Помощь в написании студенческих работ
Антистрессовый сервис

Машины постоянного тока параллельного возбуждения

РефератПомощь в написанииУзнать стоимостьмоей работы

Характеристики вида 3 (рис. 8) неприемлемы по условиям устойчивости работы. Поэтому двигатели параллельного возбуждения изготовляются со слегка падающими характеристиками вида 1 (рис. 8). В современных высоко использованных машинах ввиду довольно сильного насыщения зубцов, якоря влияние поперечной реакции якоря может быть настолько большим, что получить характеристику вида 1 (рис. 8) невозможно… Читать ещё >

Машины постоянного тока параллельного возбуждения (реферат, курсовая, диплом, контрольная)

Министерство образования РФ.

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Факультет Автоматики и электромеханики Кафедра Электрические машины и аппараты.

МАШИНЫ ПОСТОЯННОГО ТОКА ПАРАЛЛЕЛЬНОГО ВОЗБУЖДЕНИЯ.

Реферат по дисциплине «Электрические машины».

Исполнитель студент группы 7А91 _____________________Вакер В.С.

(подпись, дата).

Руководитель доцент, к.т.н. _____________________Игнатович В.М.

(подпись).

_____________________.

(дата).

Томск-2002.

Электрические машины постоянного тока широко применяются в различных отраслях промышленности.

Значительное распространение электродвигателей постоянного тока объясняется их ценными качествами: высокими пусковым, тормозным и перегрузочным моментами, сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения.

Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов. Мощности этих электродвигателей достигают сотен киловатт. В связи с автоматизацией управления производственными процессами и механизмами расширяется область применения маломощных двигателей постоянного тока общего применения мощностью от единиц до сотен ватт.

Генераторы постоянного тока общего применения в настоящее время используются реже, чем электродвигатели, поскольку значительное распространение получают ионные и полупроводниковые преобразователи.

Электродвигатели и генераторы постоянного тока составляют значительную часть электрооборудования летательных аппаратов, Генераторы постоянного тока применяют в качестве источников питания; максимальная мощность их достигает 30 КВт. Электродвигатели летательных аппаратов используют для привода различных механизмов; мощность их имеет значительный диапазон — от долей до десятков киловатт. На самолетах, например, устанавливается более 200 различных электродвигателей постоянного тока. Двигатели постоянного тока широко используются в электрической тяге, в приводе подъемных устройств, для привода металлорежущих станков. Мощные двигатели постоянного тока применяются для привода прокатных станов и на судах для вращения гребных винтов. Постоянный ток для питания двигателей получается с помощью генераторов постоянного тока или выпрямительных установок, преобразующих переменный ток в постоянный.

Генераторы постоянного тока являются источником питания для промышленных установок, потребляющих постоянный ток низкого напряжения (электролизные и гальванические установки). Питание обмоток возбуждения мощных синхронных генераторов осуществляется во многих случаях от генераторов постоянного тока (возбудителей).

В зависимости от схемы питания обмотки возбуждения машины постоянного тока разделяются на несколько типов (с независимым, параллельным, последовательным и смешанным возбуждением).

Ежегодный выпуск машин постоянного тока в РФ значительно меньше выпуска машин переменного тока, что обусловлено дороговизной двигателей постоянного тока.

Основные элементы конструкции МПТ.

В машинах постоянного тока насажанный на вал роторный сердечник вместе с заложенной в его пазах якорной обмоткой обычно называется якорем. Якорь машины постоянного тока вращается в магнитном поле, создаваемом обмотками возбуждения 1, надетыми на неподвижные полюсы 2 (рис 1). По проводникам 6 нагруженной якорной обмотки проходит ток. В результате взаимодействия полей обмоток возбуждения и якорной создается электромагнитный момент, возникновение которого можно также объяснить взаимодействием тока якорной обмотки с магнитным потоком машины.

Из технологических соображений сердечник полюсов обычно набирается на шпильках из листов электротехнической стали толщиной 0,5—1 мм (рис. 2). Одна сторона полюса прикрепляется к станине, часто при помощи болтов, другая — располагается [pic] Рис. 1. Устройство машины постоянного тока: 1 — обмотка возбуждения; 2 — полюсы; 3 — ярмо; 4 — полюсный наконечник; 5 — якорь; 6 — проводники якорной обмотки; 7 — зубец якорного сердечника; 8 — воздушный зазор машины Рис. 2. Полюс машины постоянного тока: 2 — полюсный сердечник; 2 — воздушный зазор; 3 — полюсный наконечник; 4 — обмотка возбуждения 5 — болт для крепления полюса; 6 — ярмо.

