Помощь в написании студенческих работ
Антистрессовый сервис

Конденсатор переменной ёмкости

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

Современная радиоэлектроника является мощным средством научно-технического прогресса. Методы и средства радиоэлектроники проникли во все отрасли науки и техники, они находят широкое применение в различных отраслях народного хозяйства, в военном деле, в культуре и в быту. Современная радиоэлектроника — это комплекс областей науки и техники, включающий наряду с радиотехникой и электронной техникой… Читать ещё >

Конденсатор переменной ёмкости (реферат, курсовая, диплом, контрольная)

Министерство образования и науки Украины Харьковский национальный университет радиоэлектроники Кафедра ПЭЭА

Курсовой проект

Дисциплина: «Элементная база ЭА»

Тема проекта: «Конденсатор переменной ёмкости (минимальная ёмкость, Сmin-10 пФ; максимальная ёмкость, Сmax — 225 пФ; рабочее напряжение, Uраб — 150 В; закон изменения ёмкости — прямоволновой)»

Разработал: Руководитель проекта

ст. гр. ТЗТм-05−1 Григорьева О.В.

СОДЕРЖАНИЕ Введение

1. Анализ технического задания

1.1 Исходные данные

1.2 Выбор конструкции КПЕ

2. Анализ аналогичных конструкций

3. Электрический и конструктивный расчёт

3.1 Выбор числа и геометрических размеров пластин

3.2 Определение формы и размеров пластин

3.3 Вычисление температурного коэффициента ёмкости

4. Расчёт контактной пружины Паспорт Заключение Список литературы Приложения

Современная радиоэлектроника является мощным средством научно-технического прогресса. Методы и средства радиоэлектроники проникли во все отрасли науки и техники, они находят широкое применение в различных отраслях народного хозяйства, в военном деле, в культуре и в быту. Современная радиоэлектроника — это комплекс областей науки и техники, включающий наряду с радиотехникой и электронной техникой оптоэлектронику, рентгеноэлектронику, гамма — электронику и другие.

ХХ столетие, и особенно его вторая половина, ознаменовалась для радиотехники бурным её развитием как по количеству, так и по качеству и сложности функций, выполняемых радиотехническими системами и средствами. Потребности развивающейся радиотехники способствовали развитию электронной техники, и напротив, появление новых электронных приборов, в особенности сверхвысокочастотных и квантовых электронных приборов: магнетронов и клистронов, ламп бегущей и обратной волны, лазеров, мазеров и др., привело к резкому расширению возможностей радиотехники, к освоению СВЧ — диапазонов электромагнитных волн. Всё шире применяются радиотехнические методы для задач, не связанных с излучением электромагнитных волн. Поэтому понятие «радиотехника» стало заменяться более широким понятием «радиоэлектроника».

Из всего разнообразия радиоэлектронных средств (РЭС) в большинстве случаев возникает необходимость в элементах, способных изменять свою ёмкость в зависимости от какого-то внешнего параметра. Наиболее часто изменение ёмкости необходимо для изменения резонансной частоты контура, в состав которого входит элемент. Существует несколько типов таких элементов, одним из которых является конденсатор переменной ёмкости (КПЕ), рассматриваемый в данной работе.

1. АНАЛИЗ ТЕХНИЧЕСКОГО ЗАДАНИЯ

1.1 Исходные данные

Минимальная ёмкость, Сmin, пФ 10

Максимальная ёмкость, Сmax, пФ 225

Рабочее напряжение, Uраб, В 150

Температурный коэффициент ёмкости, єС-1 45· 10−6°с

Рабочий угол, 180

Закон изменения ёмкости прямоволновый

Программа, шт. 50 000

Условия эксплуатации по ГОСТ 15 150–69

По условиям ТЗ проектируемый конденсатор предназначен для работы в РЭА, относящихся по ГОСТ 15 150–69 ко второй группе. Это стационарная аппаратура, предназначенная для работы на открытом воздухе или в отапливаемых наземных или подземных сооружениях. Значения дестабилизирующих факторов для РЭА этой группы приведены в таблице (3. табл 3.11).

