ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Π’Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ пСрСмСщСния Π±Π΅Π»ΠΊΠΎΠ² антиоксидантного комплСкса. 
Новая систСма Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ€Π΅ΠΏΠΎΡ€Ρ‚Π΅Ρ€ΠΎΠ²

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модСль, ΠΎΠ±ΡŠΡΡΠ½ΡΡŽΡ‰Π°Ρ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ пСрСмСщСния Sesn2 Π² ΡΠ΄Ρ€ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° Π²Π½Π΅ΡˆΠ½ΠΈΠ΅ стимулы, Под влияниСм Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² происходит стимуляция ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ Π‘, которая, Π² ΡΠ²ΠΎΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, стимулируСт Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ NOX ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΡŽ соСдинСний Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ кислорода. ΠžΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° Π‘ ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Sesn2 Π² ΡΠ΄Ρ€ΠΎ, Ρ‚Π΅ΠΌ самым настраивая ядСрныС Π°Π½-тиоксидантныС систСмы ΠΏΠ΅Ρ€Π΅Π΄… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π’Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ пСрСмСщСния Π±Π΅Π»ΠΊΠΎΠ² антиоксидантного комплСкса. Новая систСма Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ€Π΅ΠΏΠΎΡ€Ρ‚Π΅Ρ€ΠΎΠ² (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… сокращСний
  • Π“Π»Π°Π²Π° 1. ΠžΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡ ΠΈ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΡ транспорта ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠΎΠΉ ΠΈ ΡΠ΄Ρ€ΠΎΠΌ

ΠšΠ°Ρ€ΠΈΠΎΡ„Π΅Ρ€ΠΈΠ½Ρ‹ ΠΈ ΠΈΡ… Ρ€ΠΎΠ»ΡŒ Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ядСрно-цитоплазматичСского транспорта.7.

Π“Π’Π€Π°Π·Π° Ran ΠΈ Ran-зависимый транспорт.11.

Вранспорт Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² стСроидных Π³ΠΎΡ€ΠΌΠΎΠ½ΠΎΠ².16.

НукпСопорины, ΠΈΡ… ΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.17.

ВранспортныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Nup98.22.

МодСли функционирования NPC.23.

Вранслокация трансмСмбранных Π±Π΅Π»ΠΊΠΎΠ² Π½Π° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΡŽΡŽ ΡΠ΄Π΅Ρ€Π½ΡƒΡŽ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρƒ.27.

Π˜Π΅Ρ€Π°Ρ€Ρ…ΠΈΡ‡Π΅ΡΠΊΠ°Ρ рСгуляция ядСрного транспорта.28.

РСгуляция Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Ρ€ΡƒΠ·Π°.29.

ВнутримолСкулярноС маскированиС NLS/NES.29.

ΠœΠ΅ΠΆΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎΠ΅ маскированиС NLS/NES.30.

ΠœΠΎΠ΄ΡƒΠ»ΡΡ†ΠΈΡ аффинности ΠΊ ΠΊΠ°Ρ€ΠΈΠΎΡ„Π΅Ρ€ΠΈΠ½Π°ΠΌ посттранскрипционной ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ.31.

ΠœΠΎΠ΄ΡƒΠ»ΡΡ†ΠΈΡ аффинности ΠΊ ΠΊΠ°Ρ€ΠΈΠΎΡ„Π΅Ρ€ΠΈΠ½Π°ΠΌ ΠΏΡƒΡ‚Π΅ΠΌ посттрансляционной ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ.32.

Π£Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ Π² Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅ ΠΈΠ»ΠΈ ядрС.32.

РСгуляция Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ транспортных Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ².33.

ΠœΠΎΠ΄ΡƒΠ»ΡΡ†ΠΈΡ экспрСссии ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² нукпСоцитоплазматичСской транспортной систСмы.33.

Роль ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΠ½ΠΎΠ² Π² Π³Π°ΠΌΠ΅Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅.34.

Роль экспортинов Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ развития ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°.35.

РСгуляция Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² NPC.36.

Роль Π½ΡƒΠΊΠΏΠ΅ΠΎΠΏΠΎΡ€ΠΈΠ½ΠΎΠ² ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… модуляторов ядСрного транспорта Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ развития.36.

Роль Π½ΡƒΠΊΠΏΠ΅ΠΎΠΏΠΎΡ€ΠΈΠ½ΠΎΠ² Π² ΠΌΠΈΡ‚ΠΎΠ·Π΅.36.

Роль Π½ΡƒΠΊΠΏΠ΅ΠΎΠΏΠΎΡ€ΠΈΠ½ΠΎΠ² Π² ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π΅Π·Π΅ ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ.37.

Π“Π»Π°Π²Π° 2. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹.39.

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ, ΠΈΡ… ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°.39.

БСлСкция ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ послС трансдукции лСнтивирусными конструктами 40.

Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ° ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π‘Ρ€Π΅Π΄Ρ„ΠΎΡ€Π΄.40.

Π€Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΏΠΎΠ»ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄Π½ΠΎΠΌ Π³Π΅Π»Π΅.40.

ΠŸΠ΅Ρ€Π΅Π½ΠΎΡ Π±Π΅Π»ΠΊΠΎΠ² ΠΈΠ· Π³Π΅Π»Π΅ΠΉ Π½Π° Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Ρ‹ ΠΈ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ΄Π΅Ρ‚Скция.40.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli ΠΈ Ρ‚рансформация.41.

ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΈ Π°Π½Π°Π»ΠΈΡ‚ичСскоС Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš.41.

ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π”ΠΠš рСстрикционными эндонукпСазами.42.

Π€Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π”ΠΠš ΠΈΠ· Π°Π³Π°Ρ€ΠΎΠ·Π½Ρ‹Ρ… Π³Π΅Π»Π΅ΠΉ.42.

РСакция лигирования.42.

ВрансфСкция лСнтивирусных ΠΈ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½Ρ‹Ρ… конструктов ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ.42.

Π˜ΠΌΠΌΡƒΠ½ΠΎΡ„Π»ΡƒΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡ.43.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ активности (3-Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·ΠΈΠ΄Π°Π·Ρ‹ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ систСмы GalScreen®.44.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ROS Π½Π° FACS ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ DCF-DA.44.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ экспрСссионных лСнтивирусных конструктов.44.

Π­Ρ‚Π°ΠΏΡ‹ клонирования ш-конструкта.44.

Π­Ρ‚Π°ΠΏΡ‹ клонирования Π°-конструктов.49.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π°-конструктов, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Π΅.50 Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ Sesn2 с ΠΏΠ΅Ρ€ΠΌΠ°Π½Π΅Π½Ρ‚Π½ΠΎ-Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ ΠΈ ΠΏΠ΅Ρ€ΠΌΠ°Π½Π΅Π½Ρ‚норСпрСссированными сайтами фосфорилирования.50.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ конструктов, ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… нСсколько shPHK, спСцифичныС ΠΊ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ Π³Π΅Π½Π°ΠΌ.52.

Π“Π»Π°Π²Π° 3. Π Π΅Π·ΡƒΠ»ΡŒΠ°Ρ‚Ρ‹ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅.54.

ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ дСйствия ΠΈ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ€Π΅ΠΏΠΎΡ€Ρ‚Π΅Ρ€Π°.54.

ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° для экспрСссии ш-ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°.55.

ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² для экспрСссии Π±Π΅Π»ΠΊΠΎΠ², слитых с Π°-ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠΌ.56.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠ»ΠΎΠ½ΠΎΠ² oo-nuc-bleo.58.

ΠžΡ‚Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° функционирования Ρ€Π΅ΠΏΠΎΡ€Ρ‚Π΅Ρ€Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π±Π΅Π»ΠΊΠ° F0X03A.60.

ВлияниС ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ hTNF ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Π² ΡΡ€Π΅Π΄Π΅ Π±Π΅Π· сыворотки Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ° Sesn2.63.

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡ Sesn2 Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΈ ΠΊ ΠΏΠ»Π°Π·ΠΌΠ°Ρ‚ичСской ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅ ΠΏΡ€ΠΈ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ стрСссС.65.

ВлияниС ΡΡƒΠ»ΡŒΡ„ΠΈΡ€Π΅Π΄ΠΎΠΊΡΠΈΠ½Π° Π½Π° ΠΏΠ΅Ρ€Π΅Π΄ΠΈΡΠ»ΠΎΠΊΠ°Ρ†ΠΈΡŽ Sesn2.67.

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Sesn2 Π² ΡΠ΄Ρ€ΠΎ ΠΏΠΎΠ΄ дСйствиСм РМА.68.

ИсслСдованиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² PMA-ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ пСрСдислокации Sesn2.70.

ВлияниС сайтов фосфорилирования Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ Sesn2 Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ ядСрной транслокации.72.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

75.

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.75.

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

76.

Бписок ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… сокращСний.

AFMAtomic Force MicroscopyАтомно-силовая микроскопия.

Ala Alanine Алании.

APC Anaphase Promoting Complex Циклосома.

BSA Bovine Serum Albumin Π‘Ρ‹Ρ‡ΠΈΠΉ сывороточной Π°Π»ΡŒΠ±ΡƒΠΌΠΈΠ½.

CKII Casein Kinase II КазСинкиназа II.

CTE Constitutive Transport Element ΠšΠΎΠ½ΡΡ‚ΠΈΡ‚ΡƒΡ‚ΠΈΠ²Π½Ρ‹ΠΉ транспортный элСмСнт.

Cys Cysteine ЦистСин.

DCF 2,7'-dichlorofluorescin 2', 7'-дихлорфлуорСсцин.

DMEM Dulbecco’s Modified Eagle’s Π‘Ρ€Π΅Π΄Π° Игла Π² ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ.

Medium Π”ΡƒΠ»ΡŒΠ±Π΅ΠΊΠΎ.

DMSO Dimethyl Sulfoxide Π”ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΎΠΊΡΠΈΠ΄.

DPI Diphenyleneiodonium chloride Π”ΠΈΡ„Π΅Π½ΠΈΠ»ΠΈΠΎΠ΄ Ρ…Π»ΠΎΡ€ΠΈΠ΄.

EBSS Earle’s Balanced Salt Solution Ббалансированный солСвой раствор

Π­Ρ€Π»Π°.

EGF Epidermal Growth Factor Π­ΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ ростовой Ρ„Π°ΠΊΡ‚ΠΎΡ€

EGFP Enhanced Green Fluorescent ΠœΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π·Π΅Π»Π΅Π½Ρ‹ΠΉ.

Protein флуорСсцСнтный Π±Π΅Π»ΠΎΠΊ.

EGFR Epidermal Growth Factor Receptor Π Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ ΡΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ростового Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°.

ER Endoplasmic Reticulum localization Π‘ΠΈΠ³Π½Π°Π» эндоплазматичСской signal Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ.

FACS Fluorescence-Activated Cell Sorter ΠŸΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹ΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡƒΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€

FCS Fetal Calf Serum Π€Π΅Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‚Π΅Π»ΡΡ‡ΡŒΡ сыворотка.

FG Fenilalanine-Glycine Π€Π΅Π½ΠΈΠ»Π°ΠΏΠ°Π½ΠΈΠ½-Π³Π»ΠΈΡ†ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Π΄ΠΎΠΌΠ΅Π½ΠΏΠΎΠ²Ρ‚ΠΎΡ€).

FITC Fluorescein isothiocyanate ЀлуорСсцин ΠΈΠ·ΠΎΡ‚ΠΈΠΎΡ†ΠΈΠ°Π½Π°Ρ‚.

FRET Fluorescence Resonance Energy РСзонансный пСрСнос энСргии.

Transfer флуорСсцСнции.

GAG Group-specific antigen АнтигСн Π“Ρ€ΡƒΠΏΠΏΠΎΠ²ΠΎΠΉ спСцифичности.

GFP Green Fluorescent Protein Π—Π΅Π»Π΅Π½Ρ‹ΠΉ флуорСсцСнтный Π±Π΅Π»ΠΎΠΊ.

HIV Human Immunodeficiency Virus Вирус ΠΈΠΌΠΌΡƒΠ½ΠΎΠ΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° hTNF Human Tumor Necrosis Factor Π€Π°ΠΊΡ‚ΠΎΡ€ Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°.

IGF1 Insulin-like Growth Factor Π˜Π½ΡΡƒΠ»ΠΈΠ½-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ роста.

INM Inner Nuclear Membrane ВнутрСнняя ядСрная ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°.

Kaps Karyopherins ΠšΠ°Ρ€ΠΈΠΎΡ„Π΅Ρ€ΠΈΠ½Ρ‹.

LB Lysogeny Broth Π›ΠΈΠ·ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ Π±ΡƒΠ»ΡŒΠΎΠ½.

LTR Long Terminal Repeat Π”Π»ΠΈΠ½Π½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ ΠΏΠΎΠ²Ρ‚ΠΎΡ€

Mem Membrane localization signal Π‘ΠΈΠ³Π½Π°Π» Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° ΠΏΠ»Π°Π·ΠΌΠ°Ρ‚ичСской ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅.

Mit Mitochondrial localization signal Π‘ΠΈΠ³Π½Π°Π» ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°ΠΏΡŒΠ½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ.

MOPS 3-(N-morpholino) propanesulfonic 3-(Π«-ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΈΠ½ΠΎ)ΠΏΡ€ΠΎΠΏΠ°Π½ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΎΠ²Π°Ρ acid кислота.

NAC N-acetyl-cysteine N-346™ Π»-Ρ†ΠΈ стСи Π½.

NES Nuclear Export Signal Π‘ΠΈΠ³Π½Π°Π» ядСрного экспорта.

NF-AT2 Nuclear factor of activated Π―Π΄Π΅Ρ€Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ….

T-lymphocytes 2 Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² N92.

NLS Nuclear Localization Signal Π‘ΠΈΠ³Π½Π°Π» ядСрной Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ.

NOX NADPH Oxidase 4 НАДЀ-Н оксидаза.

NPC Nuclear Pore Complex КомплСкс Π±Π΅Π»ΠΊΠΎΠ² ядСрной ΠΏΠΎΡ€Ρ‹.