вблизи якоря. Зазор между полюсом и якорным сердечником является рабочим воздушным зазором машины. Со стороны, обращенной к якорю, полюс заканчивается так называемым полюсным наконечником, форма и размер которого выбираются таким образом, чтобы способствовать лучшему распределению потока в воздушном зазоре. На полюсе размещается катушка обмотки возбуждения. Иногда в малых машинах полюсы не имеют обмотки возбуждения и выполняются из постоянных магнитов. Часть станины, по которой проходит постоянный магнитный поток, называется ярмом.

Основная часть потока Ф (см. рис. 1), создаваемого обмоткой возбуждения, идет через сердечник 2 северного полюса N, воздушный зазор 8, зубцы 7 и спинку якоря 5, после чего поток проходит аналогичный путь в обратной последовательности к южному соседнему полюсу S и через ярмо 3 возвращается к северному полюсу N. Поток Ф проходит замкнутый путь, который показан на рис. 1 линиями магнитной индукции. Полярность полюсов чередуется (северный, южный, северный и т. д.).

На рис. 3, а представлено распределение магнитной индукции в воздушном зазоре двухполюсной машины в функции геометрического угла ?. Начало координат и выбрано посередине между полюсами. В этой точке значение индукции равно нулю. По мере приближения к полюсному наконечнику индукция возрастает, сначала медленно (до точки а) у края полюсного наконечника, а затем резко. Под серединой полюсного наконечника в точке b индукция имеет наибольшее значение. Кривая распределения индукции располагается симметрично относительно оси полюса и в точке с, находящейся посередине между полюсами, проходит через нуль, затем индукция меняет знак. Кривая cde является зеркальным отображением относительно оси абсцисс кривой oabc. Области, в которых индукция имеет положительное и отрицательное значение, чередуются. В общем случае машина может иметь р пар полюсов. Тогда при полном обходе всего воздушного зазора разместится пространственных периодов изменения индукции, так как каждый период соответствует длине поверхности сердечника якоря, расположенной под двумя полюсами. Например, в четырехполюсной машине (р=2) имеются два пространственных периода (рис. 4). В теории электрических машин, кроме угла? г, измеряемого в геометрических градусах, пользуются также понятием угла? э, измеряемого в электрических градусах. Принимают, что каждому пространственному периоду изменения кривой распределения индукции соответствует электрический угол? э=360 эл. град или 2? эл. рад. Поэтому.

?э=??г (1) например, на рис. 3 видно, что при числе пар полюсов р==2 имеем? э=2ссг. При вращении ротора в проводниках якорной обмотки индуктируется э. д. с. Согласно закону электромагнитной индукции э.д.с. проводника.

Рис. 3. Кривые изменения магнитной индукции в пространстве и э.д.с. проводника якорной обмотки во времени: а — пространственное распределение индукции под полюсом; б — изменение э.д.с. проводника во времени; в — выпрямленное при помощи коллектора напряжение на щетках.

e=B?l?, (2).

где Ва — нормальная составляющая индукции в точке, определяемой углом а, в которой в данный момент времени находится проводник, тл;

I — активная длина проводника, т. е. длина, в которой индуктируется э. д. с., м; v — скорость перемещения проводника относительно потока, м/сек. [pic] Рис. 4. Распределение потока в четырехполюсной машине: а — чередование полюсов; б — распределение индукции в воздушном зазоре.

При работе машины длина l активного проводника сохраняется неизменной. Поэтому в случае равномерного вращения (v=const) имеем.

e?B?. (3).

Из выражения (3) следует, что при равномерном вращении якорной обмотки изменение э.д.с е проводника во времени (см. рис. 3, б) в соответствующем масштабе повторяет кривую распределения индукции в воздушном зазоре В?, (см. рис. 3, а). Анализируя кривую изменения э.д.с. во времени, видим, что в проводниках якорной обмотки индуктируется переменная э.д.с.

В двухполюсной машине за один оборот вращения в проводниках якорной обмотки индуктируется э.д.с., частота которой f=n/60 гц, где n— скорость вращения потока относительно проводника, вычисляемая в оборотах в минуту. Если машина имеет р пар полюсов, то за один оборот ротора под проводником пройдет р пространственных волн магнитного поля. Они наведут э.д.с., частота которой в р раз больше, т. е.

