Интеграция локальных вычислительных сетей МИЭТ и студенческого городка МИЭТ
Многомодовое и одномодовое оптоволокно отличаются емкостью и способом прохождения света. Наиболее очевидное отличие заключается в размере оптической сердцевины световода. Более конкретно, многомодовое волокно может передавать несколько мод (независимых световых путей) с различными длинами волн или фазами, однако больший диаметр сердцевины приводит к тому, что вероятность отражения света… Читать ещё >
Интеграция локальных вычислительных сетей МИЭТ и студенческого городка МИЭТ (реферат, курсовая, диплом, контрольная)
ГОСУДАРСТВЕННЫЙ КОМИТЕТ РФ ПО ВЫСШЕМУ ОБРАЗОВАНИЮ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ЭЛЕКТРОННОЙ ТЕХНИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ МПИТК КАФЕДРА ВТ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К ДИПЛОМНОМУ ПРОЕКТУ НА ТЕМУ «ИНТЕГРАЦИЯ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ МИЭТ И СТУДЕНЧЕСКОГО ГОРОДКА МИЭТ»
Дипломант Абрамец М. Б Руководитель проекта Лупин С. А Консультант по Специальному разделу Лупин С. А Консультант по Технологическому разделу Грушевский А.М.
Консультант по Организационно-Экономическому разделу
Дьячкова Н. Н Консультант по Производственной и Экологической Безопасности Никулина И. М Москва
СОДЕРЖАНИЕ Введение Часть I
Специальный раздел ЛВС Студенческого городка МИЭТ
История создания
Структура и технологии сети Кабельная система Инфраструктура сети Информационная составляющая Связь с сетью Internet
ЛВС МИЭТ Структура и технологии Связь с сетью Internet
Варианты реализации физического канала Связь через сеть Internet
Аренда выделенного цифрового канала Создание волоконно-оптической магистрали МИЭТ — Cтудгородок Обзор волоконно-оптических технологий Оборудование и материалы, необходимые для реализации физической связи интегрируемых сетей посредством волоконно-оптической магистрали Организация радиоканала Обзор технологий и классификация оборудования радиосетей Анализ целесообразности реализации связи ЛВС МИЭТ и Студгородка МИЭТ посредством радиоканала Необходимое оборудование Выбор активного оборудования и его обоснование Характеристики радиоканала
Заключение
Обеспечение информационной безопасности сетей Преспективы проекта Заключение
Часть II
Технологический раздел Введение Содержание и представление информационных ресурсов электронной библиотеки Процесс наполнения электронной библиотеки Выводы Литература
Часть III
Организационно-экономический раздел Введение Расчет постатейных прямых затрат при различных вариантах интеграции сетей Связь посредством сети Internet
Аренда выделенного канала Создание оптоволоконной магистрали Расчет основных прямых затрат на реализацию проекта Организация радиоканала Расчет основных прямых затрат на реализацию проекта Прогнозная оценка реализации различных вариантов связи ЛВС МИЭТ и студгородка МИЭТ Выводы Литература
Часть IV
Производственная и экологическая безопасность Введение ТРЕБОВАНИЯ К ПомещениЮ при эксплуатации ПЭВМ Организация рабочего места Требования к вентиляции и кондиционированию воздуха Требования к уровням шума и вибрациям Электроопасность и пожароопасность Требования к защите от статического электричества и излучений при работе за компьютером Требования к естественному и искусственному освещению
Расчет искусственного освещения помещения компьютерного зала Психофизиологические факторы Выводы Литература
ВВЕДЕНИЕ
В настоящее время, когда информационные технологии заняли достаточно прочные позиции практически во всех сферах жизнедеятельности человека, и продолжают их укреплять, стало очень популярным понятие системной интеграции.
Сегодня, для эффективного решения ряда производственных и иных задач, уже не достаточно просто иметь большой парк компьютеров, необходимо создавать на их базе целостную структуру, обеспечивающую взаимодействие вычислительных систем, и их отдельных компонентов. Организации всего мира, от крупнейших корпораций до небольших компаний, постоянно развивают и совершенствуют свои вычислительные сети, внедряют новые достижения в области информационных технологий в производственные и иные процессы.
Системы поддержки принятия решений, системы документооборота, системы управления базами данных — все это технологии на порядок увеличивающие эффективность работы любой организации, однако все они практически бесполезны, если вычислительные ресурсы компании не объединены в единую корпоративную сеть. Именно поэтому ежегодно на развитие корпоративных сетей и систем связи во всем мире выделяются колоссальные деньги!
Трудно переоценить значимость информационных технологий и для таких областей как наука и образование. Сегодня компьютер является уже не предметом изучения, а средством, способствующим учебному процессу. Последнее время стали активно развиваться такие проекты как «дистанционное обучение», появилось множество электронных библиотек, банков данных, специализированных электронных учебников. Компьютерные сети позволяют совместно использовать имеющиеся вычислительные мощности для распределенного решения сложных задач, так называемое разделение процессорных ресурсов.
В рамках социально-образовательных программ в высших учебных заведениях создаются мощные информационные системы, способствующие учебному процессу, проведению совместных исследований, и оперативному обмену информацией между студентами и преподавателями. Очень распространенными стали так называемые «кампусные» сети — компьютерные сети, объединяющие рабочие станции студентов с общими сетями института.
Не секрет, что развитие подобного рода проектов в России весьма затруднительно, ввиду отсутствия финансирования, поскольку создание сети масштаба студенческого городка является задачей достаточно серьезной, и требует ощутимых финансовых и временных затрат. Поэтому в нашей стране, как правило, кампусные сети создаются и поддерживаются самими студентами. Интеграция же этих сетей с сетями соответствующих учебных заведений происходит далеко не всегда, но как показывает практика, такое объединение очень полезно.
На территории студгородка МИЭТ с 1994 года существует локальная сеть, которая в настоящее время охватывает 60% всех комнат общежития, и имеет достаточно развитую инфраструктуру. Последние три года, когда появился смысл рассматривать ЛВС студгородка как потенциальное подразделение в рамках сети МИЭТ, несколько раз безуспешно предпринимались попытки объединить сеть студгородка с сетью института. Как правило, основные сложности заключались в территориальной удаленности института и студгородка, и в вопросах обеспечения безопасности сети института.
