Солнечная энергия.
Экологически чистые нетрадиционные источники энергии
Солнечная энергия очень удобна для энергоснабжения зданий. Как показали экспериментальные исследования, только за счет энергии солнечных лучей, падающих на ограждающие конструкции зданий, можно полностью решить энергетические проблемы, связанные с их обогревом, горячим водоснабжением и др. Существует три вида гелиосистем, служащих для удовлетворения тепловых нужд здания: пассивные, активные… Читать ещё >
Солнечная энергия. Экологически чистые нетрадиционные источники энергии (реферат, курсовая, диплом, контрольная)
Всего за три дня Солнце посылает на Землю столько энергии, сколько её содержится во всех разведанных запасах ископаемых топлив, а за 1 сек. — 170 млрд. Дж. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть её достигает земной поверхности. Вся энергия, испускаемая Солнцем, больше той её части, которую получает Земля, в 5 млрд. раз. Но даже такая «ничтожная» величина в 1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции. Солнечная энергия — наиболее грандиозный, дешевый, но и, пожалуй, наименее используемый человеком источник энергии. В последнее время интерес к проблеме использования солнечной энергии резко возрос. Потенциальные возможности энергетики, основанные на использовании непосредственного солнечного излучения, чрезвычайно велики. Использование всего лишь 0,0125% энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0,5% полностью покрыть потребности на перспективу. К сожалению, вряд ли когда-нибудь эти громадные потенциальные ресурсы удастся реализовать в больших масштабах. Только очень небольшая часть этой энергии может быть практически использована. Едва ли не главная причина подобной ситуации — слабая плотность солнечной энергии. Простой расчет показывает, что если снимаемая с 1 мІ освещенной солнцем поверхности мощность в среднем составляет 160 Вт, то для генерирования 100 тыс. кВт нужно снимать энергию с площади в 1,6 кмІ. Ни один из известных в настоящее время способов преобразования энергии не может обеспечить экономическую эффективность такой трансформации.
Выше говорилось о средних величинах. Доказано, что в высоких широтах плотность солнечной энергии составляет 80 — 130 Вт/мІ, в умеренном поясе — 130 — 210, а в пустынях тропического пояса 210 — 250 Вт /мІ. Это означает, что наиболее благоприятные условия для использования солнечной энергии существуют в развивающихся странах Африки, Южной Америки, в Японии, Израиле, Австралии, в отдельных районах США (Флорида, Калифорния). В СНГ в районах, благоприятных для этого, живет примерно 130 млн. человек, в том числе 60 млн. в сельской местности. Однако даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт /мІ. Поэтому, чтобы коллекторы солнечного излучения «собирали» за год энергию, необходимую для удовлетворения всех потребностей человечества, нужно разместить их на территории 130 000 кмІ. Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты, Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 кмІ, требует примерно 10 000 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1 170 000 000 тонн. Из вышеизложенного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики.
Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Пока ещё электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проводят на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.
Но, тем не менее, станции-преобразователи солнечной энергии строят, и они работают.
Для преобразования солнечной энергии в электрическую в промышленных масштабах сейчас в основном используют способ нижеописанный способ: установленные на значительной, до нескольких тысяч квадратных метров, территории зеркала-гелиостаты, поворачивающиеся вслед за Солнцем, направляют лучи солнечного света на емкость с теплоприемником, в качестве которого обычно выступает вода. Именно на этом принципе основана работа современных гелиоэлектростанций. Дальше все происходит так же, как на обычных ТЭС: вода нагревается, закипает, превращается в пар, пар крутит турбину, турбина передает вращение на ротор генератора, а тот вырабатывает электричество.
В мире сейчас действуют несколько гибридных солнечно-тепловых электростанций общей мощностью более 600 МВт. Днем они работают от Солнца, а ночью, чтобы вода не остывала и электричество не кончалось, — от газа. Температура пара в установках достигает 370 градусов Цельсия, а давление — 100 атмосфер.
Устройства, использующие энергию солнца, разработаны для отопления, освещения и вентиляции зданий, небоскрёбов, опреснения воды, производства электроэнергии. Такие устройства используются в различных технологических процессах. Появились транспортные средства с «солнечным приводом»: моторные лодки и яхты, солнцелеты и дирижабли с солнечными панелями. Солнцемобили, вчера сравниваемые с забавным автоаттракционом, сегодня пересекают страны и континенты со скоростью, почти не уступающей обычному автомобилю.
Солнечную радиацию при помощи гелиоустановок преобразуют в тепловую или электрическую энергию, удобную для практического применения. В южных районах нашей страны созданы десятки солнечных установок и систем. Они осуществляют горячее водоснабжение, отопление и кондиционирование воздуха жилых и общественных зданий, животноводческих ферм и теплиц, сушку сельскохозяйственной продукции, термообработку строительных конструкций, подъем и опреснение минерализованной воды и др.
С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Она невелика — мощность всего 5 МВт. Она работает без каких-либо выбросов в окружающую среду, что особо важно в курортной зоне, и без использования органического топлива. Работая 2000 часов в год, станция вырабатывает 6 млн. кВт электроэнергии.
