Помощь в написании студенческих работ
Антистрессовый сервис

Воздействие электромагнитных, электрических и магнитных полей на организм человека

РефератПомощь в написанииУзнать стоимостьмоей работы

На протяжении миллиардов лет естественное магнитное поле земли, являясь первичным периодическим экологическим фактором, постоянно воздействовало на состояние экосистем. В ходе эволюционного развития структурно-функциональная организация экосистем адаптировалась к естественному фону. Некоторые отклонения наблюдаются лишь в периоды солнечной активности, когда под влиянием мощного корпускулярного… Читать ещё >

Воздействие электромагнитных, электрических и магнитных полей на организм человека (реферат, курсовая, диплом, контрольная)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ОМСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Институт экономики и финансов Кафедра безопасности жизнедеятельности РЕФЕРАТ

«Воздействие электромагнитных, электрических и магнитных полей на организм человека»

Выполнила: студентка 34 группы Панамарчук О.А.

Проверила: Белякова М.С.

Омск 2010

Содержание Введение

1. Воздействие электромагнитных, электрических и магнитных полей на организм человека

1.1 Влияние электромагнитного, электрического и магнитного поля и излучения на организм

1.1.1 Опасность сотовых телефонов

2. Защита от электромагнитных, электрических и магнитных полей и излучений Выводы Библиографический список

Введение

На протяжении миллиардов лет естественное магнитное поле земли, являясь первичным периодическим экологическим фактором, постоянно воздействовало на состояние экосистем. В ходе эволюционного развития структурно-функциональная организация экосистем адаптировалась к естественному фону. Некоторые отклонения наблюдаются лишь в периоды солнечной активности, когда под влиянием мощного корпускулярного потока магнитное поле земли испытывает кратковременные резкие изменения своих основных характеристик. Этот явление, получившее название магнитных бурь, неблагоприятно отражается на состоянии всех экосистем, включая и организм человека.

На нынешнем этапе развития научно-технического прогресса человек вносит существенные изменения в естественное магнитное поле, придавая геофизическим факторам новые направления и резко повышая интенсивность своего воздействия. Но нужно заметить, что на организмы оказывает влияние не только магнитные поля, но также электрические и электромагнитные.

Таким образом, целью данного реферата является определение воздействия электромагнитных, электрических и магнитных полей на организм человека.

Для достижения поставленной цели необходимо решить следующие задачи:

1. изучить влияние электромагнитного, электрического и магнитного поля и излучения на организм, в том числе, определить опасность сотовых телефонов;

2. установить основные способы защиты от электромагнитных, электрических и магнитных полей и излучений.

1. Воздействие электромагнитных, электрических и магнитных полей на организм человека

1.1 Влияние электромагнитного, электрического и магнитного поля и излучения на организм

Законом РФ об охране окружающей природной среды (1991 г.) предусмотрены меры по предупреждению и устранению вредных физических воздействий, включая и электромагнитные поля.

Опасное воздействие на работающих могут оказывать не только электромагнитные поля радиочастот (60 кГц-300 ГГц), но и электрические поля промышленной частоты (50 Гц).

Источником электрических полей промышленной частоты являются токоведущие части действующих электроустановок (линии электропередач, индукторы, конденсаторы термических установок, фидерные линии, генераторы, трансформаторы, электромагниты, соленоиды, импульсные установки полупериодного или конденсаторного типа, литые и металлокерамические магниты и др.). Длительное воздействие электрического поля на организм человека может вызвать нарушение функционального состояния нервной и сердечно-сосудистой систем. Это выражается в повышенной утомляемости, снижении качества выполнения рабочих операций, болях в области сердца, изменении кровяного давления и пульса.

На протяжении миллиардов лет естественное магнитное поле земли, являясь первичным периодическим экологическим фактором, постоянно воздействовало на состояние экосистем. В ходе эволюционного развития структурно-функциональная организация экосистем адаптировалась к естественному фону. Некоторые отклонения наблюдаются лишь в периоды солнечной активности, когда под влиянием мощного корпускулярного потока магнитное поле земли испытывает кратковременные резкие изменения своих основных характеристик. Этот явление, получившее название магнитных бурь, неблагоприятно отражается на состоянии всех экосистем, включая и организм человека. В этот период отмечается ухудшение состояние больных, страдающих сердечно-сосудистыми, нервно-соматическими и другими заболеваниями. Влияет магнитное поле и на животных, в особенности на птиц и насекомых.