Цель данной дипломной работы — попытаться разработать вариант интеграции локальных вычислительных сетей МИЭТ и студгородка МИЭТ, удовлетворяющий обе стороны.
На рисунке ниже, представлено обоснование необходимости реализации проекта интеграции для института.
Цель интеграции сетей МИЭТ и студгородка МИЭТ
Основной идеей является то, что интеграция сетей должна протекать поэтапно. То есть первоначально достаточно реализовать доступ из сети студгородка к некоторому серверу, располагающемуся в пределах сети МИЭТ, по протоколам FTP и HTTP. Таким образом, этот сервер будет являться общим информационным пространством (пересечением ЛВС) МИЭТ и студгородка МИЭТ. В ходе развития общих информационных проектов, можно будет расширить информационное пространство. В перспективе можно реализовать аутентификацию пользователей, запрашивающих доступ к ресурсам сети МИЭТ.
Для того чтобы реализовать проект интеграции необходимо представлять себе структуры локальных вычислительных сетей МИЭТ и студенческого городка МИЭТ, а так же принципы их функционирования, и используемые технологии.
Кроме того, необходимо выбрать из возможных вариантов интеграции наиболее удовлетворяющий следующим критериям:
— Минимизация затрат на техническую реализацию
— Минимизация сроков реализации
— Обеспечение информационной безопасности сетей Для этого необходимо произвести достаточно глубокий анализ потенциальных вариантов интеграции, выявить присущие им достоинства и недостатки, и оперируя этой информацией произвести выбор варианта реализации и его обоснование.
ЧАСТЬ I
СПЕЦИАЛЬНЫЙ РАЗДЕЛ
ИНТЕГРАЦИЯ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ МИЭТ И СТУДЕНЧЕСКОГО ГОРОДКА МИЭТ
КОНСУЛЬТАНТ ЛУПИН С.А.
КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ
ЛВС СТУДЕНЧЕСКОГО ГОРОДКА МИЭТ
История создания
Локальная вычислительная сеть студенческого городка МИЭТ существует с 1994 года. Сеть образовалась, поддерживается и развивается исключительно благодаря усилиям студентов, проживающих в студенческом городке. Цель объединения домашних компьютеров в локальную сеть имеет социально-образовательный характер. То есть для студентов сеть является средством интерактивного взаимодействия, общения, частью досуга, а так же используется в образовательных целях и при совместном решении различных задач.
Рис.1−1. Динамика расширения ЛВС Студгородка МИЭТ
За 7 лет существования ЛВС претерпела множество качественных изменений. На данный момент она территориально охватывает все 5 корпусов студенческого городка МИЭТ, а число рабочих станций, подключенных к ней, растет с каждым днем все больше и больше, и на начало 2001 года превысило 430 штук. Динамику расширения сети можно видеть на приведенной диаграмме.
Сеть постоянно развивается и модернизируется с учетом появления новых сетевых и информационных технологий, а также с учетом потребностей и возможностей пользователей, входящих в сетевое сообщество.
Администрированием и развитием сети занимается группа студентов, избранных сетевым сообществом на основании профессиональной пригодности и желания поддерживать функциональность и совершенствовать инфраструктуру сети, а также повышать уровень собственной квалификации в области сетевых технологий. В каждом корпусе есть сетевой администратор, который обеспечивает работоспособность вверенного ему участка сети в соответствии с общепринятым уставом.
Структура и технологии сети
ЛВС студенческого городка МИЭТ полностью построена на технологии SWITCHED ETHERNET и поддерживает стандарты 10Base-T и 100Base-T. Маршрутизация внутри сети не реализована, таким образом сеть представляет собой один широковещательный домен.
Сеть имеет тип топологии иерархическая звезда, то есть существует центральный коммутатор, который связывает между собой корпусные коммутаторы и несколько серверов.
Связь между коммутаторами реализована по технологии 100Base-T, имеет скорость передачи данных 100 мегабит в секунду в полнодуплексном режиме, обеспечивая тем самым пропускную способность 200 Мбит/с.
Структурная схема топологии ЛВС студгородка МИЭТ приведена на рисунке.
Рис. 2. Структурная схема ЛВС студгородка МИЭТ
К каждому корпусному коммутатору подключено от четырех до семи концентраторов (имеющих 8 или 16 портов), обеспечивающих связь с рабочими станциями по технологии 10Base-T со скоростью передачи данных 10 Мбит/с в полудуплексном режиме. Каждый из концентраторов образует отдельный сегмент сети, работающий по технологии Ethernet 10Base-T. Таким образом, сеть разбивается коммутаторами на коллизийные домены, в каждом из которых содержится не более 15 рабочих станций, что несомненно способствует рациональному использованию полосы пропускания, и минимизирует возможность возникновения коллизий. Кроме того, пропускная способность магистрали, к которой подключены коммутаторы (100 Мбит/с) равномерно распределяется между коллизийными сегментами, что позволяет добиться оптимальной производительности с учетом имеющегося оборудования и технологий.
Кабельная система
Кабельная система реализована с учетом базовых стандартов СКС (стандартов телекоммуникационной инфраструктуры коммерческих зданий ISO/IEC 11 801, EN 50 173 и ANSI/TIA/EIA-568-A).
Кабельная система полностью построена с использованием симметричного 4-парного медного кабеля («неэкранированная витая пара» или UTP) категории 5 фирмы Alcatel (с недавнего времени Nexans, www.nexans.com).
Магистральная подсистема кампуса (магистраль между корпусами) проходит «по воздуху», то есть крепится на специально смонтированных, и натянутых между крышами корпусов гибких тросах-растяжках. Такой тип соединения распределительных пунктов корпусов с главным распределительным пунктом комплекса продиктован в первую очередь расстояниями между корпусами, которое составляет 60−70 метров. С учетом ограничения спецификацией 5 категории длины линии связи между двумя активными устройствами (100 метров) прокладывать магистраль комплекса, используя медный кабель, внутри здания было нецелесообразно. Тем не менее, даже при таком способе прокладки магистралей, их длины превышают стометровый предел.
Однако, стандарты ISO/IEC 11 801 и EN 50 173 допускают наличие в СКС линий увеличенной длины. Такие линии рекомендуется тестировать на соответствие параметров, определенных для стандартных линий. Данное положение международного и европейского стандарта подразумевает возможность выбора более качественной среды передачи и использования резерва параметров для увеличения длины каналов.
