Помощь в написании студенческих работ
Антистрессовый сервис

Заключение. 
Геофизические методы исследования горизонтальных скважин Федоровского нефтегазового месторождения Западной Сибири

РефератПомощь в написанииУзнать стоимостьмоей работы

Практически важным является не само по себе выделение парафинов, а отложение их на поверхности труб и оборудования по направлению теплопередачи. Такие отложения формируются при соблюдении ряда условий: наличия в нефти высокомолекулярных углеводородов, в первую очередь метанового ряда; снижения температуры потока до значений, при которых происходит выпадение твердой фазы; наличия подложки… Читать ещё >

Заключение. Геофизические методы исследования горизонтальных скважин Федоровского нефтегазового месторождения Западной Сибири (реферат, курсовая, диплом, контрольная)

В настоящий момент аппаратурно-методический автоматизированный комплекс «ОБЬ», АЛМАЗ-2, МГКР, АК-Г используется для проведения промежуточных и окончательных каротажей при бурении горизонтальных скважин на Федоровском месторождении. Комплекс имеет ряд недостатков такие как отказы блоков питания и расхождение данных по глубине с кабельным каротажем. Выявленные в процессе эксплуатации недостатки как аппаратурно-механические так и программные устраняются и служат основой для доработки и производства более совершенных модификаций. Несмотря на перечисленные недостатки технология проведения каротажа комплексом АМАК — «ОБЬ» обладает рядом несомненных преимуществ перед имеющимися технологиями. Такими как низкая аварийность работ по сравнению с кабельным вариантом проведения ГИС в скважине. Возможностью за одну спуско-подъемную операцию прописать все методы ГИС. Возможность расширения комплекса соответственно поставленным геологическим задачам, а так же применение на других месторождениях Западной Сибири. В дальнейшем предполагается внедрение нового автономного модуля электрического бокового зондирования. И использование данных технологий для проведения ГИС на Талаканском месторождении.

Асфальтосмолопарафиновые отложения в процессах добычи, транспорта и хранения В дипломном проекте рассматриваются современные взгляды на состояние проблемы асфальтосмолопарафиновых отложений (АСПО) в нефтепромысловом оборудовании Федоровского месторождения и возможные методы ее решения. В работе перечислены основные факторы, влияющие на формирование АСПО. Особое внимание уделено групповому химическому составу исходного сырья и взаимному влиянию отдельных высокомолекулярных компонентов нефти на структурообразование в нефтяной системе при низких температурах. Показано влияние структурно-группового состава нефти на механизм формирования, состав и свойства АСПО. Дан краткий перечень существующих методов предотвращения и удаления АСПО из нефтепромыслового оборудования. Более подробно рассмотрены химические методы, связанные с применением различных присадок, реагентов и удалителей. Дана краткая характеристика основных классов химических веществ, используемых при решении проблемы предотвращения и удаления АСПО. Показано, что для выбора наиболее эффективных с химической точки зрения путей предотвращения и удаления отложений органических веществ необходимо получение адекватного представления о составе, свойствах и строении исходной нефти и образующихся отложений. Ключевые слова: асфальтосмолопарафиновые отложения, факторы, влияющие на образование АСПО, химический состав нефти, механизм образования АСПО, методы борьбы с АСПО.

Развитие нефтяной промышленности России на современном этапе характеризуется снижением качества сырьевой базы. В общем балансе разрабатываемых месторождений преобладают месторождения, вступившие в позднюю стадию разработки и, как следствие, наблюдается значительное ухудшение их структуры, увеличение доли трудноизвлекаемых запасов нефти, обводнение пластов и продукции скважин. Так, при добыче парафинистых нефтей серьезной проблемой, вызывающей осложнения в работе скважин, нефтепромыслового оборудования и трубопроводных коммуникаций, является образование асфальтосмолопарафиновых отложений (АСПО), формирование которых приводит к снижению производительности системы и эффективности работы насосных установок [1]. Образование эмульсий при выходе из скважины вместе с сопутствующей пластовой водой усиливает осадкообразование [Электронный научный журнал «Нефтегазовое дело», 2011, № 1 http://www.ogbus.ru]. Как известно, борьба с АСПО в процессах добычи нефти ведется по двум направлениям: профилактика (или предотвращение) отложений; удаление уже сформировавшихся отложений. Выбор оптимальных способов борьбы с асфальтосмолопарафиновыми отложениями и эффективность различных методов зависит от многих факторов, в частности, от способа добычи нефти, термобарического режима течения, состава и свойств добываемой продукции. Несмотря на большое разнообразие методов борьбы с АСПО, проблема еще далека от разрешения и остается одной из важнейших в отечественной нефтедобывающей отрасли. Факторы, влияющие на образование АСПО. На интенсивность образования АСПО в системе транспорта, сбора и подготовки нефти влияет ряд факторов, основными из которых являются [2, 3]:

  • — снижение давления в области забоя и связанное с этим нарушение гидродинамического равновесия газожидкостной системы;
  • — интенсивное газовыделение;
  • — уменьшение температуры в пласте и стволе скважины;
  • — изменение скорости движения газожидкостной смеси и отдельных её компонентов;
  • — состав углеводородов в каждой фазе смеси;
  • — соотношение объёмов фаз (нефть-вода).

В призабойной зоне пласта (ПЗП) перечисленные факторы меняются непрерывно от периферии к центральной области в скважине, а в самой скважине — от забоя до устья, поэтому количество и характер отложений не являются постоянными. Место выделения АСПО может находиться на различной глубине и зависит от режима работы скважины. Среди условий, способствующих образованию отложений, можно назвать снижение давления и температуры, а также разгазирование нефти. Известно, что растворяющая способность нефти по отношению к парафинам снижается с понижением температуры и дегазацией нефти. При этом преобладает температурный фактор [4]. Интенсивность теплоотдачи зависит от [Электронный научный журнал «Нефтегазовое дело», 2011, № 1 http://www.ogbus.ru] разницы температур жидкости и окружающих пород на определённой глубине, а также теплопроводности кольцевого пространства между подъёмными трубами и эксплуатационной колонной [5]. Практика добычи нефти на промыслах показывает, что основными участками накопления АСПО являются скважинные насосы, подъёмные колонны в скважинах, выкидные линии от скважин, резервуары промысловых сборных пунктов [6]. Наиболее интенсивно АСПО откладываются на внутренней поверхности подъёмных труб скважин. В выкидных линиях их образование усиливается в зимнее время, когда температура воздуха становится значительно ниже температуры газонефтяного потока [1]. С ростом скорости движения нефти интенсивность отложений вначале возрастает, что объясняют увеличением турбулизации потока и, следовательно, увеличением частоты образования и отрыва пузырьков от поверхности трубы, флотирующих взвешенные частицы парафина и асфальтосмолистых веществ [7]. Кроме того, движущийся поток срывает часть отложений со стенок труб, чем и можно объяснить резкое снижение отложений в интервале 0−50 м от устья, а также, имея большие скорости течения, он оказывается более стойким к охлаждению, что тоже замедляет процесс образования АСПО. Шероховатость стенок и наличие в системе твердых примесей способствуют также выделению из нефти парафина в твердую фазу [7]. Кроме указанных основных факторов на интенсивность парафинизации трубопроводов при транспортировании обводненной продукции скважин могут оказывать влияние обводненность продукции [8] и величина рН пластовых вод [4]. Причем влияние этих факторов неоднозначно и может быть различным для разных месторождений.

Влияние химического состава нефти на процесс образования АСПО.

АСПО, образовавшиеся в разных скважинах отличаются друг от друга по химическому составу в зависимости от группового углеводородного состава нефтей, добываемых на этих скважинах. Но при всём возможном разнообразии составов для всех отложений установлено, что содержание в них асфальтосмолистой и парафиновой компоненты будут обратными: чем больше в АСПО доля асфальто — смолистых веществ, тем меньше будет содержаться парафинов, что в свою очередь определится их соотношением в нефти. Такая особенность обуславливается характером взаимного влияния парафинов, смол и асфальтенов, находящихся в нефти до момента их выделения в отложения [9]. Как показали экспериментальные и практические исследования, прежде чем парафин выделяется на поверхности скважинного оборудования, его кристаллы производят преобразование своих структур так, что, соединяясь между собой, организуют сплошную решётку подобно широкой ленте. В такой форме адгезионные свойства парафина усиливаются во много раз, и его способность «прилипать» к твёрдым поверхностям значительно интенсифицируется. Однако если нефть содержит достаточно большое количество асфальтенов (4−5% и выше), сказывается их депрессорное действие. Асфальтены могут сами выступать зародышевыми центрами. Парафиновые молекулы участвуют в сокристаллизации с алкильными цепочками асфальтенов образуя точечную структуру.