На нынешнем этапе развития научно-технического прогресса человек вносит существенные изменения в естественное магнитное поле, придавая геофизическим факторам новые направления и резко повышая интенсивность своего воздействия. Основные источники этого воздействия — электромагнитные поля от линий электропередачи (ЛЭП) и электромагнитные поля от радиотелевизионных и радиолокационных станций.

На территории СНГ общая протяженность только ЛЭП-500 кВ превышает 20 000 км (помимо ЛЭП-150 ЛЭП-300 ЛЭП-750). Линии электропередачи и некоторые другие энергетические установки создают электромагнитные поля промышленных частот (50 Гц) в сотни раз выше среднего уровня естественных полей. Напряженность поля под ЛЭП может достигать десятков тысяч В/М.

Наибольшая напряженность поля наблюдается в месте максимального провисания проводов, в точке проекции крайних проводов на землю и в пяти метрах от неё кнаружи от продольной оси трассы: для ЛЭП-330 кВ — 3,5 — 5,0 кВ/м, для ЛЭП — 500 кВ — 7,6 — 8 кВ/м, для ЛЭП-750 кВ — 10,0 — 15,0 кВ/м.

Отрицательное воздействие электромагнитных полей на человека и на те или иные компоненты экосистем прямо пропорционально мощности поля и времени облучения. Неблагоприятное воздействие электромагнитного поля, создаваемого ЛЭП, проявляется уже при напряженности поля, равной 1000 В/м. У человека нарушаются эндокринная система, обменные процессы, функции головного и спинного мозга и др.

Воздействие неионизирующих электромагнитных излучений от радиотелевизионных и радиолокационных станций на среду обитания человека связано с формированием высокочастотной энергии. Японскими учеными обнаружено, что в районах, расположенных вблизи мощных излучающих телеи радиоантенн заметно повышается заболевание катарактой глаз. Медико-биологическое негативное воздействие электромагнитных излучений возрастает с повышением частоты, то есть с уменьшением длины волн.

Неионизирующие электромагнитные излучения радиодиапазона от радиотелевизионных средств связи, радиолокаторов и других объектов приводят к значительным нарушениям физиологических функций человека и животных. Вредное воздействие на человеческий организм невидимого, но очень опасного электромагнитного загрязнения окружающей среды идет гораздо более быстрыми темпами, чем прогресс в электронике.

1.1.1 Опасность сотовых телефонов

С момента открытия радио прошло уже больше 100 лет, и по мощности радиоизлучения Земля стала во много раз ярче Солнца, но основная доля этой мощности пока приходится на сравнительно низкие частоты, к которым человек адаптирован. Поэтому пока не заметны особенно вредные массовые последствия работы мощных радиостанций и мощных телецентров, хотя их мощность составляет десятки и даже сотни киловатт. Гораздо более вредным является высокочастотное излучение сантиметрового диапазона. Мобильная связь находится пока в самом начале этого диапазона, но постепенно продвигается всё дальше (GSM 1800,1900).

Непосредственным источником излучения в мобильном телефоне является его штыревая антенна. Все остальные источники излучения (сам передатчик, гетеродины приемника, синтезатор частоты и прочее) настолько маломощны, что их можно не принимать во внимание.

СВЧ излучение непосредственно нагревает организм (полная аналогия с СВЧ печью). Ток крови уменьшает нагрев, но к примеру хрусталик глаза не омывается кровью и при значительном нагреве — разрушается, мутнеет. Эти изменения как правило необратимы. Данный процесс сопровождается резью в глазах и шумом в голове. Воздействие излучения на мозг человека значительно меньше, поскольку мозг экранирован черепной коробкой и имеет развитую кровеносную систему. Различные стандарты имеют различную способность к нагреву организма. Телефон стандарта GSM 900/1800 опаснее, чем телефон стандарта NMT 450 поскольку частота излучения выше. Правда в NMT 450 используются большие мощности.

К счастью СВЧ мощность, излучаемая телефоном, не велика и до перегрева хрусталика и мозга дело не доходит. Но телефон в отличие от СВЧ печи излучает сложный модулированый сигнал, который несет в себе информацию. Биологическо-информационые взаимодействия изучены недостаточно, достоверные результаты исследований в открытой печати не публикуются и нам неизвестны.