[pic] (4).

Выражение (4) определяет частоту э.д.с. многополюсной машины. Оно показывает, что частота э.д.с. пропорциональна числу полюсов машины и скорости ее вращения.

В системе единиц СИ скорость вращения w имеет размерность электрический радиан в секунду. Подставляя в (4) значение w, выраженное через механическую скорость вращения.

[pic] имеем.

[pic] (5).

В машинах постоянного тока для выпрямления э.д.с. применяется коллектор, представляющий собой механический преобразователь, выпрямляющий переменный ток якорной обмотки в постоянный ток, проходящий через щетки во внешнюю цепь. Коллектор состоит из соединенных с витками обмотки якоря изолированных между собой пластин, которые, вращаясь вместе с обмоткой якоря, поочередно соприкасаются с неподвижными щетками, соединенными с внешней цепью. Одна из щеток всегда является положительной, другая — отрицательной.

[pic] Рис. 5. Выпрямление э.д.с. при помощи коллектора:

1— медные пластины; 2 — виток обмотки якоря; 3 — щетки; 4 — внешняя электрическая цепь.

Простейший коллектор имеет две изолированные между собой медные пластины, выполненные в форме полуколец (рис. 5), к которым присоединены концы витка якорной обмотки. Пластины коллектора соприкасаются с неподвижными контактными щетками, связанными с внешней электрической цепью. При работе машины пластины коллектора вращаются вместе с витками якорной обмотки. Щетки устанавливаются таким образом, чтобы в то же время, когда э.д.с. витка меняет знак на обратный, коллекторная пластина перемещалась от щетки одной полярности к щетке другой полярности. В результате этого на щетках возникает пульсирующее напряжение, постоянное по направлению (см. сплошную кривую 1 на рис. 3, в).

[pic] Рис. 6. Устройство коллектора: 1 — корпус; 2 — стяжной болт, 3 — нажимное кольцо; 4 — изоляционная прокладка; 5 — «петушок» — часть коллекторной пластины, к которой припаивается конец секции обмотки; 6 — «ласточкин хвост» — часть коллекторной пластины, служащая для ее крепления; 7 — коллекторная пластина.

Якорная обмотка состоит из большого числа секций, представляющих собой один или несколько последовательно соединенных витков. Конец каждой секции присоединяется к одной из изолированных коллекторных пластин, образующих коллектор (рис. 6). По мере увеличения числа секций уменьшается пульсация напряжения на щетках (рис. 7). При двадцати коллекторных пластинах разница между максимальной и минимальной величиной напряжения, отнесенная к среднему значению, не превышает 0,65%.

Коллектор является сложным и дорогим устройством, требующим тщательного ухода. Его повреждения нередко служат причиной серьезных аварий. Предпринимались многочисленные попытки создать бесколлекторную машину постоянного тока, однако построить ее принципиально невозможно, так как в многовитковой якорной обмотке, активные стороны которой последовательно проходят под полюсами разной полярности, в любом случае наводится переменная э.д.с., для выпрямления которой необходимо особое устройство.

[pic] Рис. 7. Пульсация напряжения на щетках генератора постоянного тока: а — при двух витках на полюс; б — при большом количестве витков.

Поэтому машинами постоянного тока называются электрические машины, у которых преобразование энергии происходит вследствие вращения якорной обмотки относительно неподвижного потока полюсов, а выпрямление тока в постоянный осуществляется коллектором (или иным выпрямителем, вращающимся вместе с якорем).

Вначале создавались машины постоянного тока. В дальнейшем они в значительной степени были вытеснены машинами переменного тока. Благодаря возможности плавного и экономичного регулирования скорости вращения двигатели постоянного тока сохраняют свое доминирующее значение на транспорте, для привода металлургических станов, в крановых и подъемнотранспортных механизмах. В системах автоматики машины постоянного тока широко используются в качестве исполнительных двигателей, двигателей для привода лентопротяжных самозаписывающих механизмов, в качестве тахогенераторов и электромашинных усилителей. Генераторы постоянного тока применяются главным образом для питания радиостанций, двигателей постоянного тока, зарядки аккумуляторных батарей, сварки и электрохимических низковольтных установок.

Принцип действия двигателя постоянного тока с параллельным возбуждением.

Естественные скоростная и механическая характеристики.