То есть образование сплошной решётки не происходит. В результате такого процесса парафин перераспределяется между множеством мелких центров и выделение парафинов на поверхности существенно ослабляется. Смолы, в силу своего строения, напротив, способствуют созданию условий для формирования ленточных агрегатов парафиновых кристаллов и их прилипанию к поверхности и своим присутствием препятствуют воздействию асфальтенов на парафин, нейтрализуя их. Как и асфальтены, смолы влияют на величину температуры насыщения парафином нефти, однако характер этого влияния противоположный: с ростом их массового содержания в нефти температура насыщения возрастает (если, например, присутствие смол увеличить с 12 до 32%, то температура насыщения повысится от 22 єC до 43 єC) [10]. Температура насыщения нефти парафином находится в прямой зависимости от массовой концентрации смол и в обратной от концентрации асфальтенов. Следовательно, процесс парафинообразования зависит от соотношения асфальтовых (А) и смолистых © соединений в составе нефти. С увеличением параметра А/С температура насыщения будет снижаться — ассоциаты асфальтенов в нефти менее стабилизированы из-за недостатка стабилизирующих компонентов (смол), что и приводит к уменьшению температуры насыщения, процесс кристаллизации парафинов таких нефтей подавляется ассоциатами, и отложение парафина не происходит; при небольших значениях А/С наоборот, температура насыщения возрастает — асфальтены не оказывают воздействия на парафинообразование, парафин свободно выделяется из нефти [4].

Механизм формирования АСПО.

Под механизмом «парафинизации» понимается совокупность процессов, приводящих к накоплению твердой органической фазы на поверхности оборудования. При этом, образование отложений может происходить либо за счет сцепления с поверхностью уже готовых, образовавшихся в потоке частиц твердой фазы, либо за счет возникновения и роста кристаллов непосредственно на поверхности оборудования [11]. Вероятность закрепления частиц парафина на поверхности оборудования в условиях действующей скважины практически ничтожна — парафиновая частица может закрепиться на стенке оборудования, но при условии, что первоначально она застрянет на ней чисто механически [11]. При транспортировании нефти по трубопроводу протекают следующие процессы. Нефть поступает в трубопровод и контактирует с охлажденной металлической поверхностью. При этом возникает градиент температур, направленный перпендикулярно охлажденной поверхности к центру потока. За счет турбулизации потока температура нефти в объеме снижается. При этом параллельно протекают два процесса:

  • — выделение кристаллов н-алканов на холодной поверхности;
  • — кристаллизация н-алканов в объеме нефти.

Практически важным является не само по себе выделение парафинов, а отложение их на поверхности труб и оборудования по направлению теплопередачи [9]. Такие отложения формируются при соблюдении ряда условий: наличия в нефти высокомолекулярных углеводородов, в первую очередь метанового ряда; снижения температуры потока до значений, при которых происходит выпадение твердой фазы; наличия подложки с пониженной температурой, на которой кристаллизуются углеводороды и с которой они настолько прочно сцепляются, что возможность срыва отложений потоком при заданном технологическом режиме практически исключается. Исследованиями последних лет достоверно установлено, что прямой связи между содержанием парафина и интенсивностью его отложения нет [4]. Отсутствие такой связи обусловлено, прежде всего, существенным различием состава твердых углеводородов — «парафина», а именно, различием в соотношениях ароматических, нафтеновых и метановых соединений в высокомолекулярной части углеводородов, которое при стандартных методах исследования нефтей не определяется. Между тем, доказано, что именно различия в составе твердых углеводородов в основном и предопределяют особенности формирования парафиновых отложений. Чем выше содержание углеводородов с разветвленными структурами ароматических, нафтеновых и изоалкановых, тем менее прочными оказываются парафиновые отложения, поскольку такого типа соединения обладают повышенной способностью удерживать кристаллическими образованиями жидкую массу. Углеводороды метанового ряда — особенно высокомолекулярные парафины, наоборот, легко выделяются из раствора с образованием плотных структур. Ясно, что рыхлые и полужидкие кристаллические отложения сравнительно легко могут быть удалены естественным потоком жидкости в процессе эксплуатации скважин, не вызывая никаких осложнений, и, наоборот, плотные и прочные отложения, сформированные в основном из н-алканов, создают серьезные осложнения, на ликвидацию которых затрачивается много средств и труда [11].