Межкорпусные магистрали имеют 2 важные особенности, которыми обуславливается их нормальное функционирование, и нормальное взаимодействие подключенных к ним коммутаторов по технологии 100Base-T:
1. Поскольку передача информации по магистрали происходит в полнодуплексном режиме, то отсутствует понятие коллизии, и связанного с ним значения задержки сигнала при прохождении по линии связи (PVD — Path Delay Value), которое является одним из параметров, ограничивающих длину канала.
2. Характеристики кабеля имеют некоторый запас по затуханию сигнала, что позволяет увеличить длину линии связи на 20−30 метров без потери качества связи.
Таким образом, межкорпусные магистрали соответствуют международному (ISO/IEC 11 801) и европейскому (EN 50 173) стандартам СКС.
Магистральная подсистема корпуса (или вертикальная подсистема), проходит по коммуникационным стоякам, предусмотренным конструкцией зданий (корпусов общежития), и соединяет распределительный пункт здания (помещение, где располагается корпусной коммутатор) с распределительными пунктами этажей, число которых на каждом этаже достигает четырех.
Горизонтальная подсистема СКС. Прокладка кабелей осуществляется по специальным кабельным каналам (коробам) смонтированным на высоте 2 метра от пола вдоль всех коридоров корпусов. Механические окончания кабелей горизонтальной подсистемы (разъемы и розетки RJ-45) выполнены в соответствии с требованиями 5й категории.
Рис. 3. Активное оборудование и магистрали ЛВС студгородка МИЭТ
На рис. 3 показано территориальное расположение активного сетевого оборудования, а так же изображены межкорпусные магистрали, и элементы вертикальной подсистемы СКС. Распределительный пункт (РП) кампуса, где установлен центральный коммутатор магистрали, располагается в 4 корпусе. Так же во всех корпусах существует РП корпуса, где располагаются корпусные коммутаторы, которые в свою очередь связаны вертикальной подсистемой СКС с РП этажей.
Стоит также отметить, что кабельная система реализована с учетом ограничений, накладываемых технологией Fast Ethernet, касающихся максимального диаметра коллизийного домена 205 метров. В сети полностью отсутствуют каскадируемые концентраторы, длины «лучей» в конечных сегментах не превышают 50 метров (хотя спецификация кабельной системы 5 категории ограничивает длину луча звезды 90 метрами).
Таким образом, ЛВС студенческого городка МИЭТ спроектирована с учетом перспектив внедрения новых технологий и масштабирования.
Для того чтобы полностью перевести всю сеть на высокоскоростную технологию Fast Ethernet (100Base-T), достаточно просто заменить активное оборудование в локальных сегментах: концентраторы и сетевые адаптеры, стоимость которых постоянно падает, и приближается к стоимости оборудования, работающего по технологии 10Base-T.
Инфраструктура сети
ЛВС студенческого городка МИЭТ имеет достаточно развитую инфраструктуру, и представляет собой, по сути, корпоративную сеть среднего масштаба.
Приведем некоторые данные по аппаратной части инфраструктуры сети:
Таблица 1. Статистика по аппаратной части ЛВС студгородка МИЭТ
В следующей таблице представлено распределение активного сетевого оборудования и рабочих станций по корпусам, а так же число комнат, «охваченных» сетью:
Таблица 2. Статистика по корпусам Как видно из таблицы 2, число комнат, имеющих одну или более точек подключения, составляет 35−70% от общего числа жилых комнат (в зависимости то корпуса). Таким образом, учитывая тенденцию компьютерных технологий становиться с каждым годом все доступнее, а так же динамику развития сетевых технологий, можно с большой вероятностью предположить, что через год-два компьютерная сеть будет охватывать 99% всей территории (всех комнат) студенческого городка.
На рисунках ниже обозначены все рабочие станции, подключенные к ЛВС студенческого городка МИЭТ на май 2001 года во всех корпусах студгородка.
Рис. 4. Расположение рабочих станций в корпусе № 2
Рис. 5. Расположение рабочих станций в корпусе № 3
Рис. 6. Расположение рабочих станций в корпусе № 4
Рис. 7. Расположение рабочих станций в корпусе № 5
Рис. 8. Расположение рабочих станций в корпусе № 6
Информационная составляющая
В сети существует 4 выделенных сервера, каждый из которых выполняет ряд полезных функций в масштабе всей сети. В таблице 3 приводятся данные о серверах:
Таблица 3. Описание функциональности выделенных серверов
Файловые серверы содержат большое количество программ, средств разработки и документации, доступным всем пользователям сети. Содержимое серверов постоянно пополняется и обновляется по мере появления новых версий полезных информационных ресурсов.
Помимо этого большое число пользователей сети организовывают на своих рабочих станциях WEB серверы, содержащие набор страничек различной тематики. Создаются различные форумы, доски объявлений, прочие ресурсы, улучшающие уровень взаимодействия пользователей сети, и удовлетворяющие их определенные интересы.
Сеть абсолютно прозрачна для пользователей в плане совместного использования ресурсов, что является особенно ценным. Учитывая, что число рабочих станций в сети превышает 430, и многие предоставляют доступ к различным информационным ресурсам, а так же, приняв во внимание тот факт, что средний размер жесткого диска превышает на сегодняшний день 10GB, то примерный объем информационного пространства ЛВС студгородка МИЭТ превышает 4 Терабайта (примерно 4,200,000 Мегабайт).
Связь с сетью Internet
Связь ЛВС студенческого городка МИЭТ с глобальной компьютерной сетью Internet, осуществляется посредством местного поставщика услуг Internet (провайдера), представляющего собой коммерческую структуру.
Оборудование провайдера расположено в 4 корпусе общежития, и подключено непосредственно к центральному коммутатору кампуса, как показано на рисунке 1.
Внутреннее пространство IP-адресов ЛВС студгородка МИЭТ лежит в диапазоне 172.16.0.0−172.16.255.255. Адреса из данного диапазона динамически распределяет DHCP сервер между рабочими станциями. Существует так же пространство внутренних статических адресов, которое находится внутри приведенного выше диапазона. Соответствие статических адресов конкретным рабочим станциям содержится в специальных таблицах DNS и DHCP серверов.