Рассмотрим более подробно характеристики двигателя параллельного возбуждения, которые определяют его рабочие свойства.

Скоростная и механическая характеристики двигателя определяются равенствами (6) и (7) при U = const и iB = const. При отсутствии дополнительного сопротивления в цепи якоря эти характеристики называются естественными.

[pic] (6).

[pic] (7).

Если щетки находятся на геометрической нейтрали, при увеличении Ia поток Ф? несколько уменьшится вследствие действия поперечной реакции якоря. В результате этого скорость n, согласно выражению (6), будет стремиться возрасти. С другой стороны, падение напряжения RaIa вызывает уменьшение скорости. Таким образом, возможны три вида скоростной характеристики, изображенные на рис 8; 1 — при преобладании влияния RaIa; 2 — при взаимной компенсации влияния RaIa и уменьшения; 3 — при преобладании влияния уменьшения Ф?.

Ввиду того что изменение Ф? относительно мало, механические характеристики n=f (M) двигателя параллельного возбуждения, определяемые равенством (7), при U= const и iB== const совпадают по виду с характеристиками n= f (Ia) (рис. 8). По этой же причине эти характеристики практически прямолинейны.

Характеристики вида 3 (рис. 8) неприемлемы по условиям устойчивости работы. Поэтому двигатели параллельного возбуждения изготовляются со слегка падающими характеристиками вида 1 (рис. 8). В современных высоко использованных машинах ввиду довольно сильного насыщения зубцов, якоря влияние поперечной реакции якоря может быть настолько большим, что получить характеристику вида 1 (рис. 8) невозможно. Тогда для получения такой характеристики на полюсах помещают слабую последовательную обмотку возбуждения согласного включения, н. с. которой составляет до 10% от н. с. параллельной обмотки возбуждения. При этом уменьшение Ф? под воздействием поперечной реакции якоря частично или полностью компенсируется. Такую последовательную обмотку возбуждения называют стабилизирующей, а двигатель с такой обмоткой по-прежнему называется двигателемпараллельного возбуждения.

Изменение скорости вращения? n (рис. 8) при переходе от холостого хода (Ia =Ia0) к номинальной нагрузке (Ia=Iaн) у двигателя параллельного возбуждения при работе на естественной характеристике мало и составляет 2—8% от nн. Такие слабо падающие характеристики называются жесткими. Двигатели параллельного возбуждения с жесткими характеристиками применяются в установках, в которых требуется, чтобы скорость вращения при изменении нагрузки сохранялась приблизительно постоянной (металлорежущие станки и пр.).

Рис. 8. Виды естественных скоростных и механических характеристик двигателя параллельного возбуждения Регулирование скорости посредствам ослабленного магнитного потока производится обычно с помощью реостата в цепи возбуждения Rp в (см. рис. 11). При отсутствии добавочного сопротивления в цепи якоря (Rpa= 0) и U = const характеристики n =f (Ia) и n=f (M), определяемые равенствами (6) и (7), для разных значений Rр.в., IB или Ф? имеют вид, показанный на рис. 9. Все характеристики n =f (Ia) сходятся на оси абсцисс (n = 0) в общей точке при весьма большом токе Ia, который равен.

[pic].

Однако механические характеристики пересекают ось абсцисс в разных точках.

Нижняя характеристика на рис. 9 соответствует номинальному потоку. Значения n при установившемся режиме работы соответствуют точкам пересечения рассматриваемых характеристик с кривой Мст=f (п) для рабочей машины, соединенной с двигателем (штриховая линия на рис. 9).

Точка холостого хода двигателя (М = М0, Ia = Ia0) лежит несколько правее оси ординат на рис. 9. С увеличением скорости вращения n вследствие увеличения механических потерь М0 и I00 также увеличиваются. Если в этом режиме с помощью приложенного извне момента вращения начать увеличивать скорость вращения n, то Еа=ceФ?т будет увеличиваться, а Iа и М будут, согласно равенствам.

[pic] и [pic].

уменьшаться. При Iа = 0 и М. =0 механические и магнитные потери двигателя покрываются за счет подводимой к валу механической мощности, а при дальнейшем увеличении скорости Iа и М изменят знак и двигатель перейдет в генераторный режим работы (участки характеристик на рис. 9 левее оси ординат). Двигатели общего применения допускают по условиям коммутации регулирование скорости ослаблением поля в пределах 1: 2. Изготовляются также двигатели с регулированием скорости таким способом в пределах до 1: 5 или даже 1: 8, но в этом случае для ограничения максимального напряжения между коллекторными пластинами необходимо увеличить воздушный зазор, регулировать поток по отдельным группам полюсов или применить компенсационную обмотку. Стоимость двигателя при этом увеличивается.