NTD N-Terminal Domain N-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ Π΄ΠΎΠΌΠ΅Π½.

NUC Nuclear Localization Signal Π‘ΠΈΠ³Π½Π°Π» ядСрной Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ.

Nup Nucleoporin НукпСопорин.

ONM Outer Nuclear Membrane Π’Π½Π΅ΡˆΠ½ΡΡ ядСрная ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°.

PBS Phosphate Buffered Saline Ѐосфатный Π‘ΡƒΡ„Π΅Ρ€Π½Ρ‹ΠΉ Раствор

Phe Phenylalanine Π€Π΅Π½ΠΈΠ»Π°Π»Π°Π½ΠΈΠ½.

PI3K Phosphoinositide 3-kinase Ѐосфатидилинозитол-Π—-ΠΊΠΈΠ½Π°Π·Π°.

PKA Protein Kinase A ΠŸΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° А.

PKB Protein Kinase B ΠŸΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° Π’.

PKC Protein Kinase C ΠŸΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° Π‘.

PMA Phorbol 12-myristate 13-acetate Π€ΠΎΡ€Π±ΠΎΠ»-12-миристрат-13-Π°Ρ†Π΅Ρ‚Π°Ρ‚.

PoM Pore Membrane ΠŸΠΎΡ€ΠΎΠ²Π°Ρ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°.

PTK Phosphotyrosin Kinase Ѐосфотирозинкиназа.

PVDF Polyvinylidene Fluoride Ѐторопласт.

RanBPI Ran-Binding Proteinl Ran-ΡΠ²ΡΠ·Ρ‹Π²ΡΡŽΡ‰ΠΈΠΉ Π±Π΅Π»ΠΎΠΊ1.

RanGAP Ran GTPase Activating Protein Π‘Π΅Π»ΠΎΠΊ-Π°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€ Π“Π’Π€Π°Π·Ρ‹ Ran.

RanGEF Ran Guanidine Exchange Factor Π€Π°ΠΊΡ‚ΠΎΡ€ Π³ΡƒΠ°Π½ΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° Ran.

Ran-GTP Ran-Guanidinediphosphate Ran-гуанидиндифосфат.

Ran-GTP Ran-Guanidinetriphosphate Ran-гуанидинтрифосфат.

Rev Revertase Π Π΅Π²Π΅Ρ€Ρ‚Π°Π·Π°.

ROS Reactive Oxygen Species БоСдинСния Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ кислорода.

Ser Serine Π‘Π΅Ρ€ΠΈΠ½ shRNA Short hairpin RNA ΠšΠΎΡ€ΠΎΡ‚ΠΊΠ°Ρ ΡˆΠΏΠΈΠ»Π΅Ρ‡Π½Π°Ρ РНК.

SOB Super Optimal Broth Π‘ΡƒΠΏΠ΅Ρ€-ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π±ΡƒΠ»ΡŒΠΎΠ½.

TBS Tris-Buffered Solution Врис-Π±ΡƒΡ„Π΅Ρ€

Thr Threonine Π’Ρ€Π΅ΠΎΠ½ΠΈΠ½.

TRITC Rhodamine Π ΠΎΠ΄Π°ΠΌΠΈΠ½.

Tvr Tyrosine Π’ΠΈΡ€ΠΎΠ·ΠΈΠ½.

UTR Untranslated Region НСтранслируСмая ΠΎΠ±Π»Π°ΡΡ‚ΡŒ мРНК.

VSVG Vesicular Stomatitis Virus glycoprotein Π“Π»ΠΈΠΊΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ Вируса ВСзикулярного Π‘Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΡ‚Π°.

Π“Π  Π“Π»ΠΊΠΆΠΎΠΊΠΎΡ€Ρ‚ΠΈΠΊΠΎΠΈΠ΄Π½Ρ‹ΠΉ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ гяРНП ГСтСрогСнная ядСрная рибонуклСопротСиновая частица.

Π”ΠΠš ДСзоксирибонуклСиновая кислота мРНК ΠœΠ°Ρ‚Ρ€ΠΈΡ‡Π½Π°Ρ рибонуклСиновая кислота.

НВЀ НукпСотидтрифосфат.

ПЦР ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½Π°Ρ ЦСпная РСакция.

РНК РибонуклСиновая кислота Ρ‚Π ΠΠš Вранспортная рибонуклСиновая кислота.

ЭДВА ЭтилСндиаминтСтрауксусная кислота.

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Бконструирована рСпортСрная систСма для опрСдСлСния Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ исслСдуСмого Π±Π΅Π»ΠΊΠ°, основанная Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚Π΅ Π°-ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ 3-Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·ΠΈΠ΄Π°Π·Ρ‹.

2. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΊΠ»ΠΎΠ½Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π»ΠΈΠ½ΠΈΠΈ RKO, ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ систСмы. ВозмоТности Ρ€Π΅ΠΏΠΎΡ€Ρ‚Π΅Ρ€Π½ΠΎΠΉ систСмы испытаны Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ флуорСсцСнтного Π±Π΅Π»ΠΊΠ° GFP ΠΈ Ρ‚ранскрипционного Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° F0X03A.

3. ΠŸΡ€ΠΈ исслСдовании антиоксидантного Π±Π΅Π»ΠΊΠ° Sesn2 установлСно, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ ROS ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ Sesn2 ΠΈΠ· Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹ Π² ΡΠ΄Ρ€ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π·Π°Ρ‰ΠΈΡ‚Π΅ Π³Π΅Π½ΠΎΠΌΠ° ΠΎΡ‚ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ.

4. УстановлСно, Ρ‡Ρ‚ΠΎ активация ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ Π‘ Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Sesn2 ΠΈΠ· Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹ Π² ΡΠ΄Ρ€ΠΎ, Π° Π΅Π΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ Ρ‚Π°ΠΊΠΎΠΉ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄. ЀосфорилированиС сайтов РКБ Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π΅ Sesn2 усиливаСт Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Π² ΡΠ΄Ρ€ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° ΡΡ‚рСсс, Π° ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ фосфорилирования ΠΏΠΎ ΡΡ‚ΠΈΠΌ сайтам сниТаСт количСство Sesn2 Π² ΡΠ΄Ρ€Π΅.

5. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модСль, ΠΎΠ±ΡŠΡΡΠ½ΡΡŽΡ‰Π°Ρ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ пСрСмСщСния Sesn2 Π² ΡΠ΄Ρ€ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° Π²Π½Π΅ΡˆΠ½ΠΈΠ΅ стимулы, Под влияниСм Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² происходит стимуляция ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ Π‘, которая, Π² ΡΠ²ΠΎΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, стимулируСт Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ NOX ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΡŽ соСдинСний Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ кислорода. ΠžΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° Π‘ ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Sesn2 Π² ΡΠ΄Ρ€ΠΎ, Ρ‚Π΅ΠΌ самым настраивая ядСрныС Π°Π½-тиоксидантныС систСмы ΠΏΠ΅Ρ€Π΅Π΄ ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌΡ‹ΠΌ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ΠΌ уровня соСдинСний Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ кислорода.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

.