1.2 Выбор конструкции КПЕ В ТЗ не обговорены требования к габаритам и массе предложенного к разработке КПЕ. Об отсутствии жестких требований говорит и место его установки — стационарная аппаратура. В связи с этим можно применить воздух в качестве диэлектрика, что позволит сконструировать конденсатор с более высокими качественными показателями по сравнению с конденсаторами с твёрдым диэлектриком. В следующем разделе будут рассмотрены разнообразные варианты конструкций КПЕ и выбраны наиболее подходящие для получения оговоренных в ТЗ характеристик.

2. АНАЛИЗ АНАЛОГИЧНЫХ КОНСТРУКЦИЙ Кроме КПЕ, плавное изменение ёмкости обеспечивают такие элементы, как варикапы и вариконды. Это так называемые конденсаторы переменной ёмкости с электрически управляемой ёмкостью.

Варикапы изменяют свою ёмкость в зависимости от приложенного обратного смещения p-n перехода. Они обладают массой полезных свойств, таких, как малые размеры, высокая добротность и стабильность, но при этом не обеспечивают требуемый в некоторых случаях диапазон изменения ёмкости (точнее коэффициент перекрытия по ёмкости). В результате чего применяются в основном в диапазоне УКВ и на более высоких частотах, а также в схемах, где не требуется большое изменение ёмкости.

В варикондах под действием приложенного постоянного смещения изменяется диэлектрическая проницаемость материала между обкладками. Они имеют коэффициент перекрытия по ёмкости от 2 до 5, но обладают низкой температурной стабильностью ёмкости и не обеспечивают требуемый закон её изменения.

Конденсаторы переменной ёмкости с механическим управлением между собой различаются видом диэлектрика (твёрдый, жидкий или газообразный) и способом задания функциональной зависимости изменения ёмкости от угла поворота (конденсаторы с фигурными пластинами ротора или с вырезом в статорных пластинах).

Воздух по сравнению с твёрдыми и жидкими диэлектриками обладает рядом положительных свойств: ничтожными потерями, малой проводимостью, независимостью диэлектрической проницаемости от частоты и малой зависимостью от температуры, влажности и давления.

К недостаткам воздуха, как диэлектрика следует отнести малые значения диэлектрической проницаемости и пробивного напряжения, что влияет на габаритные размеры КПЕ.

Перечисленные положительные свойства воздуха как диэлектрика позволяют создать наиболее простые конструкции конденсаторов с высокими техническими характеристиками. Исходя из этогов проектируемом КПЕ в качестве диэлектрика будет использоваться воздух.

У конденсаторов с переменным радиусом выреза в статорной пластине пластины ротора имеют более жесткую конструкцию, что даёт существенное преимущество только для прямочастотного закона изменения ёмкости. Для прямоволновой зависимости такое конструктивное решение является нецелесообразным.

3. ЭЛЕКТРИЧЕСКИЙ И КОНСТРУКТИВНЫЙ РАСЧЕТ

3.1 Выбор числа и геометрических размеров пластин Суммарное число пластин конденсатора выбирается с учётом того, что суммарная длинна секции должна быть приближённо равна радиусу пластины ротора и суммарная длина КПЕ не должна превышать заданное в ТЗ значение.

Ориентировочно число пластин можно выбрать по таблице (1. табл. 3−8). Принимаем число пластин N = 10

Величина зазора между пластинами ротора и статора выбирается с учётом требований электрической прочности, точности, температурной стабильности, габаритных размеров и производственно-технических соображений.

При амплитуде переменного напряжения на конденсаторе Uраб величину требуемого зазора (мм) для получения необходимой электрической прочности можно найти из следующего выражения:

d = Uраб/(500ч700), (3.1)

где Uраб — максимальное рабочее напряжение, В;

500ч700 — допустимая напряжённость поля, В/мм.

dmin = 150/700 = 0,214 мм

dmax =150/500 = 0,30 мм

При большом зазоре увеличивается электрическая прочность, увеличивается температурная стабильность, но увеличиваются и габаритные размеры КПЕ. Маленький же зазор даёт плохие стабильность и электрическую прочность при малых габаритных размерах. В связи с этим с этим выбираем d = 0,3 мм, считая это значение оптимальным с точки зрения отношения характеристик и габаритных размеров.