Поскольку пространство IP-адресов является специально выделенным для адресации в локальных сетях, то есть не является пространством уникальных адресов в сети Internet, то для осуществления связи рабочих станций сети с узлами сети Internet на шлюзе работает специальная служба NAT (Network Address Translation). Инициировать соединение внутреннего узла ЛВС студгородка с узлом в сети Internet можно только со стороны ЛВС студгородка, ввиду алгоритма реализации службы NAT. При этом IP-адрес всех узлов ЛВС внутренней сети студгородка для удаленных компьютеров в сети Internet имеет одно и то же значение — адрес шлюза в сеть студгородка.
Оплата связи с сетью Internet осуществляется из расчета переданного через шлюз (в обоих направлениях) объема информации. За 1 мегабайт установлена оплата 0.15 долларов США, что в принципа достаточно дорого. Поэтому из всех сервисов, предоставляемых в сети Internet, наиболее активно используются ICQ, почтовые сервисы (IMAP, POP3, SMTP), и Web (HTTP).
Структура и технологии
Локальная вычислительная сеть МИЭТ представляет собой, по сути, множество связанных между собой локальных сетей различных структурных подразделений университета. Как правило, все сети работают по технологии Ethernet (10Base-T, 10Base-2) или Fast Ethernet (100Base-TX, 100Base-FX).
Магистральный канал университета, соединяющий все корпуса с главным коммутационным узлом сети (с центральным маршрутизатором), выполнен с использованием оптоволоконного кабеля, позволяющего создавать сегменты большой длины, и работает по технологии 100Base-FX.
В каждом корпусе расположен один или несколько коммутаторов, подключенных к центральной сетевой магистрали университета. Коммутаторы обеспечивают связь подсетей отдельных структурных подразделений университета со всей сетью.
Рис. 9. Структурная схема ЛВС МИЭТ
Существует ряд серверов, общих для всей локальной вычислительной сети МИЭТ (рис.9). Правила доступа и работы с такими серверами регулируются администраторами ЛВС МИЭТ.
Каждое подразделение имеет выделенное ему пространство статических IP-адресов. Большинство подразделений МИЭТ соединяются с общей магистралью института через свои шлюзы, на которых, как правило, регулируются правила двунаправленного прохождения пакетов IP протокола в зависимости от принятой подразделением политики безопасности и существующих маршрутов. То есть шлюз выполняет роль маршрутизатора и брэндмауэра.
Таким образом, каждое подразделение университета определяет в частном порядке уровень и условия доступа к внутренним ресурсам своей подсети.
На рисунке 10 изображена схема типичной сети структурного подразделения МИЭТ и ее основные элементы:
Рис. 10. Структура типичной сети подразделения
Сегменты, как правило, имеют топологию «звезда», «шина» или смешанную. На рисунке 11 изображены типичные сегменты сети подразделения:
Рис. 11. Типичные сегменты сети подразделения
Связь с сетью Internet
Большинство подразделений МИЭТ используют главный шлюз (на рис. 9 — Main Gateway) для осуществления связи с узлами глобальной сети Internet. На шлюзе работает специализированное программное обеспечение, выполняющее фильтрацию входящего и исходящего трафика по ряду различных признаков с учетом принятых системным администратором правил политики безопасности.
Так же существует ряд подразделений института, которые имеют свой собственный Internet-канал. Такие подразделения, как правило, имеют возможность выхода в Internet несколькими путями, в зависимости от принятых настроек на местном маршрутизаторе, и локальных станциях подразделений.
Варианты реализации физического канала
Существует множество потенциальных вариантов реализации физического канала между локальными сетями МИЭТ и студенческого городка МИЭТ.
Рассмотрим наиболее подходящие с точки зрения практической реализации варианты обеспечения физической связи интегрируемых сетей.
СВЯЗЬ ЧЕРЕЗ СЕТЬ INTERNET
Учитывая тот факт, что обе интегрируемые сети имеют выход в глобальную компьютерную сеть Internet — можно сказать, что физический канал уже создан. То есть связь между ЛВС МИЭТ и ЛВС студгородка МИЭТ можно осуществить, используя каналы сети Internet.
Рис. 12. Интеграция ЛВС МИЭТ и студгородка МИЭТ посредством сети Internet
При этом в качестве общего информационного пространства можно использовать информационное пространство официального сервера МИЭТ, предоставляющего сервисы WWW (www.miee.ru) и FTP (ftp.miee.ru), тем самым исключив необходимость изменять параметры политики безопасности обоих сетей, а так же устанавливать дополнительное активное оборудование.
Этот вариант имеет ряд как положительных и отрицательных моментов, перечисленных в таблице 4.
Достоинства | Недостатки | |
· Связь существует: не требуется проведение дополнительных работ по построению физического канала · Не требуется изменение политик безопасности сетей · Равные условия доступа к ресурсам сети МИЭТ из любой точки, имеющей связь с Internet | · Высокая стоимость связи: необходимо ежемесячно оплачивать услуги сети Internet · Низкая скорость передачи данных: «ширина» Internet-канала, предоставляемого пользователям ЛВС студгородка МИЭТ 128Кбит/с · Низкое качество связи: качество связи зависит от множества субъективных факторов, таких как программно-аппаратные проблемы на промежуточных узлах связи · Низкая безопасность передаваемой информации из-за большого количества промежуточных узлов | |
Таблица 4. Преимущества и недостатки варианта реализации физического канала между ЛВС МИЭТ и студгородка МИЭТ посредством сети Internet
Этот вариант является неприемлемым для организации постоянно функционирующего канала обмена информацией между институтом и студгородком, преимущественно из-за чрезвычайно высокой абонентской платы за пользование услугами сети Internet.
АРЕНДА ВЫДЕЛЕННОГО ЦИФРОВОГО КАНАЛА
В данном варианте предполагается аренда у компании КОМКОР (www.comcor.ru) двух портов сети передачи данных и организация между ними виртуального канала.
Виртуальный канал — логическое, протокольно-независимое соединение, устанавливаемое в сети пакетной коммутации по протоколу Frame Relay, между двумя оконечными устройствами, обеспечивающими пользовательский интерфейс Ethernet по стандарту 10BaseT и характеризующееся следующими параметрами:
— пропускная способность;
— среда передачи на абонентской субмагистрали.
