ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

РСализация. 
Π‘ΡƒΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΈ основныС Π²ΠΈΠ΄Ρ‹ ΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΈΡ

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Advanced Encryption Standard (AES), Ρ‚Π°ΠΊΠΆΠ΅ извСстный ΠΊΠ°ΠΊ Rijndael (произносится (Рэндал)) — симмСтричный Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π±Π»ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΈΡ (Ρ€Π°Π·ΠΌΠ΅Ρ€ Π±Π»ΠΎΠΊΠ° 128 Π±ΠΈΡ‚, ΠΊΠ»ΡŽΡ‡ 128/192/256 Π±ΠΈΡ‚), принятый Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ стандарта ΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡ€Π°Π²ΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ БША ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ конкурса AES. Π­Ρ‚ΠΎΡ‚ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ ΠΈ ΡΠ΅ΠΉΡ‡Π°Ρ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ, ΠΊΠ°ΠΊ это Π±Ρ‹Π»ΠΎ с Π΅Π³ΠΎ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠΌ DES. ΠΠ°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ институт… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

РСализация. Π‘ΡƒΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΈ основныС Π²ΠΈΠ΄Ρ‹ ΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΈΡ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Для Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π±Ρ‹Π»ΠΈ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ Π΄Π²Π° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° :

Π‘ΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹ΠΉ — AES.

АссимСтричный — RSA.

Advanced Encryption Standard (AES), Ρ‚Π°ΠΊΠΆΠ΅ извСстный ΠΊΠ°ΠΊ Rijndael (произносится [r?inda?l] (Рэндал[1])) — симмСтричный Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π±Π»ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΈΡ (Ρ€Π°Π·ΠΌΠ΅Ρ€ Π±Π»ΠΎΠΊΠ° 128 Π±ΠΈΡ‚, ΠΊΠ»ΡŽΡ‡ 128/192/256 Π±ΠΈΡ‚), принятый Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ стандарта ΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡ€Π°Π²ΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ БША ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ конкурса AES. Π­Ρ‚ΠΎΡ‚ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ ΠΈ ΡΠ΅ΠΉΡ‡Π°Ρ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ, ΠΊΠ°ΠΊ это Π±Ρ‹Π»ΠΎ с Π΅Π³ΠΎ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠΌ DES. ΠΠ°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ институт стандартов ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ БША (Π°Π½Π³Π». National Institute of Standards and Technology, NIST) ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π» ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ AES 26 Π½ΠΎΡΠ±Ρ€Ρ 2001 Π³ΠΎΠ΄Π° послС пятилСтнСго ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°, Π² Ρ…ΠΎΠ΄Π΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π±Ρ‹Π»ΠΈ созданы ΠΈ ΠΎΡ†Π΅Π½Π΅Π½Ρ‹ 15 ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚ΡƒΡ€. 26 ΠΌΠ°Ρ 2002 Π³ΠΎΠ΄Π° AES Π±Ρ‹Π» объявлСн стандартом ΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΈΡ. По ΡΠΎΡΡ‚ΠΎΡΠ½ΠΈΡŽ Π½Π° 2009 Π³ΠΎΠ΄ AES являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ°ΠΌΡ‹Ρ… распространённых Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² симмСтричного ΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΈΡ.

Aes.py.

Sbox = (.

  • 0x63, 0x7C, 0×77, 0x7B, 0xF2, 0x6B, 0x6 °F, 0xC5, 0×30, 0×01, 0×67, 0x2B, 0xFE, 0xD7, 0xAB, 0×76,
  • 0xCA, 0×82, 0xC9, 0x7D, 0xFA, 0×59, 0×47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0×72, 0xC0,
  • 0xB7, 0xFD, 0×93, 0×26, 0×36, 0x3 °F, 0xF7, 0xCC, 0×34, 0xA5, 0xE5, 0xF1, 0×71, 0xD8, 0×31, 0×15,
  • 0x04, 0xC7, 0×23, 0xC3, 0×18, 0×96, 0×05, 0x9A, 0×07, 0×12, 0×80, 0xE2, 0xEB, 0×27, 0xB2, 0×75,
  • 0x09, 0×83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0×52, 0x3B, 0xD6, 0xB3, 0×29, 0xE3, 0x2 °F, 0×84,
  • 0x53, 0xD1, 0×00, 0xED, 0×20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0×39, 0x4A, 0x4C, 0×58, 0xCF,
  • 0xD0, 0xEF, 0xAA, 0xFB, 0×43, 0x4D, 0×33, 0×85, 0×45, 0xF9, 0×02, 0x7 °F, 0×50, 0x3C, 0x9 °F, 0xA8,
  • 0x51, 0xA3, 0×40, 0x8 °F, 0×92, 0x9D, 0×38, 0xF5, 0xBC, 0xB6, 0xDA, 0×21, 0×10, 0xFF, 0xF3, 0xD2,
  • 0xCD, 0x0C, 0×13, 0xEC, 0x5 °F, 0×97, 0×44, 0×17, 0xC4, 0xA7, 0x7E, 0x3D, 0×64, 0x5D, 0×19, 0×73,
  • 0x60, 0×81, 0x4 °F, 0xDC, 0×22, 0x2A, 0×90, 0×88, 0×46, 0xEE, 0xB8, 0×14, 0xDE, 0x5E, 0x0B, 0xDB,
  • 0xE0, 0×32, 0x3A, 0x0A, 0×49, 0×06, 0×24, 0x5C, 0xC2, 0xD3, 0xAC, 0×62, 0×91, 0×95, 0xE4, 0×79,
  • 0xE7, 0xC8, 0×37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0×56, 0xF4, 0xEA, 0×65, 0x7A, 0xAE, 0×08,
  • 0xBA, 0×78, 0×25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0×74, 0x1 °F, 0x4B, 0xBD, 0x8B, 0x8A,
  • 0x70, 0x3E, 0xB5, 0×66, 0×48, 0×03, 0xF6, 0x0E, 0×61, 0×35, 0×57, 0xB9, 0×86, 0xC1, 0x1D, 0x9E,
  • 0xE1, 0xF8, 0×98, 0×11, 0×69, 0xD9, 0x8E, 0×94, 0x9B, 0x1E, 0×87, 0xE9, 0xCE, 0×55, 0×28, 0xDF,
  • 0x8C, 0xA1, 0×89, 0x0D, 0xBF, 0xE6, 0×42, 0×68, 0×41, 0×99, 0x2D, 0x0 °F, 0xB0, 0×54, 0xBB, 0×16,

