Помощь в написании студенческих работ
Антистрессовый сервис

Особенности парентеральных препаратов

РефератПомощь в написанииУзнать стоимостьмоей работы

Среди инъекционных растворов особую группу составляют изотонические, под которыми понимают растворы с осмотическим давлением, равным осмотическому давлению жидкостей организма (плазмы крови, лимфы, спинно-мозговой жидкости и т. д.) Осмотическое давление растворов является следствием теплового движения молекул растворенного вещества, стремящегося занять возможно больший объем. В организме оно… Читать ещё >

Особенности парентеральных препаратов (реферат, курсовая, диплом, контрольная)

Технология инъекционных препаратов — сложное многостадийное производство, включающее как основные, так и вспомогательные процессы.

Изготовление растворов для инъекций проводят в специальных помещениях первого или второго класса чистоты с соблюдением правил асептики. Приготовление водных или невязких растворов для инъекций проводят массообъемным методом, с использованием герметически закрываемых реакторов, снабженных рубашкой и перемешивающим устройством. В тех случаях, когда плотность растворителя значительно отличается от плотности воды, используют весовой метод, при котором и лекарственное вещество, и растворитель берут по массе. Растворение медленноили труднорастворяющихся лекарственных веществ ведут при нагревании и перемешивании.

Стадия приготовления раствора включает следующие операции: растворение, изотонирование, стабилизация, введение консервантов, фильтрование.

В зависимости от свойств лекарственных веществ некоторые из операций могут быть исключены, например изотонирование, стабилизация, введение консервантов.

Среди инъекционных растворов особую группу составляют изотонические, под которыми понимают растворы с осмотическим давлением, равным осмотическому давлению жидкостей организма (плазмы крови, лимфы, спинно-мозговой жидкости и т. д.) Осмотическое давление растворов является следствием теплового движения молекул растворенного вещества, стремящегося занять возможно больший объем. В организме оно поддерживается на постоянном уровне действием саморегуляторов. Осмотическое давление плазмы крови в норме держится на уровне 72,52×104 Н/м2 (Па), или 7,4 атм. Растворы с меньшим осмотическим давлением называются гипотоническими, с большим — гипертоническими.

При введении большого количества растворов в виде внутрисосудистых инъекций осмотическое давление жидкостей организма нарушается, так как клеточные оболочки, обладая свойством полупроницаемости, пропускают воду и препятствуют проникновению многих растворенных в ней веществ. В связи с этим, если клетка снаружи окружена раствором с иным осмотическим давлением, чем давление внутри клетки, происходит движение воды в клетку или из клетки до выравнивания концентрации, т. е. наблюдается явление осмоса.

При введении в кровь гипертонического раствора (Рраствора > Рвнутри клетки) — вода выходит из клетки. Она обезвоживается, вследствие чего наступает плазмолиз, при котором эритроциты сморщиваются.

При введении гипотонического раствора (Рраствора < Рвнутри клетки) жидкость переходит вовнутрь клетки до момента выравнивания концентрации. Клетка разбухает, клеточная оболочка при этом может лопнуть, а клетка погибнуть. Данный процесс называют лизис, а для эритроцитов — гемолиз.

Кроме того, внутримышечное и подкожное введение неизотонированных растворов вызывает боль, причем она тем сильнее, чем резче осмотическая разница. Поэтому при внутрисосудистом применении некоторых инъекционных растворов необходимо их изотонирование.

Изотонические концентрации лекарственных веществ в растворах можно рассчитать следующими методами:

  • · метод, основанный на законе Вант-Гоффа;
  • · криоскопический метод, основанный на законе Рауля;
  • · метод эквивалентов лекарственных веществ по натрию хлориду.

За рубежом пользуются также графическим методом расчета изотонических концентраций, позволяющим по разработанным номограммам быстро, но с некоторой приближенностью определить количество натрия хлорида, необходимое для изотонирования раствора лекарственного вещества.

При изготовлении и хранении лекарственных препаратов нередко наблюдается изменение их свойств, протекающее с различной скоростью и степенью проявления. Это связано с уменьшением содержания лекарственных веществ или снижением их фармакологической активности, изменением свойств лекарственных форм и т. д. Подобные изменения влияют на срок годности (хранения) препаратов, который может колебаться от нескольких часов (растворы антибиотиков) или дней (растворы ферментов) до нескольких лет. Вопросам стабильности лекарственных средств в настоящее время уделяется большое внимание.

Протекающие в препаратах процессы можно условно классифицировать на физические, химические и биологические. Условность заключается в их взаимосвязи: химические превращения могут стать причиной изменения физических свойств, в то время как физические изменения становятся причиной нежелательных химических процессов. Биологические же процессы сопровождаются как химическими, так и физическими превращениями.

К физическим процессам, протекающим преимущественно при хранении, следует отнести укрупнение частиц дисперсной фазы, расслаивание, изменение консистенции, испарение, сублимацию и ДР;

Химические процессы протекают нередко при изготовлении препарата, особенно при термической стерилизации, и сопровождаются разнообразными химическими реакциями — гидролиз, омыление, окислительно-восстановительные процессы, фотохимические и энзиматические превращения, реже наблюдаются полимеризация и изомеризация и др.

Биологические процессы, обусловленные жизнедеятельностью микроорганизмов, часто приводят к нежелательным химическим превращениям действующих веществ, иногда — к изменению внешнего вида лекарственной формы.

Стабильность лекарственных препаратов зависит от многих факторов — температуры хранения, освещенности, состава окружающей атмосферы, способа приготовления, т. е. технологии лекарственной формы, вспомогательных веществ, вида лекарственной формы, особенно ее агрегатного состояния, упаковки и др.