[pic] Рис. 9. Механические и скоростные характеристики двигателя параллельного возбуждения при разных потоках возбуждения.

Регулирование скорости сопротивлением в цепи якоря, искусственные механическая и скоростная характеристики. Если последовательно в цепь якоря включить добавочное сопротивление Rpa (рис. 10, а), то вместо выражений (6) -и (7) получим.

[pic] (8).

[pic] (9) Сопротивление Rpa может быть регулируемым и должно быть рассчитано на длительную работу. Цепь возбуждения должна быть включена на напряжение сети.

[pic] Рис. 10. Схема регулирования скорости вращения двигателя параллельного возбуждения с помощью сопротивления в цепи якоря (а) и соответствующие механические и скоростные характеристики (б).

Характеристики n=f (M) и n=f (Ia) для различных значений Rpa = const при U = const и iB = const изображены на рис. 10, б (Rpa1 < Rpa2< Rpa3) — Верхняя характеристика (Rpa = 0) является естественной. Каждая из характеристик пересекает ось абсцисс (n= 0) в точке с.

[pic] и [pic].

Продолжения этих характеристик под осью абсцисс на рис. 10 соответствуют торможению двигателя противовключением. В этом случае n< 0, э.д.с. Еа имеет противоположный знак и складывается с напряжением сети U, вследствие чего.

[pic] а момент двигателя М действует против направления вращения и является поэтому тормозящим.

Если в режиме холостого хода (Ia = Ia0) с помощью приложенного извне момента вращения начать увеличивать скорость вращения, то сначала достигается режим Ia=0, а затем Ia изменит направление и машина перейдет в режим генератора (участки характеристик на рис. 10, б слева от оси ординат).

Как видно из рис. 10, б, при включении Rpa характеристики становятся менее жесткими, а при больших величинах Rpa — круто падающими, или мягкими. Если кривая момента сопротивления Mст=f (n) имеет вид, изображенный на рис. 10, б штриховой линией, то значения n при установившемся режиме работы для каждого значения Rра определяются точками пересечения соответствующих кривых. Чем больше Rpa, тем меньше n и ниже к. п. д.

Рабочие характеристики представляют собой зависимости потребляемой мощности Р1 потребляемого тока I, скорости n, момента М и к. п. д. ?] от полезной мощности Р2, при U = const и неизменных положениях регулирующих реостатов. Рабочие характеристики двигателя параллельного возбуждения малой мощности при отсутствии добавочного сопротивления в цепи якоря представлены на рис. 11. Одновременно с увеличением мощности на валу Р2 растет и момент на валу М. Поскольку с увеличением Р2 и М скорость n несколько уменьшается, то М = Р2/п растет несколько быстрее Р2. Увеличение Р2 и М, естественно, сопровождается увеличением тока двигателя I. Пропорционально I растет также потребляемая из сети мощность Р1. При холостом ходе (Р2 = 0) к. п. д. ?= 0, затем с увеличением Р2 сначала ?| быстро растет, но при больших нагрузках в связи с большим ростом потерь в цепи якоря? снова начинает уменьшаться.

Рис. 11. Рабочие характеристики двигателя параллельного возбуждения.

РН = 10 квт, UН = 220 в, пН = 950 об/мин.

Заключение

.

При написание реферата я узнал, что достоинство двигателя постоянного тока параллельного возбуждения заключается:

. большой диапазон скоростей;

. удобно и экономично регулировать величины тока возбуждения; Недостаток:

. сложность конструкции;

. наличии скользящего контакта в коллекторе;

. необходим источник постоянного тока; Я так же узнал, что чаще всего неисправность в машинах постоянного тока связана с коллектором.

Кулик Ю. А. Электрические машины. М.,"Высшая школа", 1971.

Вольдек А. И. Электрические машины. Л., «Энергия», 1974.

1.

Введение

2 2. Основные элементы конструкции МПТ 3 3. Принцип действия двигателя постоянного тока параллельного возбуждения.

8 4.

Заключение

12 5.

Литература

13 6. Содержание 14.

Показать весь текст
Заполнить форму текущей работой