Стандарты сотовой связи разработаны на западе, там же изготавливаются собственно аппараты. Считается, что санитарные нормы у них достаточно жесткие и можно надеяться, что за нас обо всем позаботились. Это не факт, хотя бы по той причине, что старые советские нормы считали вредным облучение начиная с плотности потока мощности 10 микроватт/см2. Начиная с этого предела, ограничивалась длительность рабочего дня, назначалось молоко, доплата за вредность и т. д. После введения рыночных отношений появилось сообщение, что минимальная вредная плотность потока мощность составляет уже 100 микроватт/см2, то есть все мы стали ровно в десять раз здоровее и крепче. Хотелось бы в это верить. Правда, это говорит и о том, что вопрос о вредном воздействии СВЧ излучения изучен не так уж и хорошо.

О реальной излучаемой мощности мобильного телефона информации крайне мало, но существует стандарт, согласно которому эта мощность составляет до 2 ватт (или 2 000 000 микроватт). При этом неясно это средняя мощность или импульсная (кратковременная). Скорее всего, это именно средняя мощность, а импульсная мощность значительно выше (любой производитель сотовой аппаратуры борется за дальность связи, а значит, будет увеличивать мощность до предела). На голову попадает примерно 20% излучаемой мощности, то есть около 400 000 микроватт. Для соответствия старым нормам (предполагаем, что вся эта мощность размазывается по освещённой стороне головы равномерно!) поверхность освещённой стороны головы должна быть не менее 40 000см2 (квадрат 2*2 метра). По новым нормам поверхность освещённой стороны головы должна быть не менее 4 000см2 (квадрат примерно 63*63 см). А ведь реальное облучение неравномерное, поэтому и плотность потока мощности на отдельных участках головы будет значительно выше.

Все эти достаточно приближённые рассуждения проводились в предположении, что в телефоне используется классическая штыревая антенна длиною примерно в четверть длины волны (с учётом покрытия это примерно 70мм). В современных аппаратах антенны стараются делать значительно короче. Но чем короче антенна, тем больше её так называемая добротность. Добротность определяет величину запасённой энергии и эта запасённая энергия находится в ближнем поле, то есть вблизи антенны и не излучается. Поэтому голове достаётся и излучённая мощность и запасённая (или реактивная) энергия. За счёт поглощения части запасённой энергии головой, наличие головы около короткой антенны несколько снижает её добротность и передатчику легче работать.

Из средств защиты можно использовать либо отражающий экран (проволочную сетку), либо поглощающий экран (сетка из резистивных проводников, например нитки пропитанные углеродом), либо их комбинацию.

Некоторые меры безопасности:

1. Разговор по мобильному телефону необходимо сделать коротким не из соображений тарифного плана, а для своего здоровья.

2. В машине СВЧ излучение переотражается от металлического кузова и значительно усиливается его вредное влияние. Рекомендуется использование внешней антенны.

3. В условиях неустойчивого приема мощность аппарата автоматически повышается до максимальной величины. Рекомендуется или воздержаться от длительных переговоров или найти место с устойчивым приемом.

4. Если у Вас есть дача или загородный дом то наилучшим выходом будет использование стационарной внешней круговой (например автомобильной) или направленной антенны.

5. Немалую опасность представляют также ретрансляторы провайдеров. Антенна такого ретраслятора постоянно излучает достаточно мощный сигнал причем во все стороны. Как с этим бороться. Переселяйтесь или подальше от антенны или живите в панельном доме. Арматура панелей несколько экранирует Вашу квартиру. Помогает металлическая сетка на окнах. Размер ячейки не более 10 см.

6. Применение комплектов Mini Hands Free уменьшает облучение головы и перераспределяет его на все тело. Но провод комплекта работает как переизлучающая антенна.

7. Не портите антенну телефона. Изменение ее геометрических размеров, изгиб, кручение неизбежно ухудшает условия приема и мощность передатчика неминуемо увеличивается. Используйте только фирменные, родные антенны.

8. При выборе модели телефона предпочтение отдавайте аппаратам с внешними антеннами и хорошей заявленной в характеристиках чувствительностью.