Разработанная систСма Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ€Π΅ΠΏΠΎΡ€Ρ‚Π΅Ρ€ΠΎΠ² являСтся ΠΌΠΎΡ‰Π½Ρ‹ΠΌ инструмСнтом для опрСдСлСния ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ². Π¨ΠΈΡ€ΠΎΠΊΠΈΠΉ динамичСский Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ ΠΈ Π²Ρ‹ΡΠΎΠΊΠ°Ρ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Ρ€Π΅ΠΏΠΎΡ€Ρ‚Π΅Ρ€ для опрСдСлСния Π½Π΅Π±ΠΎΠ»ΡŒΡˆΠΈΡ…, ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ количСства, ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ исслСдуСмого Π±Π΅Π»ΠΊΠ° Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π±Π΅Π»ΠΊΠ° Sesn2, ΡΠ²Π»ΡΡŽΡ‰Π΅Π³ΠΎΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΎΡ‚ ΠΏΠ΅Ρ€Π΅ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ, ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ стрСсс, комплСкс Π±Π΅Π»ΠΊΠΎΠ², Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Sesn2, пСрСдислоцируСтся ΠΈΠ· Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹ Π² ΡΠ΄Ρ€ΠΎ. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, транслокация Π² ΡΠ΄Ρ€ΠΎ способствуСт ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ устойчивости ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² ядра ΠΊ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡŽ ΠΏΠΎΠ΄ дСйствиСм ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Н202. Π’Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Π±Π΅Π»ΠΊΠ° Sesn2 ΠΈΠ· Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹ Π² ΡΠ΄Ρ€ΠΎ ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° Π‘. Sesn2 содСрТит Ρ‚Ρ€ΠΈ сайта фосфорилирования ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ РКБ. ЀосфорилированиС этих сайтов ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Sesn2 ΠΈΠ· Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹ Π² ΡΠ΄Ρ€ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ стрСсс, ΠΎΠ΄Π½Π°ΠΊΠΎ само ΠΏΠΎ ΡΠ΅Π±Π΅ фосфорилированиС нСдостаточно для транслокации Sesn2 Π² ΡΠ΄Ρ€ΠΎ. Π’Π΅ΡΡŒΠΌΠ° вСроятно, Ρ‡Ρ‚ΠΎ для пСрСмСщСния трСбуСтся Ρ‚Π°ΠΊΠΆΠ΅ фосфорилированиС Π΄Ρ€ΡƒΠ³ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ², Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ входящих Π² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ с Sesn2. Π’ Π½Π°ΡΡ‚оящий ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π΄Π΅Ρ‚Π°Π»ΠΈ процСсса, приводящСго ΠΊ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ Sesn2 Π² ΡΠ΄Ρ€ΠΎ, нСизвСстны ΠΈ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ дальнСйшСго изучСния.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Callan, H.G. and S.G. Tomlin, Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope. Proc R Soc Lond Π’ Biol Sci, 1950.137(888): p. 367−378.
  2. Franke, W.W. and U. Scheer, The ultrastructure of the nuclear envelope of amphibian oocytes: a reinvestigation. II. The immature oocyte and dynamic aspects. J Ultrastruct Res, 1970. 30(3): p. 317−327.
  3. Gall, J.G., Octagonal nuclear pores. J Cell Biol, 1967. 32(2): p. 391−399.
  4. Fahrenkrog, B. and U. Aebi, The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol, 2003. 4(10): p. 757−766.
  5. Beck, M., et al., Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science, 2004. 306(5700): p. 1387−1390.
  6. Beck, M., et al., Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature, 2007. 449(7162): p. 611−615.
  7. Fahrenkrog, Π’., et al., Molecular architecture of the yeast nuclear pore complex: localization of Nsplp subcomplexes. J Cell Biol, 1998.143(3): p. 577−588.
  8. Kiseleva, E., et al., Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. J Struct Biol, 2004.145(3): p. 272−288.
  9. Yang, Q., M.P. Rout, and C.W. Akey, Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol Cell, 1998.1(2): p. 223−234.
  10. Gerace, L. and B. Burke, Functional organization of the nuclear envelope. Annu Rev Cell Biol, 1988. 4: p. 335−374.
  11. Gorlich, D. and U. Kutay, Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol, 1999.15: p. 607−660.
  12. Maeshima, K., et al., Cell-cycle-dependent dynamics of nuclear pores: pore-free islands and lamins. J Cell Sci, 2006.119(Pt 21): p. 4442−4451.
  13. Ribbeck, K. and D. Gorlich, Kinetic analysis of translocation through nuclear pore complexes. EMBO J, 2001. 20(6): p. 1320−1330.
  14. Pante, N. and M. Kann, Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell, 2002.13(2): p. 425−434.
  15. Weis, K., The nuclear pore complex: oily spaghetti or gummy bear? Cell, 2007.130(3): p. 405 407.
  16. Fried, H. and U. Kutay, Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci, 2003. 60(8): p. 1659−1688.
  17. Tran, E.J. and S.R. Wente, Dynamic nuclear pore complexes: life on the edge. Cell, 2006. 125(6): p. 1041−1053.
  18. Rexach, M. and G. Blobel, Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell, 1995. 83(5): p. 683−692.
  19. Wozniak, R.W., M.P. Rout, and J.D. Aitchison, Karyopherins and kissing cousins. Trends Cell Biol, 1998. 8(5): p. 184−188.
  20. Pemberton, L.F. and B.M. Paschal, Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic, 2005. 6(3): p. 187−198.
  21. Melchior, F., et al., Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J Cell Biol, 1993.123(6 Pt 2): p. 1649−1659.
  22. Moore, M.S. and G. Blobel, The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature, 1993.365(6447): p. 661−663.
  23. Gorlich, D., et al., Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J, 1996.15(20): p. 5584−5594.
  24. Weis, K., Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell, 2003.112(4): p. 441−451.
  25. Mosammaparast, N. and L.F. Pemberton, Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol, 2004.14(10): p. 547−556.
  26. Goldfarb, D.S., et al., Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol, 2004.14(9): p. 505−514.
  27. Conti, E., et al., Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell, 1998.94(2): p. 193−204.
  28. Kobe, Π’., Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nat Struct Biol, 1999. 6(4): p. 388−397.
  29. Rosenblum, J.S., et al., Nuclear import and the evolution of a multifunctional RNA-binding protein. J Cell Biol, 1998.143(4): p. 887−899.
  30. Fischer, U., et al., The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell, 1995. 82(3): p. 475−483.
  31. Johnson, A.W., E. Lund, and J. Dahlberg, Nuclear export of ribosomal subunits. Trends Bio-chem Sci, 2002. 27(11): p. 580−585.
  32. Yoshida, K. and G. Blobel, The karyopherin Kap142p/Msn5p mediates nuclear import and nuclear export of different cargo proteins. J Cell Biol, 2001.152(4): p. 729−740.
  33. Kaffman, A. and E.K. O’Shea, Regulation of nuclear localization: a key to a door. Annu Rev Cell Dev Biol, 1999.15: p. 291−339.