Пользовательский интерфейс Ethernet образуется на выходе маршрутизатора Cisco 1601, подключенного к выделенному каналу с соответствующей пропускной способностью к центру пакетной коммутации по стыку V.35.
Виртуальные каналы могут использоваться для соединения территориально разнесенных объектов как по схеме точка — точка, так и по схеме мультиточка или звезда.
Рис. 12. Организация виртуальных каналов
Виртуальные каналы сети пакетной коммутации, построенной на базе сети SDH и вторичной сети выделенных каналов. Эффективный способ соединения географически удаленных локальных вычислительных сетей. Frame Relay совместим со всеми протоколами, наиболее часто используемыми в ЛВС (TCP, Novell IPX, DECNET или NETBIOS). Этот протокол обеспечивает эффективную работу по каналам связи высокого качества. Позволяет эффективно передавать неравномерно распределенный по времени трафик. Обеспечивает малое время задержки при передаче информации через сеть. В отличие от вторичной сети выделенных каналов, для организации нового соединения нет необходимости устанавливать дополнительную аппаратуру. В стоимость услуги также входит установка модема для оптической или медной линии и маршрутизатора с портом 10-BaseT для подключения локальной сети клиента.
Рис. 13. Связь ЛВС МИЭТ и студгородка МИЭТ посредством логического канала в московской волоконно-оптической сети (МВОС)
Для реализации такого вида связи необходимо:
— оплатить подключение к МВОС и организацию логического канала
— установить и настроить брэндмауэры со стороны каждой ЛВС для регулирования уровня доступа к ресурсам сетей
— установить в ЛВС студгородка МИЭТ центральный маршрутизатор
— внести необходимые записи о маршрутах в центральные маршрутизаторы с целью направления межсетевого трафика по арендованному каналу В зависимости от желаемой пропускной способности канала варьируется и стоимость услуг. Цены для бюджетных организаций приведены в таблице 5:
Пропускная способность, Кбит/с | Организация виртуального канала, $ | Инсталляция порта сети передачи данных, $ | Арендная плата (За 1 порт) $/мес | |
Таблица 5. Стоимость подключения и размер арендной платы
Достоинства и недостатки данного варианта интеграции рассмотрены в таблице 7:
Достоинства | Недостатки | |
· Необходимое оборудование предоставляется поставщиком услуг связи · Гарантированное качество связи и пропускная способность · Безопасность передаваемой информации: МВОС соответствует требованиям по безопасности информации по классу защищенности «1Г» | · Ежемесячная оплата аренды канала · Сравнительно невысокая скорость передачи информации | |
Таблица 6. Достоинства и недостатки использования арендованного канала
В сущности, этот вариант является аналогом предыдущего. Он точно так же подразумевает использование коммерческого канала для связи интегрируемых сетей.
Реализация связи между ЛВС с помощью такого варианта обоснована, и с технической стороны имеет только одни преимущества (не считая пропускную способность, которая, кстати достаточна для совместного пользования ресурсами WEB и FTP серверов).
Экономически более целесообразной является связь посредством радиоканала, поскольку она не подразумевает ежемесячных расходов на поддержку, а по техническим характеристикам почти не уступает каналу связи, предоставляемому в аренду.
СОЗДАНИЕ ВОЛОКОННО-ОПТИЧЕСКОЙ МАГИСТРАЛИ МИЭТ — CТУДГОРОДОК
Обзор волоконно-оптических технологий
Волоконно-оптические линии связи являются на сегодняшний день самыми перспективными проводными решениями.
Оптический кабель может передавать данные с очень высокой пропускной способностью. Оптоволокно обладает отличными трансмиссионными характеристиками, высокой емкостью передаваемых данных, потенциалом для дальнейшего увеличения пропускной способности и устойчивостью к электромагнитным и радиочастотным помехам.
Световод состоит из сердцевины и защитного стеклянного внешнего слоя (оболочки). Оболочка служит в качестве отражающего слоя, с помощью которого световой сигнал удерживается внутри сердцевины. Оптический кабель может состоять только из одного световода, но на практике он содержит множество световодов. Световоды уложены в мягкий защитный материал (буфер), а он, в свою очередь, защищен жестким покрытием.
В широко распространенных световодах диаметр оболочки составляет 125 микрон. Размер сердцевины в распространенных типах световодов составляет 50 микрон и 62,5 микрон для многомодового оптоволокна и 8 микрон для одномодового оптоволокна. В общем-то, световоды характеризуются соотношением размеров сердцевины и оболочки, например 50/125, 62,5/125 или 8/125.
Световые сигналы передаются через оптоволокно и принимаются электронным оборудованием на другом конце кабеля. Это электронное оборудование, называемое оконечным оборудованием волоконно-оптической линии связи, преобразует электрические сигналы в оптические, и наоборот. Одно из преимуществ оптоволокна, кстати, состоит в том, что пропускную способность сети на базе оптоволокна можно увеличить простой заменой электронного оборудования на обоих концах кабеля.
Многомодовое и одномодовое оптоволокно отличаются емкостью и способом прохождения света. Наиболее очевидное отличие заключается в размере оптической сердцевины световода. Более конкретно, многомодовое волокно может передавать несколько мод (независимых световых путей) с различными длинами волн или фазами, однако больший диаметр сердцевины приводит к тому, что вероятность отражения света от внешней поверхности сердцевины повышается, а это чревато дисперсией и, как следствие, уменьшением пропускной способности и расстояния между повторителями. Грубо говоря, пропускная способность многомодового оптоволокна составляет около 2,5 Гбит/с. Одномодовое оптоволокно передает свет только с одной модой, однако меньший диаметр означает меньшую дисперсию, и в результате сигнал может передаваться на большие расстояния без повторителей. Проблема в том, что как само одномодовое оптоволокно, так и электронные компоненты для передачи и приема света стоят дороже.
Одномодовое волокно имеет очень тонкую сердцевину (диаметром 10 микрон или менее). Из-за малого диаметра световой пучок отражается от поверхности сердцевины реже, а это ведет к меньшей дисперсии. Термин «одномодовый» означает, что такая тонкая сердцевина может передавать только один световой несущий сигнал. Пропускная способность одномодового оптоволокна превышает 10 Гбит/с.
Число световодов в кабеле называется числом волокон. К сожалению, ни один опубликованный стандарт не определяет, сколько световодов должно быть в кабеле.