2. Защита от электромагнитных, электрических и магнитных полей и излучений

Бурное развитие машиностроительных отраслей народного хозяйства привело к использованию в некоторых производствах электромагнитных волн. Причем в ряде случаев человек оказывается подвержен их воздействию. Электромагнитные волны, взаимодействуя с тканями тела человека, вызывают определенные функциональные изменения. При интенсивном облучении эти изменения могут оказать вредное воздействие на организм человека. Знание природы воздействия электромагнитных волн на организм человека, норм допустимых облучений, методов контроля интенсивности излучений и средств защиты от них является совершенно необходимым для специалистов машиностроения в их многогранной практической деятельности.

Электромагнитное поле — это особая форма материи, представляющая собой взаимосвязанные электрическое и магнитное поля.

Энергия электромагнитного поля может переходить в другие формы энергии. Фактически само существование жизни на Земле обусловлено преобразованием электромагнитной энергии (энергии солнечных лучей) в тепловую, химическую и другие виды энергии.

Действие электромагнитного излучения на организм человека в основном определяется поглощенной в нем энергией. Известно, что излучение, попадающее на тело человека, частично отражается и частично поглощается в нем. Поглощенная часть энергии электромагнитного поля превращается в, тепловую энергию. Эта часть излучения проходит через кожу и распространяется в организме человека в зависимости от электрических свойств тканей (абсолютной диэлектрической проницаемости, абсолютной магнитной проницаемости, удельной проводимости) и частоты колебаний электромагнитного поля.

Существенные различия электрических свойств кожи, подкожного жирового слоя, мышечной и других тканей обусловливают сложную картину распределения энергии излучения в организме человека. Точный расчет распределения тепловой энергии, выделяемой в организме человека при облучении, практически невозможен. Тем не менее, можно сделать следующий вывод: волны миллиметрового диапазона поглощаются поверхностными слоями кожи, сантиметрового — кожей и подкожной клетчаткой, дециметрового — внутренними органами.

Кроме теплового действия электромагнитные излучения вызывают поляризацию молекул тканей тела человека, перемещение ионов, резонанс макромолекул и биологических структур, нервные реакции и другие эффекты.

Из сказанного следует, что при облучении человека электромагнитными волнами в тканях его организма происходят сложнейшие физико-биологические процессы, которые могут явиться причиной нарушения нормального функционирования как отдельных органов, так и организма в целом.

Люди, работающие под чрезмерным электромагнитным излучением, обычно быстро утомляются, жалуются на головные боли, общую слабость, боли в области сердца. У них увеличивается потливость, повышается раздражительность, становится тревожным сон. У отдельных лиц при длительном облучении появляются судороги, наблюдается снижение памяти, отмечаются трофические явления (выпадение волос, ломкость ногтей и т. д.).

Нормы допустимого облучения устанавливаются для обеспечения безопасных условий труда обслуживающего персонала источников излучения и всех окружающих лиц.

Напряженность электромагнитных полей на рабочих местах не должна превышать:

1) по электрической составляющей: в диапазоне частот 60 кГц—3 МГц — 50. В/м; 3—30 МГц — 20. В/м; 30—50 МГц — 10 В/м; 50—300 МГц — 5 В/м;

2) по магнитной составляющей: в диапазоне частот 60 кГц— 1, 5 МГц — 5 А/м; 30 МГц—50 МГц — 0, 3 А/м.

Предельно допустимая плотность потока энергии электромагнитных полей в диапазоне частот 300 МГц — 300 ГГц и время пребывания на рабочих местах и в местах возможного нахождения персонала, связанного профессионально с воздействием полей (кроме случаев облучения от вращающихся и сканирующих антенн), взаимосвязаны следующим образом: пребывание в течение рабочего дня —до 0, 1 Вт/м2; пребывание не более 2ч— 0, 1—1 Вт/м2, в остальное рабочее время плотность потока энергии не должна превышать 0, 1 Вт/м2; пребывание не более 20 мин — 1—10 Вт/м2 при условии пользования защитными очками. В остальное рабочее время плотность потока энергии не должна превышать 0, 1 Вт/м2.

Напряженность электрического поля промышленной частоты (50 Гц) в электроустановках напряжением 400 кВ и выше для персонала, систематически (в течение каждого рабочего дня) обслуживающего их, не должна превышать при пребывании человека в электрическом поле: без ограничения времени—до 5 кВ/м; не более 180 мин в течение одних суток 5—10 кВ/м; не более 90 мин в течение одних суток 10—15 кВ/м; не более 10 мин в течение одних суток 15−30 кВ/м; не более 5 мин в течение суток 20−25 кВ/м. Остальное время суток человек должен I находиться в местах, где напряженность электрического поля не превышает 5 кВ/м.

