Помощь в написании студенческих работ
Антистрессовый сервис

Компьютерные средства обеспечения видеотехнологий

РефератПомощь в написанииУзнать стоимостьмоей работы

Поскольку в мониторы необходимо подавать аналоговый видеосигнал, для преобразования цифровых данных, хранимых в видеопамяти, в аналоговую форму, в видеоконтроллере предусмотрен цифроаналоговый преобразователь RAMDAC. Он отвечает за формирование окончательного изображения на мониторе. RAMDAC преобразует результирующий цифровой поток данных, поступающих от видеопамяти, в уровни интенсивности… Читать ещё >

Компьютерные средства обеспечения видеотехнологий (реферат, курсовая, диплом, контрольная)

Для работы с видеоинформацией необходимо иметь функционально более разнообразное оборудование.

Видеоконтроллеры Видеоконтроллеры (видеоадаптеры) являются внутрисистемными устройствами, преобразующими данные в сигнал, отображаемый монитором, и непосредственно управляющими мониторами и выводом информации на их экран. Видеоконтроллер содержит: графический контроллер, растровую оперативную память (видеопамять, хранящую воспроизводимую на экране информацию), микросхемы ПЗУ, цифроаналоговый преобразователь.

Контроллер (специализированный процессор) формирует управляющие сигналы для монитора и управляет выводом закодированного изображения из видеопамяти, регенерацией ее содержимого, взаимодействием с центральным процессором. Контроллер с аппаратной поддержкой некоторых функций, позволяющей освободить центральный процессор от выполнения части типовых операции, называется акселератором (ускорителем). Акселераторы эффективны при работе со сложной графикой: многооконным интерфейсом, трехмерной (3D) графикой. Основными компонентами специализированного процессора являются: SVGA-ядро, ядро.

2D-ускорителя, ядро 3D-ускорителя, видеоядро, контроллер памяти, интерфейс системной шины, интерфейс внешнего порта ввода-вывода. Аппаратно большая часть этих компонентов реализуется на одном кристалле видеоконтроллера.

Поясним некоторые компоненты.

  • 2D-ускоритель — устройство, осуществляющее обработку графики в двух координатах на одной плоскости.
  • 3D-ускоритель — устройство, осуществляющее построение и обработку трехмерных (3D) изображений. В процессе формирования 3D-изображения аппаратный 3D-ускоритель взаимодействует с программным обеспечением.

Сам же процесс имеет несколько этапов:

  • * определение состояния объектов;
  • * определение соответствующих текущему состоянию геометрических трехмерных моделей;
  • * разбиение этих моделей на простые элементы — графические примитивы, в качестве которых чаще используют треугольники (именно на этом этапе подключается аппаратный ЗД-ускоритель);
  • * преобразование параметров примитивов в целочисленные значения, с которыми работают аппаратные компоненты;
  • * закраска примитивов и финальная обработка.

Основные аппаратные элементы ЗD-ускорителя: геометрический процессор, механизм установки и механизм закраски примитивов. Характеристиками ускорителей являются максимальная пропускная способность (треугольников в секунду), максимальная производительность закраски (точек в секунду), скорость (кадров в секунду).

Важная характеристика — емкость видеопамяти, она определяет количество хранимых в памяти пикселов и их атрибутов. Видеоконтроллер должен обеспечить естественное качественное изображение на экране монитора, что возможно при большом числе воспроизводимых цветовых оттенков, высокой разрешающей способности и высокой скорости вывода изображения на экран.

Под разрешающей способностью здесь (так же как и для мониторов) понимается то количество выводимых на экран монитора пикселов, которое может обеспечить видеоконтроллер. При разрешении 1024×768 на экран должно выводиться 786 432 пиксела, а при разрешении 2048×1536—3 145 728 пикселов. Для каждого пиксела должна храниться и его характеристика — атрибут.