Для предотвращения короткого замыкания между роторными и статорными пластинами в статорных пластинах делается вырез. Его радиус определяется с учётом зазора d и радиуса оси rоси = dоси/2 =4/2 = 2 мм по формуле:

r0 = rоси+(2ч3)d = 2+(2ч3)· 0,3 = 2.5ч2.75 мм

Выбираем максимальное значение r0 =2.75 мм, так как при таком радиусе уменьшается значение паразитной ёмкости.

3.2 Определение формы и размеров пластин Прямоволновая зависимость ёмкости от угла поворота математически описывается функцией С = (aц + b)2, (3.2)

где a = (-)/180;

b = Сmin ;K= ;

ц — угол поворота ротора.

N — общее число пластин статора и ротора Зависимость радиуса ротора от угла поворота для получения необходимой функциональной зависимости описывается следующим выражением:

R =, (3.3)

где d — зазор между пластинами, см;

k — постоянная ;

r0 — радиус выреза в пластине статора;

ц — угол поворота.

Вычислим значения коэффициентов a и b:

a = (-)/180 = 0,06

b =10;

Расчёт R произведём при помощи пакета прикладных программ Excel. Результаты работы программы (с шагом 10є) приведены в таблице 3.1.

ц ,°

R, мм

7,64

8,03

8,4

8,76

9,1

ц,°

R, мм

9,4

9,75

10,06

10,35

10,65

Средний радиус пластин ротора определяем как среднее арифметическое сведённых в таблицу значений и равен R=9,214

Длина секции определяется по формуле:

l0 = hплN + d (N-1), (3.5)

где hпл — толщина пластины (выбираем hпл = 0,6мм);

N — суммарное число пластин в секции;

d — зазор между пластинами ротора и статора, мм.

l0 = 0,3· 10 + 0,6· 9 = 8,7 мм Отношение l0/Rср = 0,94 близко к 1, что подчиняется приведённым выше требованиям (l0? Rср).

3.3 Вычисление температурного коэффициента ёмкости При изменении температуры воздуха изменяются как физические, так и геометрические размеры (s и d) конденсатора, что приводит к изменению ёмкости. Ёмкость КПЕ состоит из двух составляющих: постоянной (представляет собой минимальную ёмкость Сmin, величина которой не зависит от положения ротора) и переменной Спер, величина которой изменяется при перемещении ротора. Каждая из этих емкостей имеет свой определённый ТКЕ.

Минимальная ёмкость образуется как сумма емкостей через твёрдый диэлектрик и воздух между деталями, находящимися под разными потенциалами. В общем виде можно сказать, что ТКЕmin = (3.6)

Так как ёмкость через диэлектрик составляет значительно меньшую часть, чем ёмкость через воздух, то можно приближённо считать это значение равным 20· 10-6 єС (ТКЕ для воздуха).

Температурный коэффициент переменной части ёмкости можно вычислить, используя формулу ТКЕ? = ТКЕв+ ТКSa, (3.6)

где ТКSa и ТКd — температурные коэффициенты активной площади пластин и зазора соответственно.

обуславливается температурным коэффициентом линейного расширения материала бмп, из которого они сделаны и относительным перемещением секций ротора и статора, вызванными температурным коэффициентом линейного расширения материала корпуса бмк, т. е.

ТКSa = ТКSs ± ТКSl, (3.8)

где ТКSs — температурные коэффициенты активной площади пластин, обусловленные бмп и бмк соответственно.

Тогда ТКSs = ДS/(S· Дt) = 2 бмп· SДt/(S·Дt) = 2 бмп, (3.9)

а ТКSl будет определяться при колебаниях температуры окружающей среды по изменению расстояния между ротором и статором. В связи с тем, что пластины и корпус выполнены из одного материала, можно допустить, что изменение активной площади пластин довольно мало и ТКSl можно пренебречь.

