Помощь в написании студенческих работ
Антистрессовый сервис

Локальное ферромагнитное упорядочение в кристаллах типа висмута

РефератПомощь в написанииУзнать стоимостьмоей работы

B работе указывается, что в исходно диамагнитных веществах может возникать высокотемпературное магнитное упорядочение островкового типа («квазиферромагнетизм»). В этом случае можно ожидать силового взаимодействия между ферромагнитными островками и дислокациями, понижающего высоту потенциальных барьеров для дислокаций, движущихся в поле упругих напряжений, создаваемых индентором. Идея опыта… Читать ещё >

Локальное ферромагнитное упорядочение в кристаллах типа висмута (реферат, курсовая, диплом, контрольная)

Локальное ферромагнитное упорядочение в кристаллах типа висмута

В последние десятилетия активно исследуется магнитопластический эффект (МПЭ) в немагнитных кристаллах. Суть эффекта заключается в том, что однородное постоянное магнитное поле (МП) инициирует депиннинг дислокаций. Авторами было обнаружено [1], что длительное воздействие сосредоточенной нагрузки с одновременным приложением слабого постоянного магнитного поля (МП) частично подавляет двойникование в кристаллах висмута. Наиболее ярко это выражается в уменьшении длины клиновидных двойников. При этом существенно интенсифицируется конкурирующий вид пластической деформации — скольжение.

В обзоре отмечается, что силовое действие МП на дислокационную линию на несколько порядков меньше уровня стартовых напряжений. Поэтому движущей силой для перемещения дислокации по кристаллу является случайная мозаика полей внутренних напряжений, а МП лишь снижает высоту барьеров, преодолеваемых дислокациями. Несколько групп исследователей, работающих в этом направлении, придерживаются теории спин-зависимого депиннинга дислокаций. Суть этой теории сводится к тому, что МП порождает эволюцию спинового состояния в системе дислокация-парамагнитный центр, приводящую к снятию спинового запрета на протекание внутрикристаллической химической реакции, что и приводит к откреплению дислокаций от парамагнитного точечного дефекта.

B работе указывается, что в исходно диамагнитных веществах может возникать высокотемпературное магнитное упорядочение островкового типа («квазиферромагнетизм»). В этом случае можно ожидать силового взаимодействия между ферромагнитными островками и дислокациями, понижающего высоту потенциальных барьеров для дислокаций, движущихся в поле упругих напряжений, создаваемых индентором. Идея опыта по экспериментальной проверке данной модели физического механизма МПЭ состояла в следующем. Нами было обнаружено, что в образцах сурьмы МП индуцировало эффект последействия. Иначе говоря, предварительное воздействие на образец импульса МП (до приложения сосредоточенной нагрузки) приводит к снижению средней длины и увеличению числа клиновидных двойников. (Эффект последействия имеет место также и в случае скольжения [3]). Если островковое ферромагнитное упорядочение действительно ответственно за МПЭ в исходно диамагнитных кристаллах, то этот эффект должен исчезать, или, по крайней мере, значительно снижаться после «размагничивания» образца. Такое размагничивание мы осуществляли по стандартной методике, принятой в радиотехнике.

Клиновидные двойники системы {110}<001> получались путем вдавливания стандартной алмазной пирамиды в плоскость спайности (111) кристаллов сурьмы. Исследования проводились с помощью микротвердомера ПМТ-3 с использованием специального устройства, изготовленного из неферромагнитных металлов, для нагружения образца в условиях приложения к нему МП. Вектор магнитной индукции лежал в плоскости спайности (111) кристаллов висмута. Для размагничивания образцы помещались внутрь соленоида (не соприкасаясь) обмотка которого содержала 1800 витков для напряжения электросети 220 В. Затем образцы плавно удалялись на расстояние 1 м от соленоида, после чего соленоид выключался. Промежуток времени после окончания воздействия импульса постоянного однородно МП был одинаков для всех образцов (размагничиваемых и не размагничиваемых). После снятия нагрузки проводилось фотографирование ансамбля клиновидных двойников у отпечатка алмазного индентора.