Спецификаций на оптоволокно существует сотни, они охватывают все возможные аспекты — от физических размеров до пропускной способности, от плотности на разрыв до цвета защитного материала. Защитный материал (буфер) предохраняет световод от повреждения, и он обычно маркируется разным цветом для простоты идентификации.
Основные параметры оптоволокна
Основные параметры оптоволокна — это длина, диаметр, оптическое окно (длина волны), затухание, пропускная способность и качество волокна. В спецификациях на оптоволокно длина указывается в метрах и километрах.
Многомодовое оптоволокно может быть нескольких диаметров, но наиболее распространено из них оптоволокно с соотношением сердцевины к оболочке 62,5 на 125 микрон. Размер 65,2/125 называется в спецификации ANSI/TIA/EIA-568A стандартным для проводки в зданиях.
Одномодовое оптоволокно имеет один стандартный размер — 9 микрон (плюс-минус один микрон).
Оптическое окно — это длина световой волны, которую волокно передает с наименьшим затуханием. Длина волны измеряется обычно в нанометрах (нм). Самые распространенные значения длины волны — 850, 1300, 1310 и 1550 нм. Большинство волокон имеет два окна — т. е. свет может передаваться на двух длинах волн. Для многомодовых световодов это 850 и 1310 нм, а для одномодовых — 1310 и 1550 нм.
Затухание характеризует величину потери сигнала и аналогично сопротивлению в медном кабеле. Затухание измеряется в децибелах на километр (дБ/км). Типичное затухание для одномодового волокна составляет 0,5 дБ/км при длине волны в 1310 нм и 0,4 дБ/км при 1550 нм. Для многомодового волокна эти величины равны 3,0 дБ/км при 850 нм и 1,5 дБ/км при 1300 нм. Благодаря тому, что оно тоньше, одномодовое волокно позволяет передавать сигнал с тем же затуханием на более дальние расстояния, чем эквивалентное многомодовое волокно.
Спецификация на кабели составляется исходя из максимально допустимого затухания (т. е. наихудшего сценария), а не типичной величины потерь. Так, максимальная величина затухания при указанных длинах волн для одномодового 1,0/0,75 дБ/км и 3,75/1,5 дБ/км для многомодового. Чем шире оптическое окно, т. е. чем длиннее волна, тем меньше затухание для кабелей обоих типов.
Пропускная способность или емкость данных, передаваемых по световоду, обратно пропорциональна затуханию. Иными словами, чем меньше затухание (дБ/км), тем шире полоса пропускания в МГц. Минимально допустимая пропускная способность для многомодового волокна должна быть 160/500 МГц при 850/1300 нм при максимальном затухании 3,75/1,5 дБ/км. Эта спецификация отвечает требованиям FDDI и TIA/EIA-568 для Ethernet и Token Ring.
Волокно может быть трех различных типов в зависимости от необходимых характеристик оптической передачи: стандартное, высококачественное и премиумное. Волокно более высокого качества используется обычно для удовлетворения более жестких требований к протяженности кабеля и затуханию сигнала.
Волоконно-оптические соединители.
Рекомендуемым типом соединителей согласно спецификации ANSI/TIA/EIA-568A на связную проводку для коммерческих зданий является двойной защелкивающийся SC-соединитель.
Сращивание волокон.
Наиболее распространены два метода сращивания: механическое сращивание и сплавка. При механическом сращивании концы волокон соединяются друг с другом с помощью зажима, при сплавке концы волокон запаиваются вместе.
Неудачное сращивание многомодового волокна имеет меньшие последствия, нежели одномодового, потому что пропускная способность сигнала, передаваемого по многомодовому волокну, ниже и не так чувствительна к отражениям в результате механического сращивания. Если приложение чувствительно к отражениям, в качестве метода сращивания необходимо применять сплавку.
Оборудование и материалы, необходимые для реализации физической связи интегрируемых сетей посредством волоконно-оптической магистрали
Кабельная система
Первое, что необходимо учитывать при выборе оборудования, это какой тип оптоволокна будет использоваться для прокладки магистрали. Принимая во внимание достаточно большую удаленность интегрируемых сетей (около 2 километров), правильнее всего выбрать одномодовое оптоволокно, поскольку оно обладает гораздо лучшими характеристиками, чем многомодовое, и наиболее подходит для создания протяженных линий связи (иногда даже более сотни километров), без промежуточной регенерации сигнала.
В качестве магистрального кабеля рекомендуется выбрать одномодовый восьми волоконный ВО кабель московского завода «Оптика-кабель» ОКСТ (СПЛ)-9,5−4, предназначенный для прокладки в коллекторах, и использования во внешних условиях. Этот кабель выполнен с использованием лучших российских и импортных компонентов по американской технологии, и имеет сравнительно невысокую стоимость.
Основные технические характеристики одномодового волоконно-оптического кабеля типа ОКСТ (СПЛ)-9,5-xx московского завода «Оптика-кабель»:
Количество оптических волокон, шт | 4 — 32 | ||
Коэффициент затухания, дБ/км | 1310 нм | <0,35 | |
1550 нм | <0,21 | ||
Хроматическая дисперсия, пс/нм*км | 1310 нм | <3,5 | |
1550 нм | <1,8 | ||
Длина волны отсечки, нм | 1180−1330 | ||
Диаметр модового поля, мкм | 9,3 +/- 0,5 | ||
Допустимое растягивающее усилие, Н | > 3000 | ||
Температурный диапазон, «С | — 40 +55 | ||
Наружный диаметр, мм | 14−14,5 | ||
Таблица 7. Характеристики ОВ кабеля ОКСТ (СПЛ)-9,5-xx
Активное оборудование
Активное оборудование для работы с одномодовым оптоволокном, стоит достаточно дорого, однако оно позволяет обеспечивать высокоскоростной обмен информацией на расстоянии до 100 километров без регенерации сигнала в волноводе.
Существует масса устройств, которые удовлетворяют практически любые требования, которые могут иметь место в рамках реализуемой задачи.
Однако, мной рекомендуется выбрать в качестве устройства сопряжения двух передающих сред (медного кабеля и одномодового оптоволокна) медиаконверторы серии AT-MC103 фирмы Allied Telesyn. Эта компания специализируется на производстве профессионального сетевого оборудования, и представляет на рынке полную линейку сетевых продуктов, обладающих наилучшим, на мой взгляд, соотношением цена/качество. Кроме того, на активное оборудование фирма дает пожизненную гарантию, и обеспечивает бесплатную техническую поддержку, что, несомненно, очень располагает в ее сторону.
