnol. And Bioeng., 1991, v.37, p.274−279.
  166. Dunn B.M. Determination of protease mechanism. In «Proteolytic enzymes a practical approach.» Ed. R.J. Beynon, J.S.Bond, Oxford Univ. Press, 1994,
  167. Э. Структура и механизм действия ферментов. Москва, Мир, 1980, с.360−388.
  168. Anwar A., Saleemuddin M. Alkaline proteases: a review., Bioresource Technology, 1998, v.64, p. 175−183.
  169. Е.Б., Белозерский M.A., Дунаевский Я. Е. Внеклеточныеi протеолитические ферменты мицелиальных грибов. Биохимия, 1998, т.63, с. 10 591 089.
  170. Sutar I.I., Srinivasan M.N., Vartak H.G. A low molecular weight alkaline proteinase from Conidobolus coronatus. Biotechnol. Lett., 1991, v. 13, p. 119- 124.
  171. Samal B.B., Karan В., Stabinsky Y., Stability of two novel serine proteinases in commercial laundray detergent formulations. Biotechnol. Bioeng., 1990, v. 35, p. 650 652.
  172. Phadatare S.U., Deshpande V.V., Srinivasan M.C., High active alkaline protease from Conidobus coronatus: enzyme production and compatibility with commercial detergents. Enzyme Microb. Technol, 1993, v. 15, p.72- 76.
  173. А.А. в кн.: Методы исследования белков и нуклеиновых кислот. Электрофорез и ультрацентрифугирование. М.: наука, 1981, с. 37−101.
  174. Hewllett-Packard Application Note, 1993, publication number 12−5091−7648E.
  175. Л.И., Родионова H.A., Безбородое А. М. свойства (3-глюкозидазы гриба Geotrichum candidum ЗС. Прикл.биохим.микробиол., 1980, т.6, № 4, с. 538 546.
  176. Azo-CM-Cellulose for the Assay of Endo-Cellulase, Instraction Manual Megazyme Ltd., Australia, 1992. .
  177. P., Эллиот Д., Эллиот У., Джонс К. Справочник биохимика, Москва, Мир, 1991.
Заполнить форму текущей работой