  34. Kutay, U., et al., Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell, 1997. 90(6): p. 1061−1071.
  35. Arts, G J., et al., The role of exportin-t in selective nuclear export of mature tRNAs. EMBO J, 1998.17(24): p. 7430−7441.
  36. Kim, V.N., MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol, 2004.14(4): p. 156−159.
  37. Lei, E.P. and P.A. Silver, Protein and RNA export from the nucleus. Dev Cell, 2002. 2(3): p. 261 272.
  38. Chook, Y.M. and G. Blobel, Karyopherins and nuclear import. Curr Opin Struct Biol, 2001. 11(6): p. 703−715.
  39. Conti, E., Structures of importins. Results Probl Cell Differ, 2002.35: p. 93−113.
  40. Matsuura, Y. and M. Stewart, Structural basis for the assembly of a nuclear export complex. Nature, 2004. 432(7019): p. 872−877.
  41. Petosa, C., et al., Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol Cell, 2004.16(5): p. 761−775.
  42. Cingolani, G., et al., Molecular basis for the recognition of a nonclassical nuclear localization signal by importin beta. Mol Cell, 2002.10(6): p. 1345−1353.
  43. Cingolani, G., et al., Structure of importin-beta bound to the IBB domain of importin-alpha. Nature, 1999. 399(6733): p. 221−229.
  44. Fukuhara, N., et al., Conformational variability of nucleo-cytoplasmic transport factors. J Biol Chem, 2004. 279(3): p. 2176−2181.
  45. Chook, Y.M. and G. Blobel, Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. Nature, 1999. 399(6733): p. 230−237.
  46. Vetter, I.R., et al., Structural view of the Ran-lmportin beta interaction at 2.3 A resolution. Cell, 1999. 97(5): p. 635−646.
  47. Bayliss, R., T. Littlewood, and M. Stewart, Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking. Cell, 2000.102(1): p. 99−108.
  48. Bednenko, J., G. Cingolani, and L. Gerace, Importin beta contains a COOH-terminal nucleoporin binding region important for nuclear transport. J Cell Biol, 2003.162(3): p. 391−401.
  49. Ben-Efraim, I. and L. Gerace, Gradient of increasing affinity of importin beta for nucleoporins along the pathway of nuclear import. J Cell Biol, 2001.152(2): p. 411−417.
  50. Pyhtila, B. and M. Rexach, A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex. J Biol Chem, 2003.278(43): p. 42 699−42 709.
  51. Shah, S., S. Tugendreich, and D. Forbes, Major binding sites for the nuclear import receptor are the internal nucleoporin Nup153 and the adjacent nuclear filament protein Tpr. J Cell Biol, 1998.141(1): p. 31−49.
  52. Zeitler, B. and K. Weis, The FG-repeat asymmetry of the nuclear pore complex is dispensable for bulk nucleocytoplasmic transport in vivo. J Cell Biol, 2004.167(4): p. 583−590.
  53. Gorlich, D., M.J. Seewald, and K. Ribbeck, Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J, 2003. 22(5): p. 1088−1100.
  54. Bayliss, R., et al., Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO J, 2002. 21(12): p. 2843−2853.
  55. Oki, M. and T. Nishimoto, A protein required for nuclear-protein import, Moglp, directly interacts with GTP-Gsp1p, the Saccharomyces cerevisiae ran homologue. Proc Natl Acad Sci USA, 1998. 95(26): p. 15 388−15 393.
  56. Steggerda, S.M. and B.M. Paschal, The mammalian Mog1 protein is a guanine nucleotide release factor for Ran. J Biol Chem, 2000. 275(30): p. 23 175−23 180.
  57. Nemergut, M.E., et al., Chromatin docking and exchange activity enhancement of RCC1 by his-tones H2A and H2B. Science, 2001. 292(5521): p. 1540−1543.
  58. Renault, L., et al., Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell, 2001.105(2): p. 245−255.
  59. Li, H.Y., D. Wirtz, and Y. Zheng, A mechanism of coupling RCC7 mobility to RanGTP production on the chromatin in vivo. J Cell Biol, 2003.160(5): p. 635−644.
  60. Kalab, P., K. Weis, and R. Heald, Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science, 2002. 295(5564): p. 2452−2456.
  61. Bischoff, F.R., et al., RanGAPI induces GTPase activity of nuclear Ras-related Ran. Proc Natl Acad Sci USA, 1994. 91(7): p. 2587−2591.
  62. Bischoff, F.R., et al., Co-activation of RanGTPase and inhibition of GTP dissociation by RanGTP binding protein RanBPI. EMBO J, 1995.14(4): p. 705−715.
  63. Izaurralde, E., et al., The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J, 1997.16(21): p. 6535−6547.
  64. Nemergut, M.E. and I.G. Macara, Nuclear import of the ran exchange factor, RCC1, is mediated by at least two distinct mechanisms. J Cell Biol, 2000.149(4): p. 835−850.
  65. Mahajan, R., et al., A small ubiquitin-related polypeptide involved in targeting RanGAPI to nuclear pore complex protein RanBP2. Cell, 1997. 88(1): p. 97−107.
  66. Matunis, M.J., E. Coutavas, and G. Blobel, A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAPI between the cytosol and the nuclear pore complex. J Cell Biol, 1996.135(6 Pt 1): p. 1457−1470.
  67. Pichler, A., et al., The nucleoporin RanBP2 has SUM01 E3 ligase activity. Cell, 2002.108(1): p. 109−120.
  68. Lindsay, M.E., et al., Npap60/Nup50 is a tri-stable switch that stimulates importin-alpha-.beta-mediated nuclear protein import. Cell, 2002.110(3): p. 349−360.
  69. Lindsay, M.E., et al., Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein export. J Cell Biol, 2001.153(7): p. 1391−1402.
  70. DeFranco, D.B., Navigating steroid hormone receptors through the nuclear compartment. Mol Endocrinol, 2002.16(7): p. 1449−1455.
  71. Shank, L.C. and B.M. Paschal, Nuclear transport of steroid hormone receptors. Crit Rev Eu-karyot Gene Expr, 2005.15(1): p. 49−73.
  72. Picard, D. and K.R. Yamamoto, Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J, 1987. 6(11): p. 3333−3340.
  73. Picard, D., et al., Signal transduction by steroid hormones: nuclear localization is differentially regulated in estrogen and glucocorticoid receptors. Cell Regul, 1990.1(3): p. 291−299.
  74. Simental, J.A., et al., Transcriptional activation and nuclear targeting signals of the human androgen receptor. J Biol Chem, 1991. 266(1): p. 510−518.
  75. Ylikomi, T., et al., Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J, 1992.11(10): p. 3681−3694.
  76. Savory, J.G., et al., Discrimination between NL1- and NL2-mediated nuclear localization of the glucocorticoid receptor. Mol Cell Biol, 1999.19(2): p. 1025−1037.
  77. Freedman, N.D. and K.R. Yamamoto, Importin 7 and importin alpha/importin beta are nuclear import receptors for the glucocorticoid receptor. Mol Biol Cell, 2004.15(5): p. 2276−2286.
  78. Black, B.E., et al., DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr Biol, 2001.11(22): p. 1749−1758.