Состав и свойства АСПО АСПО не является простой смесью асфальтенов, смол и парафинов, а предcтавляют собой сложную структурированную систему с ярко выраженным ядром из асфальтенов и сорбционно-сольватным слоем из нефтяных смол (ССЕ). Асфальтосмолистые вещества (АСВ) представляют собой гетероциклические соединения сложного гибридного строения, в состав которых входят азот, сера, кислород и металлы (Fe, Mg, V, Ni, Ca, Ti, Mo, Cu, Cr и др.). До 98% АСВ составляет ароматические и нафтеновые структуры [9, 12]. Каркас структуры молекул смол и асфальтенов образует углеводородный скелет, составляющий 70−90% от общего веса молекул. В генетическом связанном ряду углеводороды-смолы-асфальтены наблюдается постепенная тенденция обеднения водородом и обогащения углеродом; возрастает доля ароматических элементов структуры, и повышается степень их конденсированности; снижается доля атомов углерода в периферийной части; повышается удельный вес атомов в центральном ядре молекул — полиядерной структуре с сильным преобладанием ароматических колец. Смолы и асфальтены различаются также по содержанию азота и кислорода. В смолах в основном концентрируется кислород, а в асфальтенах азот. В зависимости от природы нефти и содержания в ней твердых углеводородов, а также в зависимости от места отбора проб состав отложений включает [1, 13]: парафины — 9…77%; смолы — 5…30%; асфальтены — 0,5…70%; связанную нефть до 60%; механические примеси — 1…10%; воду — от долей до нескольких процентов; серу — до 2%. В зависимости от содержания органических составляющих АСПО предложено подразделять на три класса [14]:

  • 1. асфальтеновый — П/(А+С) < 1;
  • 2. парафиновый — П/(А+С) > 1;
  • 3. смешанный — П/(А+С) ~ 1, где П, А и С — содержание (% масс.) парафинов, смол и асфальтенов, соответственно.

Обычно под термином «парафины» объединяют всю углеводородную часть отложений. Хотя в данной части и преобладают н-парафины (метановые углеводороды, или алканы с прямой цепью) [15], в меньшем количестве в ней содержатся нафтеновые (циклоалкановые) и ароматические углеводороды c длинными алкильными цепями [16, 17]. Структура парафиновых углеводородов микрокристаллическая, нафтены с длинными алкильными радикалами образуют макрокристаллическую структуру [18]. Смолы, входящие в состав АСПО, представлены прежде всего нейтральными смолами, выделенными с помощью силикагеля и хлороформа (четыреххлористым углеродом). Это полужидкие, иногда полутвердые темно-коричневого или черного цвета вещества. Относительная плотность смол от 0,99 до 1,08 г/см3. Молекулярная масса смол может достигать 1200 [19]. Они хорошо растворяются во всех нефтепродуктах и органических растворителях, за исключением этилового и метилового спиртов. В среднем смолы содержат до 15−17% кислорода, серы, азота. С повышением молекулярной массы смол содержание кислорода, серы и азота снижается. Основой структуры молекул смол является плоская конденсированная поликарбоциклическая сетка, состоящая преимущественно из бензольных колец. В этой структурной сетке могут содержаться нафтеновые и гетероциклические кольца (пяти и шестичленные). Периферийная часть конденсированной системы смол АСПО замещена на углеводородные радикалы (алифатические, циклические и смешанные). Природа и количество этих заместителей сильно зависит от свойств нефти. Заместители могут включать функциональные группы (-ОН, -SH, -NH2, =СО и др.). При нагреве до 260−350 °С смолы начинают уплотняться и превращаются в асфальтены. С повышением концентрации в растворе смолы, с одной стороны, замедляют рост кристаллов, а с другой, — способствуют деформации поверхности кристаллов и возникновению на них новых центров кристаллизации. Степень проявления той или иной тенденции определяется природой смол и обуславливает соответствующую форму и размер кристаллов твердых углеводородов [20]. По современным представлениям асфальтены — это полициклические ароматические сильно конденсированные структуры с короткими алифатическими цепями в виде темно-бурых аморфных порошков. Плотность асфальтенов несколько больше единицы. В асфальтенах содержится (% масс.): 80…86% углерода, 7…9% водорода, до 9% серы и кислорода, и до 1,5% азота. Асфальтены не кристаллизуются и не могут быть разделены на индивидуальные компоненты или узкие фракции. При нагревании выше 300−400 єС они не плавятся, а разлагаются, образуя углерод и летучие продукты. Асфальтены являются наиболее тяжелыми и полярными компонентами нефти. Асфальтены очень склонны к ассоциации [21], их частицы полидисперсны и поэтому молекулярная масса в зависимости от метода определения может колебаться от 2000 до 4000 а.е.м. [19]. Асфальтены рассматриваются как продукты уплотнения смол. Частица асфальтенов представляет собой «мицеллу», ядро которой состоит из высокомолекулярных полициклических конденсированных соединений преимущественно ароматического характера, а адсорбционный слой образуют низкомолекулярные поверхностно-активные соединения, включающий смолы и нафтеновые кислоты, которые вместе с алифатическими компонентами нефти, образуют сольватную оболочку мицеллы [22].

