Меры защиты от поражения электрическим током
Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Принцип действия защитного заземления состоит в снижении до безопасных значений напряжения прикосновения и силы тока, проходящего через человека, обусловленных замыканием на корпус (рис. 5.3). При заземлении корпуса происходит… Читать ещё >
Меры защиты от поражения электрическим током (реферат, курсовая, диплом, контрольная)
Электробезопасность (по ГОСТ 12.1.009−76 «ССБТ. Электробезопасность. Термины и определения») обеспечивается организационными и техническими мероприятиями, конструкцией электроустановок, применением технических методов, средств защиты.
Организационные меры защиты. Применение защитных мер регламентируется нормативными документами по электробезопасности: Правилами устройства электроустановок (ПУЭ), утвержденными приказом Минэнерго России от 8 июля 2002 г. № 204; Межотраслевыми правилами по охране труда при эксплуатации электроустановок (ПОТ Р М-016−01), утвержденными постановлением Минтруда России от 5 января 2001 г. № 3; Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП9−2003), утвержденными приказом Минэнерго России от 12 января 2003 г. № 6.
Электроустановками называются машины, в которых производится, преобразуется, распределяется и потребляется электроэнергия. Меры защиты должны соответствовать виду электроустановки и условиям применения электрооборудования, обеспечивая достаточную безопасность.
Опасность поражения в электроустановках и его тяжесть зависят от номинального напряжения. Согласно ПУЭ электроустановки подразделяются на (а) работающие под напряжением более 1 кВ с глухозаземленной нейтралью (чаще используются сети напряжением U = 110: 750 кВ) и с изолированной нейтралью (6, 10, 20, 35 кВ) и (б) работающие под напряжением менее 1 кВ с глухозаземленной и с изолированной нейтралью.
Электрические сети напряжением до 1 кВ выполняются, как правило, трехфазными: 660, 380 и 220 В. Чаще применяют четырехпроводные сети напряжением 380/220 В. В ряде производств недопустимо использование сетей с глухозаземленной нейтралью. Силовые электроустановки напряжением 660, 380, 220 В, работающие с изолированной нейтралью, имеют меньшую опасность при однофазном прикосновении ввиду большого сопротивления изоляции проводов.
Классификация помещений. Безопасность при эксплуатации электроустановок существенно зависит от повышенной влажности и температуры воздуха, запыленности и загазованности помещений. Согласно ПУЭ все помещения по опасности поражения током делят на три категории: 1) помещения без повышенной опасности; 2) помещения с повышенной опасностью; 3) особо опасные помещения. При этом выделяют следующие признаки повышенной опасности:
- — наличие токопроводящих полов — металлических, железобетонных, кирпичных и т. п.;
- — сырость помещений при относительной влажности воздуха > 75%;
- — высокая температура воздуха (t > 35 °С);
- — токопроводящая пыль (металлическая, угольная и др.). Пыльными считаются помещения, в которых по условиям производства выделяется технологическая пыль в таком количестве, что она проникает внутрь машин и оборудования;
- — возможность одновременного прикосновения человека к заземленной металлоконструкции и к металлическому корпусу электроустановки;
- — коэффициент заполнения помещения электрооборудованием > 0,2.
Признаки особой опасности:
- — особая сырость (ф? 100% - стены, пол и потолок покрыты влагой);
- — наличие химически активной среды (агрессивные пары, газы, жидкости).
Классификация обслуживающего персонала по электробезопасности. Существует пять квалификационных групп по охране труда, зависящих от типа электроустановок и рода работы. Для эксплуатации ручного электрооборудования достаточна первая квалификационная группа. Для управления электрооборудованием с напряжением U менее 1000 В необходима квалификация персонала не ниже второй группы, для работы на электроустановках с U более 1000 В — не ниже третьей.
Способы и меры защиты от поражения электрическим током. Технические способы и средства защиты приведены в ГОСТ 12.1.019−79 «Электробезопасность. Общие требования». Для обеспечения электробезопасности должны применяться отдельно или в сочетании друг с другом следующие технические способы и средства: защитное заземление; зануление; выравнивание потенциалов; электрическое разделение сетей; защитное отключение; изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная); оградительные устройства; предупредительная сигнализация, блокировка; знаки безопасности; средства защиты и предохранительные приспособления.
Защита от прикосновения или опасного приближения к токоведущим частям достигается дополнительной или усиленной изоляцией токоведущих частей; расположением токоведущих частей на недоступной высоте или в недоступном месте; использованием ограждений: сплошных в виде кожухов и крышек (в электроустановках U < 1 кВ) и сетчатых; применением блокировок, предупредительной сигнализации, знаков безопасности. По принципу действия блокировки делятся на механические и электрические. Например, в аппаратуре автоматики и ЭВМ применяют штепсельное соединение отдельных блоков, т. е. механическую блокировку. Электрическая блокировка осуществляет отключение электроустановки при открытии дверей, ограждений, крышек кожухов.
Малое напряжение и электрическое разделение сетей используют для повышения безопасности при работе в основном с ручным электрифицированным инструментом.
Малое напряжение — это номинальное напряжение? 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Наибольшая степень безопасности достигается при напряжении до 10 В (сила тока при случайном прикосновении Ih = 10/1000 = 0,01 А). Источники малого напряжения: батареи, аккумуляторы, трансформаторы — должны быть максимально приближены к потребителю. Для ручного электроинструмента и местного освещения в помещениях с повышенной опасностью и особо опасных помещениях используют напряжение 12, 36, 42 В.