Рис. 14. Медиаконверторы серии AT-MC103
Технические характеристики данных устройств перечислены в таблице:
Характеристики | AT-MC103XL | AT-MC103LH | AT-MC103SC/FS3 | AT-MC103SC/FS4 | |
Порт 1 | UTP | UTP | UTP | UTP | |
Разъем Порта 1 | RJ-45 | RJ-45 | RJ-45 | RJ-45 | |
Макс. длина сегмента кабеля | 100 м | 100 м | 100 м | 100 м | |
Коммутирующий порт MDI/MDIX | есть | есть | есть | есть | |
Порт 2 | SM Fiber | SM Fiber | SM Fiber | SM Fiber | |
Разъем Порта 2 | SC | SC | SC | SC | |
Макс. длина сегмента кабеля (FD) | 15 км | 40 км | 75 км | 100 км | |
Функция MissingLink | есть | есть | есть | есть | |
Полудуплексный /Полнодуплексный режимы | есть | есть | есть | есть | |
Таблица 8. Технические характеристики медиаконверторов AT-MC103
Для нашей задачи (обеспечения обмена информацией по магистрали длиной 2 километра) нам достаточно медиаконвертора AT-MC103XL, способного обеспечить обмен данными по одномодовому оптоволокну длиной до 15 километров со скоростью 100 Мбит/с в полнодуплексном режиме.
Данные устройства устанавливаются на разных концах магистрали, и соединяются с разделочной муфтой специальными патч-кордами с SC-коннекторами, и с активным оборудованием локальных сетей.
Таким образом можно обеспечить прозрачную связь локальных сетей, поскольку технологии 10Base-T, 100Base-T (которые используются в ЛВС МИЭТ и ЛВС студгородка МИЭТ) и 100Base-FX (оптоволоконная связь) совместимы на канальном уровне.
Однако политики безопасности локальных сетей не должны допускать полностью прозрачных связей по ряду совершенно понятных причин. По этому подключение устройств сопряжения 100Base-T — 100Base-FX на сторонах локальных сетей осуществляется к так называемым брэндмауэрам — специальным устройствам, обеспечивающим защиту от несанкционированного доступа к ресурсам сетей на основе принятых правил. Подробнее принципы их функционирования будут рассмотрены в главе «Информационная безопасность».
Достоинства и недостатки
Данный вид физического объединения сетей наиболее предпочтителен и перспективен с технической точки зрения, однако себестоимость проекта на сегодняшний день достаточно велика. Кроме того получить разрешение на прокладку магистрали в канализации практически невозможно, или стоит очень больших денег. Возможно в будущем ситуация изменится в лучшую сторону.
Достоинства | Недостатки | |
· Практически неограниченная пропускная способность · Высокая помехозащищенность · Высокий уровень безопасности передаваемой информации · Перспективы технологии | · Высокая себестоимость проекта · Необходимо получение разрешения на проведение прокладочных работ в городской канализации | |
Таблица 9. достоинства и недостатки физической интеграции сетей на базе собственной волоконно-оптической магистрали
ОРГАНИЗАЦИЯ РАДИОКАНАЛА
Обзор технологий и классификация оборудования радиосетей
Радиосети передачи данных применяются в тех случаях, когда организация проводных или оптоволоконных каналов связи невозможна физически, либо если существующие проводные каналы связи не удовлетворяют потребителей с точки зрения скорости передачи информации, или их использование является экономически нецелесообразным.
Вопрос выбора конкретного оборудования не так прост, как кажется на первый взгляд, так как в настоящее время номенклатура выпускаемого оборудования довольно широка и технические характеристики и стоимость у различных фирм-изготовителей и фирм, представляющих их интересы в России, отнюдь не одинаковы
Для начала рассмотрим, какое оборудование может быть использовано для создания радиосетей передачи данных, по каким признакам оно классифицируется и чего можно ожидать от того или иного класса оборудования.
Рабочий диапазон частот
В первую очередь можно классифицировать оборудование по радиочастотным параметрам, основным из которых является диапазон радиочастот, в котором данное оборудование работает. Причем от того, в каком диапазоне работает оборудование, зависят такие показатели, как дальность связи, скорость передачи информации и требования к обеспечению «прямой видимости», зависимость качества связи от погодных условий. Наиболее распространенные диапазоны частот, предназначенные для систем передачи данных, это 136−174 МГц, 400−512 МГц, 820−960 МГц, 2,4 ГГц, 5 ГГц, 10−12 ГГц, 30−35 ГГц и выше. Зависимость параметров следующая: чем выше частота, тем выше может быть скорость передачи данных, меньше дальность, выше требования к обеспечению прямой видимости и больше чувствительность к перемене погоды. Эта зависимость иллюстрируется следующими примерами, показывающими, каких параметров связи можно добиться при использовании различных диапазонов частот:
136−174 МГц — скорость передачи данных до 19,2 Кбит/с, дальность связи до 50−70 км, связь может осуществляться «из-за угла» и за горизонтом за счет искривления пути прохождения радиолуча у земли. Параметры связи практически не зависят от погодных условий.
400−512 МГц — скорость передачи данных до 128 Кбит/с, дальность связи до 40−50 км. Возможна радиосвязь при помощи приема сигналов, отраженных от различных зданий и сооружений, гор и т. д., хотя наличие прямой видимости желательно.
В диапазонах 800−960 МГц и выше возможна организация каналов передачи данных со скоростью свыше 2 Мбит/с, при этом обязательным является условие прямой видимости между антеннами. С ростом используемой частоты увеличивается влияние погодных условий и уменьшается дальность связи, так как условия распространения радиоволн в этом диапазоне приближаются к условиям распространения света. Кроме того, дальность связи зависит от мощности передатчиков, чувствительности приемников и характеристик применяемых антенн и радиочастотного кабеля.