  79. Saporita, A.J., et al., Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J Biol Chem, 2003. 278(43): p. 41 998−42 005.
  80. Katagiri, Y., et al., Modulation of retinoid signalling through NGF-induced nuclear export of NGFI-B. Nat Cell Biol, 2000. 2(7): p. 435−440.
  81. Itoh, M., et al., Nuclear export of glucocorticoid receptor is enhanced by c-Jun N-terminal kinase-mediated phosphorylation. Mol Endocrinol, 2002.16(10): p. 2382−2392.
  82. Liu, J. and D.B. DeFranco, Protracted nuclear export of glucocorticoid receptor limits its turnover and does not require the exportin 1/CRM1-directed nuclear export pathway. Mol Endocrinol, 2000.14(1): p^ 40−51.
  83. Yang, J., J. Liu, and D.B. DeFranco, Subnuclear trafficking of glucocorticoid receptors in vitro: chromatin recycling and nuclear export. J Cell Biol, 1997.137(3): p. 523−538.
  84. Kino, T., et al., Protein 14−3-3sigma interacts with and favors cytoplasmic subcellular localization of the glucocorticoid receptor, acting as a negative regulator of the glucocorticoid signaling pathway. J Biol Chem, 2003. 278(28): p. 25 651−25 656.
  85. Holaska, J.M., et al., Calreticulin Is a receptor for nuclear export. J Cell Biol, 2001.152(1): p. 127−140.
  86. Qiu, M., et al., Mitogen-activated protein kinase regulates nuclear association of human progesterone receptors. Mol Endocrinol, 2003.17(4): p. 628−642.
  87. Cronshaw, J.M., et al., Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol, 2002.158(5): p. 915−927.
  88. Rout, M.P., et al., The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol, 2000.148(4): p. 635−651.
  89. Griffis, E.R., et al., Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell, 2002.13(4): p. 1282−1297.
  90. Rabut, G., V. Doye, and J. Ellenberg, Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol, 2004. 6(11): p. 1114−1121.
  91. Devos, D., et al., Simple fold composition and modular architecture of the nuclear pore complex. Proc Natl Acad Sci USA, 2006.103(7): p. 2172−2177.
  92. Higa, M.M., et al., Molecular characterization of the Ran-binding zinc finger domain of Nup153. J Biol Chem, 2007. 282(23): p. 17 090−17 100.
  93. Handa, N., et al., The crystal structure of mouse Nup35 reveals atypical RNP motifs and novel homodimerization of the RRM domain. J Mol Biol, 2006. 363(1): p. 114−124.
  94. Hodel, A.E., et al., The three-dimensional structure of the autoproteolytic, nuclear poretargeting domain of the human nucleoporin Nup98. Mol Cell, 2002.10(2): p. 347−358.
  95. Weirich, C.S., et al., The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol Cell, 2004.16(5): p. 749 760.
  96. Berke, I.C., et al., Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex. J Cell Biol, 2004.167(4): p. 591−597.
  97. Napetschnig, J., G. Blobel, and A. Hoelz, Crystal structure of the N-terminal domain of the human protooncogene Nup214/CAN. Proc Natl Acad Sci USA, 2007.104(6): p. 1783−1788.
  98. Drin, G., et al., A general amphipathic alpha-helical motif for sensing membrane curvature. Nat struct Mol Biol, 2007. 14(2): p. 138−146.
  99. Isgro, T.A. and K. Schulten, Binding dynamics of isolated nucleoporin repeat regions to importin-beta. Structure, 2005.13(12): p. 1869−1879.
  100. Isgro, T.A. and K. Schulten, Cselp-binding dynamics reveal a binding pattern for FG-repeat nucleoporins on transport receptors. Structure, 2007.15(8): p. 977−991.
  101. Isgro, T.A. and K. Schulten, Association of nuclear pore FG-repeat domains to NTF2 import and export complexes. J Mol Biol, 2007. 366(1): p. 330−345.
  102. Liu, S.M. and M. Stewart, Structural basis for the high-affinity binding of nucleoporin Nuplp to the Saccharomyces cerevisiae importin-beta homologue, Kap95p. J Mol Biol, 2005.349(3): p. 515−525.
  103. Denning, D.P., et al., Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci USA, 2003.100(5): p. 2450−2455.
  104. Denning, D.P., et al., The Saccharomyces cerevisiae nucleoporin Nup2p is a natively unfolded protein. J Biol Chem, 2002. 277(36): p. 33 447−33 455.
  105. Denning, D.P. and M.F. Rexach, Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins. Mol Cell Proteomics, 2007. 6(2): p. 272−282.
  106. Fahrenkrog, B., et al., Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex. J Struct Biol, 2002.140(1−3): p. 254−267.
  107. Lim, R.Y., U. Aebi, and D. Stoffler, From the trap to the basket: getting to the bottom of the nuclear pore complex. Chromosoma, 2006.115(1): p. 15−26.
  108. Paulillo, S.M., et al., Nucleoporin domain topology is linked to the transport status of the nuclear pore complex. J Mol Biol, 2005. 351(4): p. 784−798.
  109. Hetzer, M.W., T.C. Walther, and I.W. Mattaj, Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annu Rev Cell Dev Biol, 2005.21: p. 347−380.
  110. Casolari, J.M., et al., Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell, 2004.117(4): p. 427−439.
  111. Ishii, K., et al., Chromatin boundaries in budding yeast: the nuclear pore connection. Cell, 2002.109(5): p. 551−562.
  112. Dilworth, D.J., et al., The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. J Cell Biol, 2005.171(6): p. 955−965.
  113. Meneghini, M.D., M. Wu, and H.D. Madhani, Conserved histone variant H2A. Z protects euchro-matin from the ectopic spread of silent heterochromatin. Cell, 2003.112(5): p. 725−736.
  114. Schmid, M., et al., Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell, 2006. 21(3): p. 379−391.
  115. Vassileva, M.T. and M.J. Matunis, SUMO modification of heterogeneous nuclear ribonucleopro-teins. Mol Cell Biol, 2004. 24(9): p. 3623−3632.
  116. Panse, V.G., et al., Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat Cell Biol, 2003.5(1): p. 21−27.
  117. Zhang, H., H. Saitoh, and M.J. Matunis, Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol, 2002.22(18): p. 6498−6508.
  118. Hodge, C.A., et al., Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gleip and suppresses the mRNA export defect of xpo1−1 cells. EMBO J, 1999.18(20): p. 5778−5788.
  119. Schmitt, C., et al., Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J, 1999.18(15): p. 4332−4347.
  120. Lund, M.K. and C. Guthrie, The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol Cell, 2005.20(4): p. 645−651.
  121. Fontoura, B.M., G. Blobel, and N.R. Yaseen, The nucleoporin Nup98 is a site for GDP/GTP exchange on ran and termination of karyopherin beta 2-mediated nuclear import. J Biol Chem, 2000. 275(40): p. 31 289−31 296.
  122. Pollard, V.W., et al., A novel receptor-mediated nuclear protein import pathway. Cell, 1996. 86(6): p. 985−994.