Из изучения микрофотографий можно сделать вывод о том, что воздействие импульса постоянного однородного МП приводит к снижению средней длины клиновидных двойников и резкому росту числа двойников малой длины. Следовательно, МП снижает трансляцию двойникующих дислокаций вдоль готовых границ раздела двойник-матрица, но в тоже время стимулирует работу источников двойникующих дислокаций. «Размагничивание» образцов приводит к практически полному исчезновению эффекта — число и длина двойников в «размагниченных» кристаллах приближаются к значениям, которые имеют место без воздействия постоянного однородного МП. Таким образом, локальное ферромагнитное упорядочение может быть ответственно за МПЭ в диамагнитных кристаллах. Недавно было показано, что в диамагнитно разбавленных сплавах Mn2-xZnxSb при больших концентрациях цинка, замещающего марганец в матрице Mn2Sb, наблюдается эффект фазового магнитного расслоения, т. е. существование двух неоднородных магнитных состояний при структурной однородности.

В сплавах реализуется однородная тетрагональная кристаллическая структура типа Cu2Sb (пространственная группа Р4/nmm, C 38). Однако данные магнитометрии демонстрируют необычный ход температурного поведения намагниченности — при резком уменьшении в области 300−350 К сохраняется значительная остаточная намагниченность до ~ 550 К. (рис. 1). Анализ экспериментальных данных рентгенографии и магнитометрии позволил сделать вывод о существовании в сплавах двухфазного магнитного состояния: 1) с ферромагнитным упорядочением атомов Mn I (Mn II замещен Zn); 2) с ферримагнитным упорядочением атомов Mn I и незамещенных цинком атомов Mn II, аналогичным реализующемуся в Mn2Sb. Температуры магнитного разупорядочения названных магнитных фаз различны (Т1?320 К, Т2?550 К) в силу различных атомных магнитных моментов образующих их атомов Mn I и Mn II и соответствующих межатомных расстояний. При этом высокотемпературная фаза 2 представляет собой кластеры, рассеянные в виде «капель» в основной матрице 1. Так как количество фазы 2 в исследованных сплавах значительно, возникают соприкасающиеся кластерные образования, что приводит к возникновению протяженных областей с когерентным магнитным порядком. Это дает возможность, в частности, идентифицировать и характеризовать такие области методом нейтронографии. Отметим, что проведенные ЯГР-измерения также подтверждают эффект фазового магнитного расслоения в сплавах Mn2-xZnxSb.

В настоящем сообщении приводятся полученные нами результаты по влиянию сильных импульсных магнитных полей на диамагнитно разбавленный сплав Mn1,2Zn0,8Sb.

Поликристаллический образец для измерений был получен методом прямого сплавления порошков исходных компонентов в вакуумированных до 10-3 мм. рт. ст. кварцевых ампулах по технологии, апробированной ранее при синтезе антимонидов марганца, и аттестован рентгенографически как однофазный со структурой типа Cu2Sb.

Измерения полевых зависимостей намагниченности в ИМП проводились на основе индукционной методики при помощи импульсного магнитометра с длительностью полупериода импульса 1.5 миллисек.

Полевые зависимости удельной намагниченности сплава при различных температурах приведены на рис. 2. Зависимость у=f (H) при Т=78 К имеет характер кривой намагничивания типичного ферромагнетика, основу которого в нашем случае представляет ферромагнитная матрица атомов Mn I (фаза 1). Выход на магнитное насыщение сплава происходит при достаточно больших полях H? 50 кЭ, что свидетельствует о сильной одноосной магнитокристаллической анизотропии в нем по аналогии с эквиатомным составом MnZnSb.

При Т=360 К ферромагнитная матрица разупорядочена. Остаточная намагниченность определяется высокотемпературной кластерной фазой 2, образуемой магнитоактивными атомами Mn I и Mn II с антипараллельно направленными магнитными моментами. Намагниченность этой фазы линейно увеличивается с полем, магнитное насыщение не достигается вплоть до H=180 кЭ. Такая полевая зависимость характерна для систем магнитных моментов с неупорядоченной периодической структурой, таких как кластерные фазы, спиновые стекла и другие.

Таким образом, полученные результаты находятся в соответствии с экспериментальной моделью фазового магнитного расслоения в диамагнитно разбавленных сплавах Mn2(Zn)Sb, описанной в.

Работа поддержана Белорусским республиканским фондом фундаментальных исследований (проект Ф07К-054).