Классификация систем по характеру модуляции радиосигнала
По характеру модуляции радиосигнала системы подразделяются на:
- Широкополосные (или шумоподобные) системы (ШПС) со скачкообразной перестройкой частоты (Frequency-Hopping Spread Spectrum) FHSS
— Шумоподобные системы (ШПС) с непосредственной модуляцией частоты (Direct-Sequence Spread Spectrum) DSSS
— Системы с линейной частотной модуляцией и избыточным спектром
— Системы с узкополосными модуляциями
— Другие системы
Системы с узкополосными модуляциями
Узкополосные устройства излучают в эфир сигнал с шириной спектра 25−200 кГц, причем ширина излучаемого спектра увеличивается с увеличением скорости передачи информации. Узкополосные системы обладают очень существенным недостатком: если в частотном диапазоне такой системы появляются помехи, то качество связи резко падает.
Широкополосные системы
Более защищенными от помех являются широкополосные устройства. Они используют сигнал с шириной спектра несколько мегагерц. Существует два варианта таких систем, использующие разные методы передачи данных.
1. Метод прямой последовательности (DSSS)
Не забираясь в технические детали, метод прямой последовательности (DSSS) можно представить себе следующим образом. Вся используемая «широкая» полоса частот делится на некоторое число подканалов — по стандарту 802.11 этих каналов 11. Каждый передаваемый бит информации превращается, по заранее зафиксированному алгоритму, в последовательность из 11 бит, и эти 11 бит передаются одновременно и параллельно, используя все 11 подканалов. При приеме, полученная последовательность бит декодируется с использованием того же алгоритма, что и при ее кодировке. Другая пара приемник-передатчик может использовать другой алгоритм кодировки-декодировки, и таких различных алгоритмов может быть очень много.
Первый очевидный результат применения этого метода — защита передаваемой информации от подслушивания («чужой» DSSS-приемник использует другой алгоритм и не сможет декодировать информацию не от своего передатчика). Но более важным является то, что благодаря 11-кратной избыточности передачи можно обойтись сигналом очень маленькой мощности (по сравнению с уровнем мощности сигнала при использовании обычной узкополосной технологии), не увеличивая при этом размеров антенн.
При этом сильно уменьшается отношение уровня передаваемого сигнала к уровню шума, (т.е. случайных или преднамеренных помех), так что передаваемый сигнал уже как бы неразличим в общем шуме. Но благодаря его 11-кратной избыточности принимающее устройство все же сумеет его распознать.
Еще одно чрезвычайно полезное свойство DSSS-устройств заключается в том, что благодаря очень низкому уровню мощности своего сигнала они практически не создают помех обычным радиоустройствам (узкополосным большой мощности), так как эти последние принимают широкополосный сигнал за шум в пределах допустимого. В другую же сторону — обычные устройства не мешают широкополосным, так как их сигналы большой мощности «шумят» каждый только в своем узком канале и не могут заглушить широкополосный сигнал весь целиком.
В результате можно сказать, что использование широкополосных технологий дает возможность использовать один и тот же участок радиоспектра дважды — обычными узкополосными устройствами и «поверх них» — широкополосными.
Приемущества DSSS технологии:
— Помехозащищенность
— Не создаются помехи другим устройствам
— Конфиденциальность передач
— Возможность повторного использования одного и того же участка спектра.
2. Метод частотных скачков (FHSS)
При кодировке по методу частотных скачков (FHSS) вся отведенная для передач полоса частот подразделяется на некоторое количество подканалов (по стандарту 802.11 этих каналов 79). Каждый передатчик в каждый данный момент использует только один из этих подканалов, регулярно перескакивая с одного подканала на другой. Стандарт 802.11 не фиксирует частоту таких скачков — она может задаваться по-разному в каждой стране. Эти скачки происходят синхронно на передатчике и приемнике в заранее зафиксированной псевдослучайной последовательности, известной обоим; поскольку не зная последовательности переключений, принять передачу также нельзя.
Другая пара передатчик-приемник будет использовать и другую последовательность переключений частот, заданную независимо от первой. В одной полосе частот и на одной территории прямой видимости (в одной «ячейке») таких последовательностей может быть много. Ясно, что при возрастании числа одновременных передач возрастает и вероятность коллизий, когда, например, два передатчика одновременно перескочили на частоту № 45, каждый в соответствии со своей последовательностью, и заглушили друг друга.
Метод частотных скачков, так же как и описанный выше метод прямой последовательности, обеспечивает конфиденциальность и некоторую помехозащищенность передач. Помехозащищенность обеспечивается тем, что если на каком-нибудь из 79 подканалов передаваемый пакет не смог быть принят, то приемник сообщает об этом, и передача этого пакета повторяется на одном из следующих (в последовательности скачков) подканалов.
С другой стороны, поскольку при использовании метода частотных скачков, в отличие от метода прямой последовательности, на каждом подканале передача ведется на достаточно большой мощности (сравнимой с мощностью обычных узкополосных передатчиков), про этот метод нельзя сказать, что он не мешает другим видам передач.
Принцип построения
Третий метод классификации — это принцип построения сети. Сети могут строиться по принципу «точка-точка», когда совместно работают два устройства, оснащенные направленными антеннами, либо по принципу «звезда», когда несколько абонентских устройств, оснащенных направленными антеннами, поддерживают связь с одним центральным устройством. Центральное устройство обычно оснащается антенной с круговой диаграммой направленности.
Поддерживаемые протоколы
Следующий параметр, по которому можно классифицировать оборудование радиосетей передачи данных, — это протоколы, поддерживаемые устройствами, их наличие и отсутствие.
Самым простым вариантом являются так называемые прозрачные, или транспарентные радиомодемы, предназначенные для организации радиолиний связи «точка-точка». Пожалуй, это единственный класс оборудования, к которому применим термин «радиомодем». Прозрачные радиомодемы обычно имеют синхронный порт для подключения оконечного оборудования. Пара таких радиомодемов просто организует подобие «нуль-модемного» кабеля, но не по проводам, а по радиоканалу. Скорость передачи данных, которую обеспечивают прозрачные радиомодемы, составляет от 1,2 Кбит/с до нескольких Е1. Низкоскоростные радиомодемы нашли применение в основном в системах телеметрии и телеуправления; с помощью высокоскоростных радиомодемов возможно соединение между собой двух цифровых АТС или двух локальных сетей (при использовании внешних маршрутизаторов). При использовании прозрачных радиомодемов обычно предусматривается возможность организации протяженных линий связи при использовании промежуточных ретрансляторов.