  123. Blevins, M.B., et al., Complex formation among the RNA export proteins Nup98, Rae1/Gle2, and TAP. J Biol Chem, 2003. 278(23): p. 20 979−20 988.
  124. Faria, P.A., et al., VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway. Mol Cell, 2005. 17(1): p. 93−102.
  125. Matsuura, Y. and M. Stewart, Nup50JNpap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J, 2005. 24(21): p. 3681−3689.
  126. Rout, M.P., et al., Virtual gating and nuclear transport: the hole picture. Trends Cell Biol, 2003. 13(12): p. 622−628.
  127. Macara, I.G., Transport into and out of the nucleus. Microbiol Mol Biol Rev, 2001. 65(4): p. 570 594, table of contents.
  128. Nachury, M.V. and K. Weis, The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci USA, 1999. 96(17): p. 9622−9627.
  129. Frey, S., R.P. Richter, and D. Gorlich, FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science, 2006. 314(5800): p. 815−817.
  130. Frey, S. and D. Gorlich, A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell, 2007.130(3): p. 512−523.
  131. Strawn, L.A., et al., Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol, 2004. 6(3): p. 197−206.
  132. Galy, V., I.W. Mattaj, and P. Askjaer, Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo. Mol Biol Cell, 2003.14(12): p. 5104−5115.
  133. Shulga, N., et al., Yeast nucleoporins involved in passive nuclear envelope permeability. J Cell Biol, 2000.149(5): p. 1027−1038.
  134. Rich, A., N.R. Davidson, and L. Pauling, Structural chemistry and molecular biology. 1968, San Francisco: W. H. Freeman. 907 p.
  135. Peters, R., Translocation through the nuclear pore complex: selectivity and speed by reduc-tion-of-dimensionality. Traffic, 2005. 6(5): p. 421−427.
  136. D’Angelo, M.A. and M.W. Hetzer, The role of the nuclear envelope in cellular organization. Cell Mol Life Sci, 2006. 63(3): p. 316−332.
  137. Schirmer, E.C. and R. Foisner, Proteins that associate with lamins: many faces, many functions. Exp Cell Res, 2007. 313(10): p. 2167−2179.
  138. Haraguchi, T., et al., Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J Cell Sci, 2000.113 (Pt 5): p. 779−794.
  139. Ohba, T., et al., Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. J Cell Biol, 2004.167(6): p. 1051−1062.
  140. Braunagel, S.C., et al., Early sorting of inner nuclear membrane proteins is conserved. Proc Natl Acad Sci USA, 2007.104(22): p. 9307−9312.
  141. King, M.C., C.P. Lusk, and G. Blobel, Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature, 2006. 442(7106): p. 1003−1007.
  142. Zuleger, N., N. Korfali, and E.C. Schirmer, Inner nuclear membrane protein transport is mediated by multiple mechanisms. Biochem Soc Trans, 2008. 36(Pt 6): p. 1373−1377.
  143. Jans, D.A., C.Y. Xiao, and M.H. Lam, Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays, 2000.22(6): p. 532−544.
  144. Poon, I.K. and D.A. Jans, Regulation of nuclear transport: central role in development and transformation? Traffic, 2005. 6(3): p. 173−186.
  145. Riviere, Y., et al., Processing of the precursor of NF-kappa B by the HIV-1 protease during acute infection. Nature, 1991.350(6319): p. 625−626.
  146. Craig, E., et al., A masked NES in INI1/hSNF5 mediates hCRM1 -dependent nuclear export: implications for tumorigenesis. EMBO J, 2002. 21(1−2): p. 31−42.
  147. Kaffman, A., N.M. Rank, and E.K. O’Shea, Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Pse1JKap121. Genes Dev, 1998.12(17): p. 26 732 683.
  148. Ferrigno, P., et al., Regulated nucleofcytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XP01. EMBO J, 1998.17(19): p. 5606−5614.
  149. Kuge, S., et al., Regulation of the yeast Yaplp nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol Cell Biol, 2001. 21(18): p. 6139−6150.
  150. Kudo, N., et al., A novel nuclear export signal sensitive to oxidative stress in the fission yeast transcription factor Pap1. J Biol Chem, 1999. 274(21): p. 15 151−15 158.
  151. Zhu, J. and F. McKeon, NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature, 1999.398(6724): p. 256−260.
  152. Beg, A.A., et al., / kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B: a mechanism for cytoplasmic retention. Genes Dev, 1992. 6(10): p. 1899−1913.
  153. Traenckner, E.B., S. Wilk, and P.A. Baeuerle, A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J, 1994.13(22): p. 5433−5441.
  154. Li, S., et al., Identification of a novel cytoplasmic protein that specifically binds to nuclear localization signal motifs. J Biol Chem, 1998. 273(11): p. 6183−6189.
  155. Matheny, S.A., et al., Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature, 2004. 427(6971): p. 256−260.
  156. Almazov, V.P., et al., Construction of chimeric tumor suppressor p53 resistant to the dominant-negative interaction with p53 mutants. Mol Biol (Mosk), 2002. 36(4): p. 664−671.
  157. Stommel, J.M., et al., A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J, 1999.18(6): p. 1660−1672.
  158. Fineberg, K., et al., Inhibition of nuclear import mediated by the Rev-arginine rich motif by RNA molecules. Biochemistry, 2003. 42(9): p. 2625−2633.
  159. Chan, C.K. and D.A. Jans, Synergy of importin alpha recognition and DNA binding by the yeast transcriptional activator GAL4. FEBS Lett, 1999. 462(1−2): p. 221−224.
  160. Forwood, J.K., V. Harley, and D.A. Jans, The C-terminal nuclear localization signal of the sex-determining region Y (SRY) high mobility group domain mediates nuclear import through importin beta 1. J Biol Chem, 2001. 276(49): p. 46 575−46 582.
  161. Argentaro, A., et al., A SOX9 defect of calmodulin-dependent nuclear import in campomelic dysplasia/autosomal sex reversal. J Biol Chem, 2003.278(36): p. 33 839−33 847.
  162. Hopper, A.K. and E.M. Phizicky, tRNA transfers to the limelight. Genes Dev, 2003.17(2): p. 162 180.
  163. Culjkovic, B., et al., elF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol, 2006.175(3): p. 415−426.
  164. Kay, R.A., et al., The expression of migration stimulating factor, a potent oncofetal cytokine, is uniquely controlled by 3'-untranslated region-dependent nuclear sequestration of its precursor messenger RNA. Cancer Res, 2005. 65(23): p. 10 742−10 749.
  165. Hwang, H.W., E.A. Wentzel, and J.T. Mendell, A hexanucleotide element directs microRNA nuclear import. Science, 2007.315(5808): p. 97−100.
  166. Kohler, A. and E. Hurt, Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol, 2007. 8(10): p. 761−773.
  167. York, J.D., et al., A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science, 1999.285(5424): p. 96−100.
  168. Hubner, S., C.Y. Xiao, and D.A. Jans, The protein kinase CK2 site (Ser111/112) enhances recognition of the simian virus 40 large T-antigen nuclear localization sequence by importin. J Biol Chem, 1997. 272(27): p. 17 191−17 195.