Количество воспроизводимых цветовых оттенков (глубина цвета) зависит от числа двоичных разрядов, используемых для представления атрибута каждого пиксела. Выделение четырех битов информации на пиксел (контроллеры CGA) позволяло отображать 24=16 цветов, 8 бит (контроллеры EGA и VGA) — 28 = 256 цветов, 16 бит (стандарт High Color), 24 и 25 бит (стандарт True Color в контроллерах SVGA), соответственно, 216 = 65 536, 224 = 16 777 216 и 225 = 33 554 432 цвета. В стандарте True Color для отображения каждого пиксела обычно используется 32 бита, из них 24 или 25 для характеристики цветового оттенка, а остальные для служебной информации.

Необходимую емкость видеопамяти для работы с графикой можно приблизительно сосчитать, умножив количество байтов атрибута на количество пикселов, выводимых на экран. Например, в стандарте True Color при разрешающей способности монитора 1024×768 пикселов емкость видеопамяти должна быть не менее 2,5 Мбайт, а при разрешении 2048×1536 —не менее 9,5 Мбайт. При работе с текстом необходимая емкость видеопамяти существенно меньше.

Скорость вывода изображения на экран зависит от скорости обмена данными видеопамяти со специализированным процессором, цифроаналоговым преобразователем и, в несколько меньшей степени, с центральным процессором. Для увеличения скорости обмена данными видеопамяти со специализированным процессором, цифроаналоговым преобразователем используются:

  • * увеличение разрядности и тактовой частоты внутренней шины видеоконтроллера (вплоть до 256 разрядов и 600 МГц);
  • * новейшие быстродействующие типы оперативной памяти. В качестве видеопамяти в контроллерах могут использоваться различные типы памяти DRAM, как универсальные: SDRAM, DRDRAM, DDR SDRAM, так и особенно быстрые специализированные: SGRAM (синхронная графическая), VRAM и WRAM (двухпортовые типы видеопамяти), 3D RAM (трехмерная).

Скорость обмена данными с центральным процессором определяется пропускной способностью шины, через которую осуществляется обмен. В современных компьютерах вместо шины PCI используется более скоростная шина AGP (в частности, AGP 4х).

Поскольку в мониторы необходимо подавать аналоговый видеосигнал, для преобразования цифровых данных, хранимых в видеопамяти, в аналоговую форму, в видеоконтроллере предусмотрен цифроаналоговый преобразователь RAMDAC. Он отвечает за формирование окончательного изображения на мониторе. RAMDAC преобразует результирующий цифровой поток данных, поступающих от видеопамяти, в уровни интенсивности, подаваемые на соответствующие электронные пушки трубки монитора — красную, зеленую и синюю. Помимо цифроаналоговых преобразователей для каждого цветового канала (красного, зеленого, синего), RAMDAC имеет встроенную память для хранения данных о цветовой палитре и т. д. Такие характеристики RAMDAC, как его частота и разрядность, непосредственно также определяют качество изображения.

От частоты зависит, какое максимальное разрешение и при какой частоте кадровой развертки монитора сможет поддерживать видеоконтроллер. Разрядность определяет, сколько цветов может поддерживать видеоконтроллер. Наиболее распространено 8-битное представление характеристики пиксела на каждый цветовой канал монитора (суммарная разрядность 24).

В видеоконтроллере имеются микросхемы ПЗУ двух типов:

  • * содержащие видеоBIOS — базовую систему ввода-вывода, используемую центральным процессором для первоначального запуска видеоконтроллера;
  • * содержащие сменные матрицы знаков, выводимых на экран монитора.

Многие видеокарты имеют электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись информации пользователем под управлением специального драйвера, часто поставляемого вместе с видеоадаптером. Таким образом, можно обновлять и видеоBIOS, и экранные шрифты.

  • *сновные характеристики видеоконтроллера:
  • * режимы работы (текстовый и графический);
  • * воспроизведение цветов (монохромный и цветной);
  • * число цветов или число полутонов (монохромный);
  • * разрешающая способность (число адресуемых на экране монитора пикселов по горизонтали и вертикали);
  • * емкость и число страниц в буферной памяти (число страниц — это число запоминаемых текстовых экранов, любой из которых путем прямой адресации может быть выведен на отображение в мониторе);
  • * размер матрицы символа (количество пикселов в строке и столбце матрицы, формирующей символ на экране монитора);
  • * разрядность шины данных, определяющая скорость обмена данными с системной шиной и т. д.