Если облучение людей превышает указанные предельно допустимые уровни, то необходимо применять защитные средства.

Защита человека от опасного воздействия электромагнитного облучения осуществляется рядом способов, основными из которых являются: уменьшение излучения непосредственно от самого источника, экранирование источника излучения, экранирование рабочего места, поглощение электромагнитной энергии, применение индивидуальных средств защиты, организационные меры защиты.

Для реализации этих способов применяются: экраны, поглотительные материалы, аттенюаторы, эквивалентные нагрузки и индивидуальные средства.

Экраны предназначены для ослабления электромагнитного поля в направлении распространения волн. Степень ослабления зависит от конструкции экрана и параметров излучения. Существенное влияние на эффективность защиты оказывает также материал, из которого изготовлен экран.

Толщину экрана, обеспечивающую необходимое ослабление, можно рассчитать. Однако расчетная толщина экрана обычно мала, поэтому она выбирается из конструктивных соображений. При мощных источниках излучения, особенно при длинных волнах, толщина экрана может быть принята расчетной.

Толщина экрана в основном определяется частотой и мощностью излучения и мало зависит от применяемого металла.

Очень часто для экранирования применяется металлическая сетка. Экраны из сетки имеют ряд преимуществ. Они просматриваются, пропускают поток воздуха, позволяют достаточно быстро ставить и снимать экранирующие устройства.

Экранированию подлежат генераторы, фидерные линии, элементы высоковольтных электроустановок, разъемы рабочих контуров, индукционные катушки, рабочие конденсаторы, смотровые окна и установки в целом. Конструкция экрана в каждом отдельном случае должна обеспечивать наибольший эффект экранирования. Приведем несколько примеров.

Для экранирования индукционной катушки применяется цилиндрический экран. Устанавливается он так, как показано на рис. 1, а. Излучение при этом происходит через открытые концы цилиндра. Эффективность такого экрана Э, т. е. величина, показывающая, во сколько раз экран ослабляет поле на рабочем месте, может быть определена по формуле

Э = е3,6l / D (1)

где l — расстояние от катушки до краев цилиндра; D — диаметр цилиндра.

Из формулы (1) видно, что более длинный цилиндр дает лучший эффект.

На рис. 1, б показана конструкция экрана рабочего конденсатора высокочастотной установки, применяемого, как и индукционная катушка, для термической обработки изделий. Он представляет собой отрезок прямоугольной трубы.

Расстояние между экраном и конденсатором должно быть не менее расстояния между обкладками. Эффективность такого экрана может быть определена по формуле

Э = еl / a (2)

Рис. 1. Экранирование индукционной катушки и рабочего конденсатора вы-сокочастотных установок

где l — расстояние от конденсатора до конца экрана; а — ширина экрана.

Более длинный экран в этом случае дает лучший результат.

При экранировании ослабление излучения осуществляется за счет отражения части энергии от экрана. Следовательно, в тех случаях, когда отраженная энергия может представлять опасность или вносить помехи, применять экранирование нецелесообразно.

Поглотительный материал осуществляет защиту путем превращения энергии электромагнитного поля в тепловую. В качестве поглотительного материала применяют каучук, пенополистирол, ферромагнитный порошок со связывающим диэлектриком, волосяные маты, пропитанные графитом, и другие материалы.

Для повышения поглотительной способности материала ему придают такую форму, чтобы волны испытывали многократное отражение (рис. 2). Это приводит к неоднократному прохождению электромагнитных волн через поглотительный материал, что обеспечивает хорошее поглощение при незначительной толщине материала. Кроме того, многократное отражение волн приводит к взаимному их уничтожению. Использование таких материалов особенно эффективно в диапазонах высоких и сверхвысоких частот излучения.

Для того, чтобы значительная часть энергии не отражалась от поглотительного материала, его волновое сопротивление должно быть близким к волновому сопротивлению воздуха Z0.Это возможно при условии

(3)

где п, п — соответственно магнитная и электрическая проницаемость поглотительного материала.

Если условие (3) не выполняется, то поглотительный материал покрывается согласующим слоем диэлектрика. Волновое сопротивление согласующего слоя должно удовлетворять условию

где Z п — волновое сопротивление поглотительного материала.

