Помощь в написании студенческих работ
Антистрессовый сервис

Interaction of nanoparticles with biological membranes of different composition: a molecular modeling approach

Реферат Купить готовую Узнать стоимостьмоей работы

Small list of the examples cited convincingly proves the prospects for development and effectiveness of the practical application of nanomembrane technologies. ConclusionDue to the fact that the creation and study of nanoparticles requires the consideration of a number of parameters, such as materials from which nanoparticles are synthesized; features of their structure, surfaces, colloidal… Читать ещё >

Interaction of nanoparticles with biological membranes of different composition: a molecular modeling approach (реферат, курсовая, диплом, контрольная)

Содержание

  • Content
  • I. ntroduction
  • 1. Nanoparticles
  • 2. Interaction of nanoparticles with biological membranes
  • 3. Use of artificial membranes as biofilters
  • Conclusion
  • Bibliography

S uch sunburn creams are a real danger to life and health and even can cause cancer, which, according to the plan, should be protected. Another popular component of sunscreen — zinc oxide — can also be dangerous in the form of nanoparticles. A number of studies have data on the cytotoxicity of nanoparticles of zinc oxide (71 nm) in in vitro experiments on cell cultures of bronchoalveolar carcinoma of man. Z inc nanoparticles caused damage to kidney function, anemia and bleeding disorders [1]. T o the main parameters of the interaction of nanoparticles with the organism (cells), in addition to the characteristics of their passage / penetration into various media, it is also possible, fairly freely, to attribute toxicity, that is, their ability to cause disturbances in the physiological functions of the organism, resulting in symptoms of intoxication disease), and with severe lesions — and the death of the body (cells).It is the potential toxicity of nanoparticles that currently becomes one of the main problems of nanoparticle application in biology and medicine [14], however, information about their toxic effect remains insufficient due to the small number of studies, short exposure period, various methods of testing the composition and significant variation of their composition types (diameter, length, agglomeration) [3, 13, 14].

F or example, nanoparticles penetrating the plasma membranes of cells cause oxidative stress in them, leading to the initiation of apoptosis, and in a number of cells capable of phagocytosis (macrophages) — to reliably inhibit the proliferation of these cells [1]. A t the same time, the exact mechanisms of such an action continue to be studied, and not specified in detail. A n aggravating factor is the fact that under natural conditions nanoparticles remain in the body for more than four months, so that their biological (toxic) effects can appear after a long time. T.

his can be facilitated by the fact that most nanoparticles adsorb serum proteins, which increase the hydrodynamic diameter of nanoparticles larger than 15 nm, but particles of this size are poorly excreted by the kidneys [2]. N anotechnologies are increasingly used in the food industry, in the production of fertilizers and pesticides, and in the production of refrigerators, antibacterial nanocoatings based on silver ions have become widespread. H.

ow all this affects the health of a person is still unclear. Use of artificial membranes as biofiltersThe study of the principles of organization and functioning of biological membranes allowed scientists to create membrane materials that ensure the efficiency of separation of substances. T hey have maximum permeability, selectivity and stability of functional characteristics — the basic properties of biomembranes. I n particular, structures with pores are provided, equipped with so-called «smart» polymers-nanosensors, which ensure the separation and purification of substances at the level of molecules and nanoparticles (Fig. 3). S.

uch polymeric materials and devices can be successfully used to create organs that fulfill the role of biological filters, for example, «artificial liver» or «artificial kidney». This will make it possible in the long term to reduce the dependence of patients on acute deficiency of donor organs [8]. F igure 3. S ingle-walled carbon nanotubes usedin wastewater treatment [8]Artificial membranes created as analogs for biomembranes can be used to filter and purify body fluids from harmful substances and viruses, as well as to isolate and purify biologically active substances [7]. T hus, studies of the fundamental mechanisms of the functioning of biomembranes and the principles of structure formation of membrane systems have taken a special place in developing nanobiology.

A small list of the examples cited convincingly proves the prospects for development and effectiveness of the practical application of nanomembrane technologies. ConclusionDue to the fact that the creation and study of nanoparticles requires the consideration of a number of parameters, such as materials from which nanoparticles are synthesized; features of their structure, surfaces, colloidal properties and the ability to precipitate solid particles, etc .; the possibility of a fundamental change in the properties of particles when they come into contact with biological objects (the appearance of a shell, a change in charge, shape, the creation of agglomerations); duration of exposure, toxicity; establishing the fact of finding / not finding nanoparticles inside vesicles, so the standardization of experiments is of particular importance in the study of nanoparticles [6]. T hus, currently the priority areas of science and practice are nanobiotechnology. T hey cover the study of the effect of nanostructures and materials on biological processes and objects for the purpose of controlling and controlling their biological or biochemical properties, as well as the creation with their help of new objects and devices with predetermined biological or biochemical properties [5].