  169. Komeili, A. and E.K. O’Shea, Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science, 1999. 284(5416): p. 977−980.
  170. Smith, W.A., et al., Arginine methylation of RNA helicase a determines its subcellular localization. J Biol Chem, 2004.279(22): p. 22 795−22 798.
  171. Trotman, L.C., et al., Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell, 2007.128(1): p. 141−156.
  172. Plafker, S.M., et al., Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import. J Cell Biol, 2004.167(4): p. 649−659.
  173. Nikolaev, A.Y., et al., Pare: a cytoplasmic anchor for p53. Cell, 2003.112(1): p. 29−40.
  174. Tago, K., et al., Regulation of nuclear retention of glucocorticoid receptor by nuclear Hsp90. Mol Cell Endocrinol, 2004. 213(2): p. 131−138.
  175. Lixin, R., et al., Novel properties of the nucleolar targeting signal of human angiogenin. Blo-chem Biophys Res Commun, 2001.284(1): p. 185−193.
  176. Briggs, L.J., et al., Novel properties of the protein kinase CK2-site-regulated nuclear- localization sequence of the interferon-induced nuclear factor IF116. Biochem J, 2001.353(Pt 1): p. 6977.
  177. Efthymiadis, A., L.J. Briggs, and D.A. Jans, The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem, 1998. 273(3): p. 1623−1628.
  178. Marg, A., et al., Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Statl. J Cell Biol, 2004. 165(6): p. 823−833.
  179. Fang, X., et al., Developmental regulation of the heat shock response by nuclear transport factor karyopherin-alpha3. Development, 2001.128(17): p. 3349−3358.
  180. Nachury, M.V., et al., Cloning and characterization of hSRP1 gamma, a tissue-specific nuclear transport factor. Proc Natl Acad Sci USA, 1998.95(2): p. 582−587.
  181. Kohler, M., et al., Cloning of two novel human importin-alpha subunits and analysis of the expression pattern of the importin-alpha protein family. FEBS Lett, 1997. 417(1): p. 104−108.
  182. Kohler, M., et al., Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import. Mol Cell Biol, 1999.19(11): p. 7782−7791.
  183. Timney, B.L., et al., Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo. J Cell Biol, 2006.175(4): p. 579−593.
  184. Yang, W. and S.M. Musser, Nuclear import time and transport efficiency depend on importin beta concentration. J Cell Biol, 2006.174(7): p. 951−961.
  185. Dahl, E., et al., Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin alpha2 as a potential novel prognostic marker in breast cancer. Clin Cancer Res, 2006.12(13): p. 3950−3960.
  186. Winnepenninckx, V., et al., Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst, 2006. 98(7): p. 472−482.
  187. Kim, I.S., et al., Truncated form of importin alpha identified in breast cancer cell inhibits nuclear import Of p53. J Biol Chem, 2000. 275(30): p. 23 139−23 145.
  188. Frieman, M., et al., Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Goigi membrane. J Virol, 2007. 81(18): p. 9812−9824.
  189. Reid, S.P., et al., Ebola virus VP24 binds karyopherin alphal and blocks STAT1 nuclear accumulation. J Virol, 2006.80(11): p. 5156−5167.
  190. Kau, T.R., J.C. Way, and P.A. Silver, Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer, 2004. 4(2): p. 106−117.
  191. Glarre, M., et al., Patterns of importin-alpha expression during Drosophila spermatogenesis. J Struct Biol, 2002.140(1−3): p. 279−290.
  192. Mason, D.A., R.J. Fleming, and D.S. Goldfarb, Drosophila melanogaster importin alphal and alpha3 can replace importin alpha2 during spermatogenesis but not oogenesis. Genetics, 2002.161(1): p. 157−170.
  193. Geles, K.G., et al., A role for Caenorhabditis elegans importin IMA-2 in germ line and embryonic mitosis. Mol Biol Cell, 2002.13(9): p. 3138−3147.
  194. Gasca, S., et al., A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation ofSOX9 during sexual determination. Proc Natl Acad Sci U S A, 2002. 99(17): p. 11 199−11 204.
  195. Tekotte, H., et al., Dcas is required for importin-alpha3 nuclear export and mechano-sensory organ cell fate specification in Drosophila. Dev Biol, 2002. 244(2): p. 396−406.
  196. Wu, X., et al., Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function. Proc Natl Acad Sci USA, 2001.98(6): p. 3191−3196.
  197. Cai, Y., et al., Characterization and potential function of a novel testis-specific nucleoporin BS-63. Mol Reprod Dev, 2002. 61(1): p. 126−134.
  198. Under, B., et al., Expression pattern and cellular distribution of the murine homologue of AF10. Biochim Biophys Acta, 1998.1443(3): p. 285−296.
  199. De Souza, C.P., et al., Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr Biol, 2004. 14(22): p. 1973−1984.
  200. Makhnevych, T., et al., Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell, 2003.115(7): p. 813−823.
  201. Chan, G.K., S.T. Liu, and T.J. Yen, Kinetochore structure and function. Trends Cell Biol, 2005. 15(11): p. 589−598.203.204.205.206.207.208.209.210. 211. 212.213.214.215.
  202. Xu, X.M. and I. Meier, The nuclear pore comes to the fore. Trends Plant Sci, 2008.13(1): p. 2027.
  203. Blower, M.D., et al., A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell, 2005.121(2): p. 223−234.
  204. Enninga, J., et al., Role of nucleoporin induction in releasing an mRNA nuclear export block. Science, 2002. 295(5559): p. 1523−1525.
  205. Gustin, K.E., Inhibition of nucleo-cytoplasmic trafficking by RNA viruses: targeting the nuclear pore complex. Virus Res, 2003. 95(1−2): p. 35−44.
  206. Olsson, M., S. Scheele, and P. Ekblom, Limited expression of nuclear pore membrane glycoprotein 210 in cell lines and tissues suggests cell-type specific nuclear pores in metazoans. Exp Cell Res, 2004. 292(2): p. 359−370.
  207. Fan, F., et al., cDNA cloning and characterization of Npap60: a novel rat nuclear pore-associated protein with an unusual subcellular localization during male germ cell differentiation. Genomics, 1997. 40(3): p. 444−453.
  208. Galy, V., et al., Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell, 2004.116(1): p. 63−73.
  209. Kubitscheck, U., et al., Nuclear transport of single molecules: dwell times at the nuclear pore complex. J Cell Biol, 2005.168(2): p. 233−243.
  210. Rout, M.P. and S.R. Wente, Pores for thought: nuclear pore complex proteins. Trends Cell Biol, 1994. 4(10): p. 357−365.
  211. Nehrbass, U., et al., Analysis of nucleo-cytoplasmic transport in a thermosensitive mutant of nuclear pore protein NSP1. Eur J Cell Biol, 1993. 62(1): p. 1−12.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