Помощь в написании студенческих работ
Антистрессовый сервис

Принципы построения. 
Растровые модели пространственных данных

РефератПомощь в написанииУзнать стоимостьмоей работы

Растровые модели пространственных данных основаны на способах квантования пространства с помощью регулярных сеток, каждый элемент которых содержит идентификатор, к которому можно связать неограниченный по длине набор атрибутов. При этом важным свойством растра является неразрывная связь между пространственной и атрибутивной информацией в единой прямоугольной матрице, положение элементов которой… Читать ещё >

Принципы построения. Растровые модели пространственных данных (реферат, курсовая, диплом, контрольная)

Растровые модели пространственных данных основаны на способах квантования пространства с помощью регулярных сеток, каждый элемент которых содержит идентификатор, к которому можно связать неограниченный по длине набор атрибутов. При этом важным свойством растра является неразрывная связь между пространственной и атрибутивной информацией в единой прямоугольной матрице, положение элементов которой определяется номерами строки и столбца. Такая структура представления позволяет в любой момент развернуть любой из привязанных к идентификатору атрибутов в слой с размерностью исходной сетки. С помощью такого способа представления данных возможна формализация пространственно-непрерывной информации, свойственной большинству природных и значительному числу антропогенных объектов.

Растровый способ представления пространственных данных служит более точным аналогом реального мира, поскольку являет собой меньшую абстракцию с точки зрения содержательных свойств, воспринимаемых наблюдателем непосредственно. Например, даже неподготовленный пользователь легче отличит лес от поля или луга на растровом аэрофотоснимке, чем на тематической карте в векторном формате (без пояснительных подписей). Кроме того, существуют определенные виды пространственных данных, которые невозможно или чрезвычайно сложно отразить с необходимой степенью детальности в векторном формате. В частности информация об атмосферном давлении, облачности, высотах над уровнем моря, расстояниях от выбранной точки до всех остальных точек поверхности (поле расстояний) трудно представима явно в векторном виде.

Основные характеристики растрового представления данных — форматы записи и пространственное разрешение.

Форматы записи делятся на:

битовые (булевы);

байтовые;

целочисленные;

действительные.

В битовом формате каждая ячейка растра описывается значением 1 или 0. Такой формат требует для записи значения ячейки один бит. В байтовом формате диапазон значений пикселя расширяется до 256, т. е. до 8-ми бит, а в целочисленном и действительном форматах — до 16 и 32 бит соответственно. Наличие различных форматов позволяет оперировать с огромным числом значащих классов, каждому из которых может соответствовать строка в БД.

Пространственным разрешением растровых моделей местности называется величина, соответствующая минимальным размерам объекта, который может быть отражен в данной модели. Например, разрешение 100 метров означает, что объекты, размером менее 100 м на данной модели, отражены не будут (т. е. сольются с фоном).

К достоинствам растрового формата можно отнести быстроту формализации и представления в машинно-читаемом виде. Современные способы получения цифровых аэрои космофотоизображений предоставляют возможность обновления геоданных в системе реального времени без применения сложной и дорогостоящей аппаратуры цифрового ввода данных в векторном формате или дорогостоящих полуавтоматических векторизаторов.

Недостатком растрового представления информации является значительный объем файлов, сказывающийся в основном на скорости обработки информации на компьютерах с небольшими размерами оперативной памяти и времени вывода изображения на экран. Для преодоления подобных недостатков используются различные способы сжатия (упаковки) информации от простейшего группового или лексикографического кода (run length code), до создания иерархической пирамидной структуры (pyramid layers, reduced resolution datasets) или организации сблокированной структуры с прямым доступом к каждому блоку — обычно небольшому квадратному участку изображения. (tiled format).

Для ускорения и упрощения визуализации применяются способы предварительного создания изображений, загрубленных в 2−4-6 раз, с хранением их в отдельных файлах и вызовом слоя необходимого загрубления в зависимости от требующейся операции.

История применения растрового способа представления пространственных данных состоит из нескольких периодов. В начале развития ГИС-технологий растровому способу отдавалось предпочтение, поскольку не были развиты средства ввода векторной информации и алгоритмы манипулирования векторными данными. Поэтому все более-менее серьезные ГИС-проекты ориентировались на растровое представление информации в виде вложенных друг в друга регулярных матриц различного пространственного разрешения. Каждая ячейка такой матрицы содержала необходимый (иногда достаточно значительный) объем тематической информации.

В дальнейшем, с развитием как аппаратной, так и программной части ГИС, векторный способ представления географических данных, перейдя из области автоматизированной картографии, возобладал над растровым, в основном благодаря меньшему объему требований к аппаратной части проектов и заимствованию методов из программ инженерной графики. В этот период резко возросло количество проектов, называвшихся геоинформационными, но выполняемых на уровне сложных инженерных решений средствами и методами САПР. В результате, резко повысившееся качество презентации решений инженерно-технических задач на местности, с использованием приемов автоматизированной картографии и САПР, привело к выхолащиванию сущности пространственного анализа методами ГИС как таковыми и, зачастую, подмене понятий. Растровое представление пространственной информации осталось только в системах обработки ДДЗ, как неотъемлемая часть самой технологии получения такого рода информации, достигнув в этом секторе ГИС-технологий значительного прогресса.

В настоящее время, в связи с повышением роли экологического фактора в жизнедеятельности общества, наметились серьезные изменения приоритетов развития технической и научной мысли. Перед специалистами всех областей знаний, особенно в Науках о Земле, были поставлены задачи анализа функционирования техногенных систем в природном окружении, контроля качества окружающей человека среды, мониторинга состояния природных и антропогенных объектов. С целью решения подобных задач опережающими темпами развивается математическое моделирование в ГИС-технологиях. Поток данных, фиксирующих непрерывно распределенные характеристики и явления, значительно возрос, а именно эти данные наиболее целесообразно представлять в виде растровых моделей. В ГИС-технологии через систему наук о Земле пришли понятия ядерно-экотонной структуры природных и антропогенных геокомплексов, в которой отсутствует понятие резких границ, характерное для векторных моделей данных. Все шире применяются методы анализа пространственных объектов на основе статистических характеристик, дескриптивных множеств, нечетких классификаций и параметризаций, формализованные в виде алгоритмов обработки именно растровых моделей данных. В результате сравнения, удобства использования аналитических алгоритмов обработки пространственной информации в различных форматах, был сделан вывод о предпочтении растрового представления данных в ГИС-проектах для целей анализа информации и поддержки принятия решений. Поэтому растровый способ представления геоданных переживает сейчас подъем на качественно новый уровень использования в ГИС-технологиях.

Кроме того, во всем мире пересматривается отношение к использованию растровых моделей в представлении информации пользователю. Если раньше использование растровых слоев в ГИС сводилось к роли пассивной подложки, призванной украсить и оживить внешний вид выходного изображения, то в настоящее время растровые слои стали важными наглядными источниками информации о пространстве, заменить которые не в силах никакие другие. В частности информация о температуре поверхности с локальными минимумами и максимумами, показатели удаленности и времени достижения различных объектов из определенной точки местности, непрерывно меняющиеся характеристики окружающей среды (плотность почвы, лесопокрытость территории, степень проходимости болот, загазованность городской среды и т. п.) наиболее точно и достоверно представляются именно в растровом виде.

Показать весь текст
Заполнить форму текущей работой