Высококоэрцитивные пленки сплавов на основе кобальта привлекают внимание многих исследователей, занимающихся изучением магнитных сред для хранения и обработки информации. Несмотря на значительное количество работ, посвященных изучению магнитных свойств покрытий, полученных в основном вакуумными методами, межкристаллитное магнитное взаимодействие, его связь с процессами перемагничивания изучены недостаточно, хотя такие исследования имеют большое практическое и научное значение. В настоящей работе проведено исследование взаимосвязи структурных характеристик, магнитной неоднородности и межкристаллитного магнитного взаимодействия в по-крытиях Со-W (4 6 ат.% W) и Со-Р (25 ат.% Р), полученных электрохимическим осаждением при различных температурах (Со-W) и различной концентрации гипофосфита натрия в электролите (Со-Р). Пленки Со-W состоят из кристаллитов ГПУ кобальта различного типа: цилиндрического с текстурой [00.1] или пластинчатого с текстурой [10.0]. Доля кристаллитов того или иного типа зависит от условий электролиза, а сами кристаллиты распределяются по поверхности подложки практически равномерно, прорастая в основном на всю толщину покрытия. Пленки Со-Р состоят из кристаллитов ГПУ фазы с преимущественной ориентацией [00.1]. При осаждении из электролита с концентрацией гипофосфита натрия 5 г/л покрытия состоят из агрегатов размером ~700 нм, объединяющих более мелкие кристаллиты размером 10 нм. Кристаллиты ориентированы преимущественно вдоль направления [00.1], одновременно наблюдается и текстура [10.0].

Для анализа были выбраны такие структурно-чувствительные характеристики, как полевая зависимость необратимой восприимчивости dirr=dIddH, где Id-остаточная намагниченность образца после выключения отрицательного поля (предварительно образец был намагничен до насыщения положительным полем) и кривая М (Н)=Id(H)-(1−2Ir(H)), где Ir — остаточная намагниченность, полученная при последовательном намагничивании образца из размагниченного состояния. М-кривая (как и взаимное расположение кривых необратимой восприимчивости, полученных при намагничивании и размагничивании) характеризует тип взаимодействия магнитных составляющих покрытия (кристаллитов) (М (H) 0 — магнитостатическое взаимодействие, М (H) 0 — обменное взаимодействие или процессы смещения доменных границ).

На кривых полевой зависимости восприимчивости dirr(H), снятых на покрытиях Со-W со смешанной текстурой (осажденных при 26оС и 33оС) наблюдается два пика: первыйв полях ~ 32 кА/м, а второй в полях ~ 48 кА/м, причем повышение температуры электролита приводит к относительному росту первого пика (Рис.). Дальнейшее повышение температуры электролита (свыше 33оС) приводит к росту только одного пика в области полей ~ 32 кА/м (кривые 4 и 5). Покрытие, полученное при Т=18С, характеризуется одиночным пиком при 16 кА/м. На кривых dirr(H) покрытий Со-Р наиболее заметны два пика: в полях ~ 48 и 128 кА/м; первый заметно острее и выше второго. У образцов Со — 3ат.%Р происходит сдвиг первого пика в сторону больших полей (~64 кА/м), а второй пик исчезает. Покрытия Со-3.5 ат.% Р на кривой dirr(H) имеют один довольно высокий и узкий пик в полях ~160 кА/м. Дальнейшее увеличение содержания фосфора в образцах вызывает снижение величины пиков в области полей ~ 160 кА/м и некоторый рост пиков в полях ~ 80 кА/м.

Рис. 6. Кривые dirr(H) покрытий Со-W (pH 6.4, h = 1мкм), полученных при различной температуре электролита, oС: 118, 226, 333, 4−37, 540.

Во всех исследованных покрытиях Со-W и Со-Р величина М (H)0, что свидетельствует о магнитостатическом взаимодействии между магнитными составляющими покрытий [5,6]. Анализ кривых М (H) и dirr(H) позволяет обнаружить связь процессов перемагничивания с текстурой и размером кристаллитов (агрегатоообразованием), опосредованную межкристаллитным магнитным взаимодействием. Прежде всего, появление двух пиков на кривых d irr(Н) в покрытиях Со-Р и Со-W можно связать с присутствием в покрытии, наряду с основной текстурой [00.1] и текстуры [10.0]. Следует учитывать также, что исследуемые покрытия состоят из кристаллитов, между которыми существует магнитостатическое взаимодействие, которое в случае пленок Co-W с текстурой [00.1] обусловлено в основном вкладом элементов субструктуры сферической формы и которое объясняет отличие процессов перемагничивания в реальных магнитных материалах от предсказанных теоретическими моделями [8,9]. Так, в покрытиях со смешанной текстурой [00.1]+[10.0] (cлабой текстурой [001]) пик dirr(H), соответствующий перемагничиванию кристаллитов с текстурой [00.1] лежит правее пика dirr(H), соответствующего перемагничиванию кристаллитов с текстурой [10.0]. Изменение структурных характеристик (текстуры, микроструктуры) при изменении концентрации в растворе гипофосфита натрия (пленки Со-Р) или температуры электролита (20−30о C, пленки Со-W) приводит лишь к росту или падению величины того или иного пика, но не вызывает их существенного сдвига на оси полей. Т. е. наличие магнитостатического взаимодействия элементов микроструктуры в плоскости образцов в этом случае приводит к вовлечению в процесс перемагничивания интегрального магнитного момента кристаллитов как единого целого, а не только его плоскостной составляющей, что с учетом хаотического распределения осей «С» кристаллитов в плоскости образцов и обусловливает расположение пика dirr(H), соответствующего перемагничиванию кристаллитов с текстурой [10.0], в области меньших полей.