Методы борьбы с АСПО Борьба с АСПО предусматривает проведение работ по двум направлениям. Во-первых, по предупреждению (замедлению) образования отложений. К таким мероприятиям относятся: применение гладких (защитных) покрытий; химические методы (смачивающие, модификаторы, депрессаторы, диспергаторы); физические методы (вибрационные, ультразвуковые, воздействие электрических и электромагнитных полей). Второе направление — удаление АСПО. Это тепловые методы (промывка горячей нефтью или водой в качестве теплоносителя, острый пар, электропечи, индукционные подогреватели, реагенты при взаимодействии с которыми протекают экзотермические реакции); механические методы (скребки, скребки-центраторы); химические (растворители и удалители) [2, 23]. Как показывает практика, наиболее эффективным является предупреждение отложения смолопарафиновых веществ, так как при этом достигается наиболее устойчивая и безаварийная работа нефтепромыслового оборудования, снижаются затраты на добычу и перекачку нефти. Существует несколько наиболее известных и активно применяемых в нефтедобывающей промышленности методов борьбы с АСПО, но многообразие условий разработки месторождений и различие характеристик добываемой продукции часто требует индивидуального подхода и даже разработки новых технологий.

Химические методы борьбы с АСПО Одним из перспективных и выгодных способов борьбы с запарафиниванием скважин и трубопроводов является химический метод, так как он имеет высокую эффективность, технология проведения работ несложна, эффект действия реагентов имеет пролонгированный характер [4]. Химические методы базируются на дозировании в добываемую продукцию химических соединений, уменьшающих, а иногда и полностью предотвращающих образование отложений [24]. В основе действия ингибиторов парафиноотложений лежат адсорбционные процессы, происходящие на границе раздела фаз: нефть-поверхность металла трубы, нефть-дисперсная фаза. В настоящее время ингибиторы АСПО условно разделяют на группы по предполагаемому механизму действия. В табл. 1 приведена современная классификация химических реагентов, предотвращающих отложения асфальто-смоло-парафиновых веществ [4].

Ингибирующие свойства проявляет весьма широкий набор соединений различной химической природы. Однако при всем их разнообразии можно выделить три общих признака. Во-первых, все они, даже присадки неполимерного типа, обладают довольно значительной молекулярной массой (в диапазоне 500−10 000), которая в несколько раз больше молекулярной массы наиболее тяжелых н-алканов нефтепродуктов и нефтей, обусловливающих их низкотемпературные свойства. Во-вторых, макромолекула присадок, как правило, представляет собой сочетание полиметиленовой цепи с полярными группами. В-третьих, все вещества, даже неполимерного типа, полидисперсны по молекулярной массе и по составу. Иными словами, присадка не является индивидуальным веществом, а представляет собой смесь молекул различного состава и молекулярной массы [35].