С начала 50-х годов в нашей стране космические летательные аппараты используют в качестве основного источника энергопитания солнечные батареи, которые непосредственно преобразуют энергию солнечной радиации в электрическую. Они являются практически незаменимым источником электрического тока в ракетах, спутниках и автоматических межпланетных станциях.
Освоение космического пространства позволяет разрабатывать проекты солнечно-космических электростанций для энергоснабжения Земли. Эти станции, в отличие от земных, не только смогут получать более плотный поток теплового солнечного излучения, но и не зависят от погодных условий и смены дня и ночи. Ведь в космосе Солнце сияет с неизменной интенсивностью.
Продолжается изучение возможностей более широкого использования гелиоустановок: «солнечные» крыши на домах для энергои теплоснабжения, «солнечные» крыши на автомобилях для подзарядки аккумуляторов, «солнечные» фермы в сельских районах и т. д.
Ученые и энергетики продолжают вести работу по поиску новых более дешевых возможностей использования солнечной энергии. Возникают новые идеи, новые проекты.
Существует два основных направления использования солнечной энергии: выработка электрической энергии и получение тепловой энергии (теплоснабжение). Применение солнечных электрогенераторов находится все еще в начальной стадии, зато использование солнечного теплоснабжения для обогрева жилых зданий занимает в мировой практике уже значительное место. Так, в США в 1977 г. насчитывалось около 1000 солнечных домов, в 90-е гг. число их превысило 15 тыс. Солнечные установки для подогрева воды имеют 90% домов на Кипре и 70% в Израиле. Только за последние 15 лет в Японии построены сотни тысяч зданий с солнечным подогревом, что позволило резко уменьшить выбросы в атмосферу диоксида углерода и других парниковых газов. Солнечная энергетика в России развита совершенно недостаточно, хотя половина ее территории находится в благоприятных для использования солнечной энергии условиях ѕ в год ее поступает не менее 100 кВт ч/м2, а в таких районах, как Дагестан, Бурятия, Приморье, Астраханская область и др. ѕ до 200 кВт ч/м2.
В таблице ниже представлены мощности фотоэлектрических станций в разных странах:
Солнечная энергия очень удобна для энергоснабжения зданий. Как показали экспериментальные исследования, только за счет энергии солнечных лучей, падающих на ограждающие конструкции зданий, можно полностью решить энергетические проблемы, связанные с их обогревом, горячим водоснабжением и др. Существует три вида гелиосистем, служащих для удовлетворения тепловых нужд здания: пассивные, активные и смешанные. В пассивных гелиосистемах само здание служит приемником и преобразователем солнечной энергии, а распределение тепла осуществляется за счет конвенции. Основным элементом более дорогостоящей активной гелиосистемы является коллектор ѕ приемник солнечной энергии, где солнечный свет преобразуется в тепло. Гелиоколлектор представляет собой теплоизолированный ящик: видимый свет от солнца проходит сквозь прозрачное покрытие (стекло или пленку), попадает на зачерненную панель и нагревает ее. При специальной конструкции коллектора внутри его достигается очень высокая температура, позволяющая успешно осуществлять горячее водоснабжение. Оценивая эффективность применения солнечного теплоснабжения в нашей стране, Н. Пинигин и А. Александров показали, что использование солнечных установок в режиме круглогодичного горячего водоснабжения зданий экономически целесообразно практически для всей южной части Российской Федерации. В последние годы созданы установки с сезонным аккумулированием тепла, что позволяет даже в условиях Сибири сохранить до 30% топливных ресурсов и использовать их для обогрева небольших домов в зимний период. Необходимы дальнейшие поиски использования солнечной энергии не только в южных, но и в северных районах России, особенно учитывая, что в Норвегии и Финляндии такой опыт уже имеется.
Завораживающей сознание выглядит идея, предложенная японскими специалистами, о строительстве единой для всей планеты гигантской солнечной электростанции где-нибудь в Сахаре или пустынях Австралии. Для этой станции потребовалась бы площадь, эквивалентная квадрату со стороной 800 км. Но уже сейчас суммарная площадь солнечных отражателей, используемых в мировой практике, превышает 6 млрд м2 (США ѕ 1,8 млрд м2, Япония ѕ 1,3 млрд м2 и т. д.).
Достоинства:
- · Общедоступность и неисчерпаемость источника.
- · Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).
Недостатки:
- · Зависимость от погоды и времени суток.
- · Как следствие необходимость аккумуляции энергии.
- · При промышленном производстве — необходимость дублирования солнечных ЭС маневренными ЭС сопоставимой мощности.
- · Высокая стоимость конструкции, связанная с применением редких элементов (к примеру, индий и теллур).
- · Необходимость периодической очистки отражающей поверхности от пыли.
- · Нагрев атмосферы над электростанцией.
К недостаткам солнечной энергии также относят дискретность (прерывистость) ее поступления на поверхность Земли (по часам суток, времени года, географическим поясам) и зависимость от метеорологических условий. Например, в России специалисты рекомендуют размещать гелиополигоны южнее 55° с. ш. В связи с этим многие зарубежные ученые работают над проблемой выноса гелиосистем на околоземную орбиту. Предполагается строительство в Европе 40 спутниковых солнечных электростанций, способных обеспечить около 20% потребности в электроэнергии. Однако не исключено, что солнечные электростанции могут причинить ущерб окружающей среде в процессе передачи энергии на Землю.