Электрическое разделение сетей: разветвленная сеть большой протяженности имеет значительную емкость и небольшое активное сопротивление изоляции относительно земли; ток замыкания на землю в такой сети может достигать значительной величины, поэтому однофазное прикосновение в сети является опасным. Опасность поражения резко снизится, если единую сильно разветвленную сеть с большой емкостью и малым сопротивлением разделить на ряд небольших сетей с незначительной емкостью и высоким сопротивлением изоляции с помощью специальных разделяющих трансформаторов.
Защитное заземление, зануление и защитное отключение являются наиболее распространенными техническими средствами для защиты персонала при прикосновении к токоведущим частям электрооборудования, которые могут оказаться под напряжением из-за повреждения изоляции.
Защитное заземление или зануление выполняют: а) во всех случаях при номинальном переменном напряжении? 380 В и постоянном напряжении? 440 В; б) в помещениях с повышенной опасностью и особо опасных при номинальном переменном U = 42: 380 В и постоянном U= 110 -5- 440 В. Таким образом, электроустановки, работающие иод напряжением до 42 В переменного и до 110 В постоянного тока, не требуют защитного заземления и зануления, за исключением некоторых случаев, оговоренных в ПУЭ.
Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Принцип действия защитного заземления состоит в снижении до безопасных значений напряжения прикосновения и силы тока, проходящего через человека, обусловленных замыканием на корпус (рис. 5.3). При заземлении корпуса происходит замыкание на землю; прикосновение к заземленному корпусу вызывает появление параллельной ветви, по которой часть тока замыкания проходит на землю через тело человека. Сила тока в параллельных цепях обратно пропорциональна сопротивлениям цепей, поэтому ток, проходящий через тело человека Ih, безопасен.
Рис. 5.3. Принципиальная схема защитного заземления.
Область применения защитного заземления — трехфазные сети напряжением до 1 кВ с изолированной нейтралью и сети напряжением более 1 кВ как с изолированной, так и с заземленной нейтралью.
Заземляющее устройство состоит из заземлителя (одного или нескольких металлических элементов, погруженных на определенную глубину в грунт) и проводников, которые соединяют заземляемое оборудование с заземлителем. В зависимости от расположения заземлителей относительно оборудования заземляющие устройства делятся на выносные и контурные. Выносное устройство располагается на некотором удалении от оборудования. Преимуществом такого типа заземляющего устройства является возможность выбора места размещения, недостатком — отдаленность заземлителя от защищаемого оборудования. Контурное устройство, заземлители которого расположены по контуру вокруг заземляемого оборудования, обеспечивают лучшую защиту.
Основной элемент заземляющего устройства — естественный или искусственный заземлитель. Естественными заземлителями могут быть металлические и железобетонные части коммуникаций и других сооружений, имеющие надежное соединение с землей. Для искусственных заземлителей применяют обычно вертикальные и горизонтальные элементы. В качестве вертикальных элементов используют стальные трубы, уголки, прутки, которые соединяют прочно между собой горизонтальными элементами из полосовой стали. Для заземляющих проводников используют полосовую и круглого сечения сталь.
Зануление — это преднамеренное электрическое соединение с нулевым защитным проводником металлических токоведущих частей, которые могут оказаться под напряжением. Это основное средство обеспечения электробезопасности в трехфазных сетях с заземленной нейтралью и U менее 1 кВ (обычно 220/127, 380/220, 660/380 В). В таких сетях уменьшить напряжение на корпусе, контактирующем с токоведущими частями, невозможно, но можно повысить безопасность оборудования, уменьшив длительность замыкания на корпус. В сети с занулением различают (рис. 5.4.): нулевой рабочий проводник HP (для питания током электроприемников) и нулевой защитный проводник НЗ (для зануления).
Рис. 5.4. Принципиальная схема зануления в трехфазной сети с нулевым рабочим (HP) и нулевым защитным (НЗ) проводниками:
1 и 2 — корпусы однои трехфазного приемников тока; 3 — плавкие предохранители, Iк — ток однофазного короткого замыкания, Uф — фазное напряжение Зануление превращает замыкание на корпус в однофазное короткое замыкание, возникает ток большой величины, в результате чего срабатывает максимальная токовая защита, которая селективно отключает поврежденный участок. Для того чтобы быстро отключить аварийный участок, ток короткого замыкания, согласно ПУЭ, должен не менее чем в три раза превышать номинальный ток через плавкую вставку или в 1,25−1,4 раза номинальный ток автоматического выключателя. Расчет зануления заключается в определении сечения нулевого провода, удовлетворяющего условию срабатывания максимальной токовой защиты. Если запуленный корпус одновременно заземлен, то это улучшает условия безопасности, так как обеспечивает дополнительное заземление нулевого защитного (НЗ) провода.
Защитное отключение — это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. Подобная опасность возникает при повреждениях установки, таких как замыкание на землю; снижение сопротивления изоляции; неисправности заземления, зануления или устройства защитного отключения.
Повреждение установки приводит к изменениям некоторых величин, которые можно использовать как входные величины автоматического устройства, осуществляющего защитное отключение. Например, напряжение корпуса относительно земли, напряжение нулевой последовательности (несимметрия напряжения фаз относительно земли), ток замыкания на землю, ток нулевой последовательности и другие параметры могут быть восприняты датчиком автоматического устройства как входная величина (время срабатывания менее 0,2 с). Защитное отключение можно использовать в качестве единственной или основной меры защиты совместно с дополнительным заземлением или занулением или в дополнение к заземлению или занулению.
Электрозащитные средства применяются для защиты людей, работающих с электроустановками, от поражения электрическим током, воздействия электрической дуги и электромагнитного поля. По характеру применения электрозащитные средства подразделяются на две категории: средства коллективной и средства индивидуальной защиты.
Электрозащитные средства могут быть основными и дополнительными. Основными являются средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановки и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением. Средства защиты, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами, служат дополнительными средствами.