В последнее время наметилась тенденция к разработке присадок комплексного действия, что достигается за счет создания композиции присадок с различным спектром действия. Использование химреагентов для предотвращения образования АСПО во многих случаях совмещается с:

  • — процессом разрушения устойчивых нефтяных эмульсий;
  • — защитой нефтепромыслового оборудования от коррозии;
  • — защитой от солеотложений;
  • — процессом формирования оптимальных структур газожидкостного потока.

Удалители и растворители АСПО Несмотря на возросшее число отечественных и зарубежных публикаций по химическим методам депарафинизации нефтепромыслового оборудования и призабойных зон скважин, прогнозных рекомендаций по применению определенных составов для удаления того или иного типа АСПО и универсального удалителя нет. Это объясняется в основном, различием в составах АСПО по месторождениям, их изменением, как по пути движения нефти, так и в процессе разработки месторождений; отсутствием теоретических разработок по взаимодействию твердых углеводородов и реагентов.

В настоящее время поиск удалителей и растворителей АСПО, как правило, проводится опытным путем. Многие предложенные составы подбирают лишь с учетом наличия сырья в нефтедобывающем регионе, причем выявляется общий эффект взаимодействия АСПО-удалитель, без определенного механизма его действия. Естественно, что такие составы нашли успешное применение лишь на отдельных месторождениях и не во всех технологических процессах удаления АСПО.

Анализ ассортимента удалителей и растворителей АСПО, который описан в отечественной и зарубежной литературе, показал, что все составы можно разделить на несколько классификационных групп [36]: индивидуальные органические растворители [37, 38]; растворители различных классов органических соединений природного характера [39, 40]; смесь одного или различных классов органических соединений производств нефтехимии и нефтепереработки [41]; органические смеси с добавками ПАВ [42−45]; удалители на водной основе и многокомпонентные смеси. Удалители последнего типа можно классифицировать как моющие смеси, так как их действие сводится в основном не к растворению составляющих АСПО, а к их диспергированию и отмыву. В состав моющих средств, как правило, входят различные оксиалкилированные продукты, щелочи, электролиты, спирты, кислоты и другие компоненты. Многие составы обладают рядом преимуществ перед удалителями органического характера. Они менее взрывои пожароопасны, более технологичны (при условии поставки их па промыслы в товарной форме), создают гидрофилизирующие пленки на твердых поверхностях [14].

Выводы Проблема образования асфальтосмолопарафиновых отложений приобретает более серьезные масштабы в связи с переходом многих месторождений в позднюю стадию разработки. Приступая к ее решению надо руководствоваться общими подходами — прежде всего, выяснить причины данного явления.

Процесс образования АСПО определяется многими факторами, среди которых условия эксплуатации технологического оборудования при добыче, транспорте и хранении нефти (термобарические условия, динамические характеристики потока, обводненность продукции и др.), свойства самой нефти (физико-химические характеристики, групповой химический состав).

Особое значение в ряду факторов, определяющих склонность нефти к образованию АСПО, имеют высокомолекулярные компоненты нефти, а именно, их состав, строение, соотношение. Последнее определяет характер их взаимоотношений, поскольку при пониженных температурах нефть представляет собой дисперсную систему, в которой присутствуют структурные элементы, образованные высокомолекулярными компонентами. Воздействуя на характер взаимоотношений между парафинами, смолами и асфальтенами можно управлять структурообразованием в нефтяной системе.

Одним из приемов, позволяющих воздействовать на процесс структурообразования является введение в поток нефти присадок: депрессоров, модификаторов структуры, диспергаторов, ингибиторов парафиноотложений. Основными недостатками этих присадок являются их направленное действие на решение только одной проблемы (снижение температуры застывания, снижение вязкости) и часто высокая стоимость.

Тем не менее, известные к настоящему времени способы предотвращения образования АСПО в нефтяном оборудовании не позволяют полностью решить проблему и необходимость удаления отложений остается актуальной. Для выбора наиболее эффективных с химической точки зрения путей удаления отложений органических веществ необходимо получение адекватного представления о составе, свойствах и строении этих отложений.

.

Показать весь текст
Заполнить форму текущей работой