O n the basis of bionanotechnology, selection and development of methods for assessing the immune status of the human body and schemes for the use of immunocorrectors for animals are actively being conducted. U sing electron microscopy, the interaction of pathogens of infectious diseases with the cell is studied, and a digital base of electron microscopic images of pathogens is generated, biotechnological ways of regulation and management of water and land resources from pollution by highly toxic compounds (oil, oil products) and waste products cattle-breeding complexes [4]. A.

lso, research is being done to develop biopreparations based on nanotechnology that have the properties to accelerate the processes of processing and disinfection of organic waste, regardless of temperature conditions. T he strains of microorganisms and fungi are screened, the necessary strains having genetically altered properties for the development of waste-free, environmentally safe methods that ensure the disinfection of organic and household waste from pathogenic microorganisms are selected. I n the process of work, the effectiveness of development is being studied to accelerate the utilization of organic waste, including oil and petroleum products waste, pesticides, to produce high-quality, environmentally safe organic fertilizers and environmental rehabilitation [2]. T hus, the development of nanotechnology and nanomaterials is currently one of the most promising areas in science. Bibliography1. A.

baeva L.F. Nanoparticles and nanotechnologies in medicine today and tomorrow. L.F. A baeva, V.I. Shumsky, E.N. Petritskaya, D.A. Rogatkin, P.N. Lyubchenko / Almanac of Clinical Medicine. № 22, 2010. P. 10−16.

2. Antonov A.R. Nanotechnology in medicine and biology / A.R. Antonov, Yu.I. Sklyanov // Materials of the scientific-practical conference with international participation «Nanotechnologies and nanomaterials for biology and medicine». 11−12 Oct. 2007, SibGU [Electronic resource]. — URL:

http://www.sibupk.nsk.su/new/05/sem/2007/1 (circulation date is June 16, 2018).

3. Artyukhov I.V. Application of nanotechnology in medicine / I.V. Artyukhov, V.N. Kemenov, S.B. Nesterov // XIII International student’s school-seminar «New information technologies». — Moscow: MGIEM, 2005 [Electronic resource]. — URL:

http://nit.miem.edu.ru/2005/plenar/6(reference date is June 16, 2018).

4. Bero I.L. The development of biotechnology at the present stage of life support of society / I.L. Bero, A.Ya. Samuylenko, S.A. Grin // Veterinary Physician. — 2010. — № 3 — С. 3−5.

5. Zinurova R.I. Peculiarities of the development of the nanoindustry in the Russian Federation, Vestnik Kazan 'Technological University. — 2012. — № 12 — С. 311−313.

6. Kobayashi N. I ntroduction to nanotechnology / N. K obayashi. — M.

oscow: BINOM. L aboratory of Knowledge, 2008. — 134 p.

7. Kuznetsov N.T. Fundamentals of nanotechnology / N.T. Kuznetsov, V.M. Novotortsev, V.A. Zhabrev, V.I. Margolin. — Moscow: BINOM. Laboratory of knowledge. — 2014. — 397 p.

8. Sych V.F. Introduction to Nanobiology and Nanobiotechnology. S ych, E.P. Drozhdina, A.F. Sanzhapova. — S t. P.

etersburg: LEMA. — 2011. — 256 with.

9. Hughes G.A. Nanoctructure-mediated drug delivery // Nanomedicine. 2005. V.1, No.

1. P.22−23.

10. Maynard A.D. Nanotechnology: A research strategy for addressing risk. Project on Nanotechnologies supor ed by the pewcharitable trusts // Nature. 2006. V.

444. P.267−269.

11. S hi Kam N.W., Jessop T.C., Wender P.A., Dai H. N.

anotube molecular transporters: internalis on carbon nanotubeprotein conjugates into mammalian cells // J. A m. C.

hem. S oc. 2004.

V.

126. P.6850−6851.

12. T izaskowski B., Jalbout A.F., Adamowicz L. M olecular dynamics studies of protein-fragment models encapsulated into carbon nanotubes // Chem. P hys.

L e. 2006. V.

430. P.97−100.

13. Сарапульцев А. П. Взаимодействие наночастиц с биологическими объектами (обзор) // А. П. Сарапульцев, С. В. Ремпель, Ю. В. Кузнецова, Г. П. Сарапульцев /ВЕСТНИК УРАЛЬСКОЙ МЕДИЦИНСКОЙ АКАДЕМИЧЕСКОЙ НАУКИ, № 3, 2016, С. 97−111 [Электронный ресурс]. — URL:

http://www.academia.edu/30 535 336/%D0%92%D0%97%D0%90%D0%98%D0%9C%D0%9E%D0%94%D0%95%D0%99%D0%A1%D0%A2%D0%92%D0%98%D0%95_%D0%9D%D0%90%D0%9D%D0%9E%D0%A7%D0%90%D0%A1%D0%A2%D0%98%D0%A6_%D0%A1_%D0%91%D0%98%D0%9E%D0%9B%D0%9E%D0%93%D0%98%D0%A7%D0%95%D0%A1%D0%9A%D0%98%D0%9C%D0%98_%D0%9E%D0%91%D0%AA%D0%95%D0%9A%D0%A2%D0%90%D0%9C%D0%98_%D0%9E%D0%91%D0%97%D0%9E%D0%A0_ (дата обращения 18.