Рис. 2. Рельефы поверхностей поглотительного материала, обеспечивающие многократное отражение электромагнитных волн

Хорошие результаты дает совместное применение экрана и поглотительного материала. Поглотительный материал наносится на металлический лист, выполняющий роль экрана. Эта конструкция обеспечивает двукратное прохождение электромагнитной волны через поглотительный материал. Если толщину поглотительного материала выбрать соизмеримой с четвертью длины волны, то прямая и отраженная волны будут иметь сдвиг по фазе 180° и взаимно уничтожаются. Недостатком этой конструкции является то, что она эффективна только в узком диапазоне частот.

Индивидуальные средства предназначены для защиты человека или отдельных его органов при работе в сильных электромагнитных полях. Они применяются в тех случаях, когда другие меры защиты не могут быть использованы или не обеспечивают необходимого ослабления излучения. К индивидуальным средствам относятся защитные халаты, комбинезоны, очки. Все эти средства защиты являются своеобразными экранами. Их защитные свойства определяются степенью отражения волн.

В качестве материала для защитных халатов и комбинезонов используется специальная ткань, в структуре которой тонкие металлические нити скручены с хлопчатобумажными нитями, что придает ткани плотность, эластичность и теплозащитные свойства. Защитные свойства такой ткани следующие:

Таблица 1

Длина волны, см

0,8

3,2

Ослабление излучения, дБ

Индивидуальные средства защиты должны применяться в исправном состоянии, а их защитные свойства периодически проверяться.

Организационные меры защиты должны быть направлены на обеспечение безопасных условий труда при использовании электромагнитной энергии. Они должны учитываться прежде всего при организации производства, рабочего места и режима труда. Наибольшее значение при этом необходимо уделять выбору расстояния от источника излучения до рабочего места и сокращению времени пребывания человека в электромагнитном поле. Эти меры иногда называются соответственно «защита расстоянием» в «защита временем».

С учетом эффективности защиты расстоянием санитарными нормами установлено, что на каждую действующую установку в закрытом помещении мощностью до 30 кВт должно приходиться не менее 25 м2 площади и не менее 40 м2 для установок большей мощности. Для вновь монтируемых установок площади должны быть предусмотрены в 1,5—2 раза больше

Эффективность защиты временем не вызывает сомнения. Однако применять ее следует только в тех случаях, когда другие меры и средства не обеспечивают безопасных условий труда. Это объясняется тем, что сокращение времени нахождения на рабочем месте под облучением практически всегда ведет к снижению производительности труда. Защита временем может осуществляться путем смены работающих, частичной автоматизацией процессов, дистанционным управлением установкой, перерывом в работе и т. и.

Контроль уровней облучения должен производиться путем измерения нормируемого параметра электромагнитного поля на рабочем месте не реже двух раз в год, а также при вводе в действие новых источников излучения при реконструкции действующих установок, после ремонтных работ; при опытных и исследовательских работах уровни облучения необходимо проверять при каждом изменении условий труда.

Измерения в каждой выбранной точке производятся не менее трех раз. Результат каждого измерения фиксируется в протоколе. За уровень электромагнитного облучения в данной точке принимается среднеарифметическое трех измерений. Измерения производятся специально разработанными для этой цели приборами ИЭМП (диапазон высоких частот), ПО-1 (диапазон сверхвысоких частот), ПЗ-1 (промышленная частота) и др.

При статической электризации во время технологических процессов, сопровождающихся трением, размельчением твердых частиц, пересыпанием сыпучих тел, переливанием жидкостей-диэлектриков на изолированных от земли металлических частях производственного оборудования возникает относительно земли электрическое напряжение порядка десятков киловольт.

Так, при движении резиновой ленты транспортера и в устройствах ременной передачи на ленте (ремне) и на роликах (шкивах) возникают электростатические заряды противоположных знаков большей величины, а потенциалы их: достигают 45 кВ. Основную роль при этом играют влажность и давление воздуха и состояние поверхностей лент (ремней) и роликов (шкивов), а также скорость относительного движения (пробуксовки). Аналогично происходит электризация: и при сматывании тканей, бумаги, пленки и. др.

При относительной влажности воздуха 85% и более электростатических зарядов обычно не возникает.

В аэрозолях электрические заряды образуются от трения частиц пыли друг о друга и о воздух.

Причинами электризации пыли могут быть непосредственная адсорбция заряда из окружающего воздуха вместе с адсорбируемым газом. Потенциалы заряженных частиц пыли могут достигать значений: до 10 кВ в зависимости от концентрации пыли в воздухе, размера и скорости движения частиц пыли и относительной влажности воздуха.