Подтверждением влияния межкристаллитного взаимодействия на процессы перемагничивания может служить и тот факт, что характер зависимости необратимой восприимчивости от поля dirr(Н) для образцов Со-2 ат.% Р и Со-3 ат.% Р различен [6], хотя увеличение числа кристаллитов с ориентацией [00.1] относительно невелико. В этом случае с повышением концентрации гипофосфита натрия в электролите происходит не только усиление текстуры [00.1] в покрытиях, но и разрушение крупных зерен-агрегатов (размером ~700 нм), сопровождающееся более равномерным распределением мелких кристаллитов (размером ~ 10 нм) с ориентацией [10.0] и [00.1], образованием межзеренных границ с малой намагниченностью и увеличением магнитостатического взаимодействия между ними.

Различие магнитного поведения пленок с текстурой [00.1] и [10.0], проявляется и при отжиге исследованных покрытий. Термообработка покрытий Co-W при относительно невысоких температурах (~0.1Тпл) способствует снижению концентрации и перераспределению дефектов кристаллического строения и переходу образцов в более равновесное состояние, когда элементы субструктуры практически сливаются в единое целое. Такое совершенствование столбчатой структуры (уменьшение магнитного разделения элементов субструктуры) вследствие снижения концентрации дефектов, разложения гидроокиси приводит к уменьшению вклада элементов субструктуры в результирующее магнитостатическое взаимодействие пленок с текстурой [00.1] (при незначительном вкладе взаимодействия столбчатых кристаллитов). У образцов с текстурой [10.0] и преимущественно пластинчатым строением кристаллитов совершенствование структуры в процессе отжига не приводит к существенному изменению характера их микроструктуры, чем и обусловлено практически неизменное магнитное разделение кристаллитов.

В пленках сплавов Со-Р совершенствование текстуры [00.1] с ростом температуры отжига сопровождается постепенным усилением магнитостатического взаимодействия между кристаллитами, при этом характер изменения кривых dId/dH после отжига отражает более однородное магнитное состояние отожженных образцов. В этом случае отжиг дефектов, в частности дефектов упаковки, увеличивает в кристаллитах объем ГПУ фазы с ориентацией [00.1]. Возможен также незначительный вклад роста зародышей, благоприятно ориентированных по отношению к основной текстуре электрокристаллизации. Выход фосфора и дефектов кристаллического строения на границы зерен усиливают их магнитное разделение. В процессе отжига образца с наиболее совершенной исходной текстурой [00.1] (I002/I100 = 20, Со-3.5 ат.%Р) практически не изменяется степень ее совершенства и изолированности кристаллитов, так как большая их часть имеет основную ориентацию и более низкую концентрацию дефектов упаковки.

1. В. М Рыжковский, В. И Митюк. Доклады НАНБ 50, 5, 53 (2006).

2. В. М Рыжковский, В. С. Гончаров, В. И Митюк, В. П. Глазков, В. А. Соменков. (в наст. сборнике).

3. В. И Митюк, В. М Рыжковский, Т. М. Ткаченко. Тезисы республиканской конференции «Современные научные проблемы физики конденсированных сред и астрономии», Брест, 19−20 апреля 2007 г.

4. А. Ф. Вуль, Б. М. Тодрис. Импульсный магнитометр для измерений в сильных магнитных полях под давлением.-Препринт ДонФТИ-88−23. Донецкий ФТИ. 27, (1988).

5. S. Mori, T. Kanomata, H. Yamauchi, S. Sakatsume, T. Kaneko. J. Appl. Phys. 32, S32−3, 273 (1993).

6. J. Smit, G. Nieuwenhuys, L. Jongh. Sol. St. Communica

Показать весь текст
Заполнить форму текущей работой