06.2018).Chithrani B.D., Chan W.C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes // Nano letters. 2007. 7(6). P. 1542−1550.

Показать весь текст

Список литературы

  1. Bibliography
  2. Abaeva L.F. Nanoparticles and nanotechnologies in medicine today and tomorrow. L.F. Abaeva, V.I. Shumsky, E.N. Petritskaya, D.A. Rogatkin, P.N. Lyubchenko / Almanac of Clinical Medicine. № 22, 2010. P. 10−16.
  3. Antonov A.R. Nanotechnology in medicine and biology / A.R. Antonov, Yu.I. Sklyanov // Materials of the scientific-practical conference with international participation «Nanotechnologies and nanomaterials for biology and medicine». 11−12 Oct. 2007, SibGU [Electronic resource]. — URL: http://www.sibupk.nsk.su/new/05/sem/2007/1 (circulation date is June 16, 2018).
  4. Artyukhov I.V. Application of nanotechnology in medicine / I.V. Artyukhov, V.N. Kemenov, S.B. Nesterov // XIII International student’s school-seminar «New information technologies». — Moscow: MGIEM, 2005 [Electronic resource]. — URL: http://nit.miem.edu.ru/2005/plenar/6 (reference date is June 16, 2018).
  5. Bero I.L. The development of biotechnology at the present stage of life support of society / I.L. Bero, A.Ya. Samuylenko, S.A. Grin // Veterinary Physician. — 2010. — № 3 — С. 3−5.
  6. Zinurova R.I. Peculiarities of the development of the nanoindustry in the Russian Federation, Vestnik Kazan 'Technological University. — 2012. — № 12 — С. 311−313.
  7. Kobayashi N. Introduction to nanotechnology / N. Kobayashi. — Moscow: BINOM. Laboratory of Knowledge, 2008. — 134 p.
  8. Kuznetsov N.T. Fundamentals of nanotechnology / N.T. Kuznetsov, V.M. Novotortsev, V.A. Zhabrev, V.I. Margolin. — Moscow: BINOM. Laboratory of knowledge. — 2014. — 397 p.
  9. Sych V.F. Introduction to Nanobiology and Nanobiotechnology. Sych, E.P. Drozhdina, A.F. Sanzhapova. — St. Petersburg: LEMA. — 2011. — 256 with.
  10. Hughes G.A. Nanoctructure-mediated drug delivery // Nanomedicine. 2005. V.1, No.1. P.22−23.
  11. Maynard A.D. Nanotechnology: A research strategy for addressing risk. Project on Nanotechnologies supor ed by the pewcharitable trusts // Nature. 2006. V.444. P.267−269.
  12. Shi Kam N.W., Jessop T.C., Wender P.A., Dai H. Nanotube molecular transporters: internalis on carbon nanotubeprotein conjugates into mammalian cells // J. Am. Chem. Soc. 2004. V.126. P.6850−6851.
  13. Tizaskowski B., Jalbout A.F., Adamowicz L. Molecular dynamics studies of protein-fragment models encapsulated into carbon nanotubes // Chem. Phys. Le. 2006. V.430. P.97−100.
  14. А.П. Взаимодействие наночастиц с биологическими объектами (обзор) // А. П. Сарапульцев, С. В. Ремпель, Ю. В. Кузнецова, Г. П. Сарапульцев /ВЕСТНИК УРАЛЬСКОЙ МЕДИЦИНСКОЙ АКАДЕМИЧЕСКОЙ НАУКИ, № 3, 2016, С. 97−111 [Электронный ресурс]. — URL: http://www.academia.edu/30 535 336/%D0%92%D0%97%D0%90%D0%98%D0%9C%D0%9E%D0%94%D0%95%D0%99%D0%A1%D0%A2%D0%92%D0%98%D0%95_%D0%9D%D0%90%D0%9D%D0%9E%D0%A7%D0%90%D0%A1%D0%A2%D0%98%D0%A6_%D0%A1_%D0%91%D0%98%D0%9E%D0%9B%D0%9E%D0%93%D0%98%D0%A7%D0%95%D0%A1%D0%9A%D0%98%D0%9C%D0%98_%D0%9E%D0%91%D0%AA%D0%95%D0%9A%D0%A2%D0%90%D0%9C%D0%98_%D0%9E%D0%91%D0%97%D0%9E%D0%A0_ (дата обращения 18.06.2018).
  15. Chithrani B.D., Chan W.C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes // Nano letters. 2007. 7(6). P. 1542−1550.
Заполнить форму текущей работой
Купить готовую работу

ИЛИ