Применяемое на электроподстанциях минеральное (трансформаторное) масло в процессе его переливания (например, слив из цистерны в бак) также подвергается электризации. В случае, если металлическая емкость или автоцистерна не заземлены, то в процессе налива они окажутся электрически заряженными.

Электрические заряды на частях производственного оборудования могут взаимно нейтрализоваться при некоторой электропроводности влажного воздуха, а также стекать в землю по поверхности оборудования. Но в отдельных случаях; когда электростатические заряды велики, а влажность воздуха незначительна, может возникнуть быстрый искровой разряд между частями оборудования или разряд на землю.

Энергия такой электрической искры может оказаться достаточно большой для воспламенения горючей или взрывоопасной смеси. Например, для многих парои газовоздушных взрывоопасных смесей требуется сравнительно небольшая энергия воспламенения, всего лишь около (0,2—0,5)10-3 Вт.с.

Практически при напряжении 3000 В искровой разряд может вызвать воспламенение почти всех парои газовоздушных смесей, а при 5000 В воспламенение большей части горючих пылей и волокон.

Таким образом, возникающие в производственных условиях электростатические заряды могут служить импульсом, способным при наличии горючих смесей вызвать пожар и взрыв. В ряде случаев статическая электризация тела человека и затем последующие разряды с тела человека на землю или заземленное производственное оборудование, а также электрический разряд с незаземленного оборудования через тело человека на землю могут вызывать нежелательные болевые и нервные ощущения и быть причиной непроизвольного резкого движения человека, в результате которого он может получить ту или иную механическую травму (ушибы, ранение).

Устранение опасности возникновения электростатических зарядов достигается следующими мерами: заземлением производственного оборудования и емкостей для хранения легковоспламеняющихся и горючих жидкостей; увеличением электропроводности поверхностей электризующихся тел путем повышения влажности воздуха или применением антистатических примесей к основному продукту (жидкости, резиновые изделия и др.); ионизацией воздуха с целью увеличения его электропроводности.

Каждая система аппаратов и трубопроводов, заполняемых электризуемыми жидкостями, должна быть в пределах цеха заземлена не менее чем в двух местах. Автоцистерны во время налива или слива горючих жидкостей должны быть заземлены.

Эффективным методом для устранения электризации нефтепродуктов является метод введения в основной продукт специальных антистатических веществ (присадок).

Кроме того, для уменьшения статической электризации при сливе нефтепродуктов и других горючих жидкостей необходимо избегать падения и разбрызгивания струи с высоты, поэтому сливной шланг (рукав) следует опускать до самого дна цистерны или другой какой-либо емкости. Металлические наконечники этих сливных шлангов во избежание проскакивания искр на землю или заземленные части оборудования следует заземлять гибким медным проводником.

В качестве присадки для увеличения электропроводности нефтепродуктов применяют в количестве около 0,001—0,003% олеат хрома, что практически не влияет на их физико-химические свойства.

Антистатические вещества (графит, сажа) вводят и в состав резинотехнических изделий, что повышает их электропроводность. Так, резиновые шланги для налива и перекачки легковоспламеняющихся жидкостей изготовляют из маслобензостойкой электропроводящей резины, что в значительной степени снижает опасность воспламенения этих жидкостей при переливании их в передвижные емкости (автоцистерны, железнодорожные цистерны).

электромагнитный телефон облучение

Выводы Действию электромагнитных полей промышленной частоты человек подвергается в производственной, городской и бытовой зонах. Санитарными нормами установлены предельно допустимые уровни напряженности электрического поля внутри жилых зданий, на территории жилой зоны. Люди, страдающие от нарушений сна и головных болей, должны перед сном убирать или отключать электрические приборы, генерирующие электрические поля.

Воздействие электромагнитных полей может быть изолированным — от одного источника, сочетанным — от двух и более источников одного частотного диапазона, смешанным — от двух и более источников электромагнитных полей различных частотных диапазонов, и комбинированным — в случае одновременного действия какого-либо другого неблагоприятного фактора.