Подставив значение коэффициента линейного расширения для инвара в (3.9), получим:

ТКSs = 2· 0,9·10-6 = 1,8· 10-6 єС-1

Теперь найдём ТКSa из выражения (3.8):

ТКSa = 1,8· 10-6 + 0 = 1,8· 10-6 єС-1

Для нахождения воспользуемся формулой:

ТКSd = (бмоl — 2 бмоd) / (l — 2dп), (3.10)

где d = 0,5(l — 2dп) — величина зазора, мм;

dп — толщина пластины, мм;

l — расстояние между пластинами (по средней линии), мм;

бмоl и бмоd — температурные коэффициенты линейного расширения материала оси и пластин соответственно, єС-1.

Подставим численные значения:

d = 0,5(1−2· 0,3) = 0,2 мм ТКSd = (4,5· -2·0,9·0,3) / (1−2· 0,6) = 10· 10-6 єС-1,

Просуммировав все составляющие, сначала получим значение ТКЕ переменной составляющей ёмкости ТКЕ? = 20· 10-6 + 1,8· 10-6 + 10· 10-6 = 31,8· 10-6 єС-1,

а затем и общее ТКЕ:

ТКЕ = ТКЕ? + ТКЕmin = 31,8· 10-6 + 20· 10-6 = 51,8· 10-6 єС-1

Разработанная конструкция конденсатора удовлетворяет требованиям ТЗ по стабильности.

4. РАСЧЕТ КОНТАКТНОЙ ПРУЖИНЫ В качестве материала для изготовления контактной пружины будем использовать Бронзу Бр. КМц 3−1 (ГОСТ 493−54).

Определим необходимое контактное усилие, исходя из условия обеспечения требуемой активной составляющей переходного сопротивления Rп по формуле:

гдекоэффициент, учитывающий способ, чистоту обработки и состояние поверхности контактных элементов (для очень грубых поверхностей =3); -поверхностная твердость по Бринеллю (выбираем по более мягкому материалу); b-коэффициент, зависящий от характера деформации, вида и формы зоны контактирования (b=2).

Н Толщину контактного элемента рассчитаем по формуле:

гдекоэффициент запаса (=48); -средний прогиб; -допустимое напряжение на изгиб; E-модуль упругости первого рода.

мм По сортаменту на используемый материал полученное значение толщины округлим до ближайшего табличного значения =0,2 мм.

ПАСПОРТ

Минимальная ёмкость, Сmin, пФ 10

Максимальная ёмкость, Сmax, пФ 225

Рабочее напряжение, Uраб, В 150

Число секций 2

Температурный коэффициент ёмкости, єС-1 45· 10-6

Рабочий угол, 180

Диаметр оси, мм 4

Закон изменения ёмкости КПЕ прямоволновый

Крепление снизу

Программа, шт. 50 000

Условия эксплуатации по ГОСТ 15 150–69

ЗАКЛЮЧЕНИЕ

В данном курсовом проекте был произведен расчет переменного конденсатора с прямоволновой зависимостью. Данный конденсатор переменной емкости предназначен для использования в бытовой аппаратуре и в радиоприемной аппаратуре (в УКВ диапазоне).

В техническом задании для проектирования данного конденсатора были предъявлены противоречивые требования: минимальные размеры конструкции и сравнительно низкий температурный коэффициент емкости (С-1), значит выбираем материалы с максимально близкими ТКЕ, и конструкцию, которая бы обеспечивала и достаточно низкий ТКЕ, и малые габариты конденсатора.

Ось ротора и статора будем делать из одного материала, из керамики с ТКЕ = 4,5−610-6, С-1.

Для реализации прямоволновой зависимости были рассчитаны радиусы пластин ротора в зависимости от угла поворота.

1 Волгов В. А. Детали и узлы РЭА. -М.: Энергия. 1977. -656 с.

2 Устройства функциональной радиоэлектроники и электрорадиоэлементы: Конспект лекций. Часть I / М. Н. Мальков, В. Н. Свитенко. — Харьков: ХИРЭ. 1992. — 140 с.

3 Справочник конструктора РЭА: Общие принципы конструирования/ Под редакцией Р. Г. Варламова. — М.: Сов. Радио. 1980. — 480 с.

4 Фрумкин Г. Д. Расчет и конструирование радиоаппаратуры. — М.: Высшая школа. 1986. — 339 с.

Показать весь текст
Заполнить форму текущей работой