Общепринятый стандарт формируют следующие видеоконтроллеры:

  • * Hercules — монохромный графический адаптер;
  • * MDA — монохромный дисплейный адаптер (Monochrome Display Adapter);
  • * MGA — монохромный графический адаптер (Monochrome Graphics Adapter);
  • * CGA — цветной графический адаптер (Color Graphics Adapter);
  • * EGA — улучшенный графический адаптер (Enhanced Graphics Adapter);
  • * VGA — видеографический адаптер (Video Graphics Adapter), иногда его называют видеографической матрицей (Video Graphics Array);
  • * SVGA — улучшенный видеографический адаптер (Super VGA);
  • * PGA — профессиональный графический адаптер (Professional GA).

В настоящее время практически используются видеоконтроллеры только типа SVGA.

Современные SVGA-видеоконтроллеры поддерживают разрешение до 2048×1536, число цветовых оттенков более 16,7 млн. (наиболее продвинутые 32-разрядные — более 33 млн.), имеют емкость видеобуфера до 64 Мбайт.

Видеоконтроллер устанавливается на материнской плате как видеокарта в свободный разъем AGP или PCI. Некоторые видеокарты имеют вход для подключения телевизионной антенны (TV-in) и тюнер, то есть позволяют через ПК просматривать телепередачи, видеофильмы с видеомагнитофона и видеокамеры; ряд видеокарт имеют разъем для подключения телевизора (TV-out), для просмотра видео.

Плата видеозахвата (video grabber, видеограббер) выполняет захват кадров видео, их преобразование (в то числе и оцифровку) и запись в память компьютера.

Платы видеозахвата бывают двух типов:

  • * грабберы кадров (frame grabber) предназначены для захвата неподвижных изображений;
  • * платы захвата (capture board) могут захватывать целые видеофильмы. Они позволяют получать с видеокамеры или видеомагнитофона, а при наличии тюнера и с антенны отдельные телевизионные кадры и их связанные последовательности для дальнейшей обработки в компьютере и вывода на принтер или обратно на видео.

При оцифровке видеосигнала формируются огромные массивы информации. Поэтому возникают серьезные проблемы с динамикой процесса, ибо для пересылки одного 256-цветного полноэкранного изображения с разрешающей способностью 1024×760 пикселов необходимо передать около 1 Мбайт данных, что может потребовать до 10 с и более. Даже при слабом разрешении 640×480 пикселов объем данных все равно велик — чуть меньше 0,5 Мбайт.

В связи с этим размеры кадров платами видеозахвата уменьшаются: например, при разрешающей способности всего экрана 640×480 кадр имеет размер 80×60,160×120 (одна шестнадцатая часть экрана, используемая обычно для видео в среде Windows 98), 240×180 или 320×240 (в пикселах). Существуют высококачественные платы (Creativ Lab Video Blaster и т. д.), которые могут воспроизводить видеокадры в полный экран, но и они, как правило, не могут осуществлять полноэкранный захват.

Ввиду большого объема видеофайлов, они при передаче и записи в память сжимаются (выполняется компрессия видеоданных); при воспроизведении картинки выполняется обратная процедура — декомпрессия. В настоящее время существует несколько методов сжатия данных, реализуемых как программно, так и аппаратно. Средства сжатия данных обычно называют КОДЕКами (CODEC — Compressor-DECompressor). Широкое распространение получили, например КОДЕКи: Motion JPEG-INDEO, Cinepak и т. д.

Платы видеозахвата второго типа, несмотря на указанные трудности, открывают широкие перспективы по созданию и обработке динамических изображений в реальном масштабе времени — живого видео.

Показать весь текст
Заполнить форму текущей работой