Воздействие может быть постоянным или прерывистым, общим (облучается все тело) или местным (облучается часть тела). В зависимости от места нахождения человека относительно источника излучения он может подвергаться воздействию электрической или магнитной составляющих поля или их сочетанию, а в случае пребывания в волновой зоне — воздействию сформированной электромагнитной волны. Контроль уровней электрического поля осуществляется по значению напряженности электрического поля, выраженной в В/м. Контроль уровней магнитного поля осуществляется по значению напряженности магнитного поля, выраженной в А/м.

Длительное действие электрических полей может вызывать головную боль в височной и затылочной области, ощущение вялости, расстройство сна, ухудшение памяти, депрессию, апатию, раздражительность, боли в области сердца. Для персонала ограничивается время пребывания в электрическом поле в зависимости от напряженности поля (180 минут в сутки при напряженности 10 кВ/м, 10 минут в сутки при напряженности 20 кВ/м).

К основным мерам защиты относят:

— предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций, на которых могут появиться заряды (аппараты, резервуары, трубопроводы, транспортеры, сливоналивные устройства, эстакады и т. п.); уменьшение электрического сопротивления перерабатываемых веществ; снижение интенсивности зарядов статического электричества. Достигается соответствующим подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения, очисткой горючих газов и жидкостей от примесей;

— отвод зарядов статического электричества, накапливающихся на людях. Позволяет исключить опасность электрических разрядов, которые могут вызвать воспламенение и взрыв взрывои пожароопасных смесей, а также вредное воздействие статического электричества на человека. Основными мерами защиты являются: устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов; обеспечение работающих токопроводящей обувью, антистатическими халатами.

Защита от электромагнитных полей и излучений в нашей стране регламентируется Законом РФ об охране окружающей природной среды, а также радом нормативных документов.

Основной способ защиты населения от возможного вредного воздействия электромагнитных полей от линий электропередачи — создание охранных зон шириной от 15 до 30 м в зависимости от напряжения ЛЭП. Данная мера требует отчуждения больших территорий и исключения их из пользования в некоторых видах хозяйственной деятельности.

Уровень напряженности электромагнитных полей снижают также с помощью устройства различных экранов, в том числе и зеленых насаждений, выбора геометрических параметров ЛЭП, заземление тросов и других мероприятий.

В стадии разработки находятся проекты замены воздушных линий ЛЭП на кабельные и подземной прокладки высоковольтных линий.

Для защиты населения от неионизирующих электромагнитных излучений, создаваемых радиотелевизионными средствами связи и радиолокаторами также используется метод защиты расстоянием. С этой целью устраивают санитарно-защитную зону, размеры которой должны обеспечить предельно допустимый уровень напряженности поля в населенных местах. Коротковолновые радиостанции большой мощности (свыше 100 кВт) размещают вдали от жилой застройки, вне пределов населенного пункта.

Концепция нормирования электромагнитных полей и излучений предусматривает:

· Выработку единой системы нормативных значений предельно допустимых уровней электромагнитных полей и излучений;

· Защиту природных ресурсов от потерь, обусловленных действием этих полей на различные компоненты природной среды;

· Предотвращение значительных функциональных нарушений экосистем в результате прямого или косвенного воздействия полей на те или иные компоненты этих систем.

Библиографический список

1. Гайченко В. А., Коваль Е. П., Буравлев Г. М. Основы безопасности жизнедеятельности. 2006 г.

2. Джигирей в.С., Житецкий в.Ц. Безопасность жизнедеятельности. Учебник. — Львов: — 2008.

3. Желибо Е. Б., Завернуха И. Н., Зацарный В. В. Безопасность жизнедеятельности. Учебник. — М.: — 2007г

4. Елин А. М. Воздействие электромагнитных излучений на здоровье человека. Меры по обеспечению безопасности/ А. М. Елин //Справочник специалиста по охране труда. — 2007. — N 7. — С. 37−41

5. Крикунов Г. Н., Беликов А. С., Залунин В. Ф. Безопасность жизнедеятельности. Учебник. — М.: — 2006 г.

6. Лапин В. М. Безопасность жизнедеятельности человека. Учебник. — М.: — 2008 г.

7. Окраинская И. С. Проблема защиты персонала электроустановок сверхвысокого напряжения от действия электрического поля промышленной частоты/ И. С. Окраинская [и др.] //Безопасность жизнедеятельности. — 2006. — N9. — С. 33−35.

8. Русак О. Н. Безопасность жизнедеятельности. Курс лекций. — Спб.: — 2008 г.

Показать весь текст
Заполнить форму текущей работой