Используемые в настоящее время методы стабилизации лекарственных средств — химический и физический, нередко применяются в комплексе, дополняя друг друга. Химические методы основаны на добавлении химических веществ — стабилизаторов, антиоксидантов и консервантов. Физические методы базируются на защите лекарственных веществ от неблагоприятных воздействий внешней среды, применении лекарственных и вспомогательных веществ высокой степени очистки, использовании современного технологического оснащения и результатов научных исследований в технологии лекарственных форм — применение неводных растворителей, обезвоживание препаратов, ампулирование в токе инертных газов и др.

Таким образом, стабильность препарата — это способность биологически активного вещества сохранять физико-химические свойства и фармакологическую активность в течение определенного срока хранения, предусмотренного нормативно-технической документацией.

Источники механических загрязнений инъекционных растворов. Практически загрязнение инъекционных препаратов может происходить на всех стадиях производства. Загрязнения парентеральных препаратов делят на три типа: химические (растворимые), микробные и механические. Два последних типа загрязнений тесно связаны между собой: часто одинаковы их источники, их одновременно показывает большинство современных приборов, аналогичны и методы борьбы с ними.

Источники возможных загрязнений имеют широкий диапазон. Основные из них: воздух производственного помещения, исходное сырье и растворитель, технологическое оборудование, коммуникации, материалы первичной упаковки (ампулы, флаконы, пробки), фильтрующие перегородки, обслуживающий персонал.

Из названных источников в инъекционный раствор могут попасть частицы металла, стекла, резины, пластмасс, угля, волокна асбеста, целлюлозы и т. д. На всех твердых частицах могут быть адсорбированы микроорганизмы.

Одним из требований ГФ, предъявляемым к препаратам для инъекций, является полное отсутствие механических включений, видимых невооруженным глазом, при производстве растворов в ампулах (малые объемы). Для больших объемов растворов (100 мл и более) фармакопеи США, Великобритании, а также требования Австралии ограничивают содержание даже меньших частиц. Ужесточение требований к чистоте больших объемов растворов связано с тем, что с увеличением объема раствора большее количество механических включений поступает в организм больного.

Степень тяжести неблагоприятных последствий в случае попадания инородных частиц зависит от их размера, природы и количества. Механические включения, находящиеся в инъекционном растворе, могут привести к образованию тромбов, гранулем, аллергических реакций и других патологических явлений. Так, содержащийся в асбесте хризотил может быть причиной злокачественных новообразований. В больших объемах внутривенных вливаний могут содержаться механические включения в виде волокон целлюлозы и частиц пластмасс, наличие которых служит причиной образования микротромбов в легких.

И указанного выше следует, что введение в регламентирующие документы различных стран требований, ограничивающих количества невидимых невооруженным глазом механических частиц, является важным условием, обеспечивающим высокое качество инъекционного раствора.

Инструментальный контроль содержания механических примесей в инъекционных растворах стал возможен благодаря использованию оптико-электронных приборов. Для количественной оценки содержания механических включений в жидкостях получил распространение метод фильтрации через мембранные фильтры, применяемый и в нашей стране.

Основной недостаток данного метода — трудоемкость и большая погрешность субъективного измерения. Этих недостатков лишен телевизионный метод, благодаря системе PMS фирмы «Millipore» для подсчета и измерения частиц, основанный также на процессе фильтрации.

Более совершенным устройством для определения содержания количества частиц в растворах служат приборы, основанные на кондуктометрическом и фотоэлектрическом методах регистрации частиц.

В Украине на основе фотоэлектрического метода разработан счетчик частиц в жидкости типа ГЗ-1. Прибор позволяет измерять частицы диаметром 5—100 мкм.

Итак, нормативно-техническая документация предъявляет высокие требования к чистоте инъекционных растворов, что достигается фильтрованием.

Важнейшая часть любого фильтра — фильтровальная перегородка, задерживающая твердые частицы и легко отделяющая их. Она должна обладать достаточной механической прочностью, низким гидравлическим сопротивлением и химической стойкостью, обеспечивать возможность регенерации, а также быть доступной по стоимости, не изменяя при этом физико-химические свойства фильтрата.

Требования, предъявляемые к фильтрам и фильтрующим материалам для инъекционных растворов, значительно выше перечисленных.

Фильтрующие материалы должны максимально защищать раствор от контакта с воздухом; задерживать очень мелкие частицы и микроорганизмы; обладать высокой механической прочностью, чтобы препятствовать выделению волокон и механических включений; противодействовать гидравлическим ударам и не менять функциональные характеристики; не изменять физикохимический состав и свойства фильтрата; не взаимодействовать с лекарственными, вспомогательными веществами и растворителями; выдерживать тепловую стерилизацию.

Фильтровальные материалы перед употреблением должны быть обязательно промыты до полного удаления растворимых веществ, твердых частиц или волокон.

Выбор фильтрующих перегородок обусловливается физикохимическими свойствами фильтруемого раствора (растворяющая способность жидкой фазы, летучесть, вязкость, рН среды и др.), концентрацией и дисперсностью твердой фазы, требованиями к качеству фильтрата, масштабами производства и т. д.

При производстве растворов для инъекций чаще используют тонкое фильтрование как основное или предварительное, предшествующее микрофильтрованию.

Фильтрующие перегородки, используемые для данной цели, могут задерживать частицы как на поверхности, так и в глубине фильтрующего материала. В зависимости от механизма задержания частиц различают фильтры глубинные (пластинчатые) и поверхностные, или мембранные.

Показать весь текст
Заполнить форму текущей работой