).

InvSbox = (.

  • 0x52, 0×09, 0x6A, 0xD5, 0×30, 0×36, 0xA5, 0×38, 0xBF, 0×40, 0xA3, 0x9E, 0×81, 0xF3, 0xD7, 0xFB,
  • 0x7C, 0xE3, 0×39, 0×82, 0x9B, 0x2 °F, 0xFF, 0×87, 0×34, 0x8E, 0×43, 0×44, 0xC4, 0xDE, 0xE9, 0xCB,
  • 0x54, 0x7B, 0×94, 0×32, 0xA6, 0xC2, 0×23, 0x3D, 0xEE, 0x4C, 0×95, 0x0B, 0×42, 0xFA, 0xC3, 0x4E,
  • 0x08, 0x2E, 0xA1, 0×66, 0×28, 0xD9, 0×24, 0xB2, 0×76, 0x5B, 0xA2, 0×49, 0x6D, 0x8B, 0xD1, 0×25,
  • 0x72, 0xF8, 0xF6, 0×64, 0×86, 0×68, 0×98, 0×16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0×65, 0xB6, 0×92,
  • 0x6C, 0×70, 0×48, 0×50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0×15, 0×46, 0×57, 0xA7, 0x8D, 0x9D, 0×84,
  • 0x90, 0xD8, 0xAB, 0×00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0×58, 0×05, 0xB8, 0xB3, 0×45, 0×06,
  • 0xD0, 0x2C, 0x1E, 0x8 °F, 0xCA, 0x3 °F, 0x0 °F, 0×02, 0xC1, 0xAF, 0xBD, 0×03, 0×01, 0×13, 0x8A, 0x6B,
  • 0x3A, 0×91, 0×11, 0×41, 0x4 °F, 0×67, 0xDC, 0xEA, 0×97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0×73,
  • 0x96, 0xAC, 0×74, 0×22, 0xE7, 0xAD, 0×35, 0×85, 0xE2, 0xF9, 0×37, 0xE8, 0x1C, 0×75, 0xDF, 0x6E,
  • 0x47, 0xF1, 0x1A, 0×71, 0x1D, 0×29, 0xC5, 0×89, 0x6 °F, 0xB7, 0×62, 0x0E, 0xAA, 0×18, 0xBE, 0x1B,
  • 0xFC, 0×56, 0x3E, 0x4B, 0xC6, 0xD2, 0×79, 0×20, 0x9A, 0xDB, 0xC0, 0xFE, 0×78, 0xCD, 0x5A, 0xF4,
  • 0x1 °F, 0xDD, 0xA8, 0×33, 0×88, 0×07, 0xC7, 0×31, 0xB1, 0×12, 0×10, 0×59, 0×27, 0×80, 0xEC, 0x5 °F,
  • 0x60, 0×51, 0x7 °F, 0xA9, 0×19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9 °F, 0×93, 0xC9, 0x9C, 0xEF,
  • 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0×83, 0×53, 0×99, 0×61,
  • 0x17, 0x2B, 0×04, 0x7E, 0xBA, 0×77, 0xD6, 0×26, 0xE1, 0×69, 0×14, 0×63, 0×55, 0×21, 0x0C, 0x7D,

).

xtime = lambda a: (((a << 1) ^ 0x1B) & 0xFF) if (a & 0×80) else (a << 1).

Rcon = (.

  • 0x00, 0×01, 0×02, 0×04, 0×08, 0×10, 0×20, 0×40,
  • 0x80, 0x1B, 0×36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A,
  • 0x2 °F, 0x5E, 0xBC, 0×63, 0xC6, 0×97, 0×35, 0x6A,
  • 0xD4, 0xB3, 0x7D, 0xFA, 0xEF, 0xC5, 0×91, 0×39,

).

def text2matrix (text):

matrix = [].

for i in range (16):

byte = (text >> (8 * (15 — i))) & 0xFF.

if i % 4 == 0:

matrix.append ([byte]).

else:

matrix[i / 4]. append (byte).

return matrix.

def matrix2text (matrix):

text = 0.

for i in range (4):

for j in range (4):

text |= (matrix[i][j] << (120 — 8 * (4 * i + j))).

return text.

class AES:

def __init__(self, master_key):

self.change_key (master_key).

def change_key (self, master_key):

self.round_keys = text2matrix (master_key).

# print self. round_keys.

for i in range (4, 4 * 11):

self.round_keys.append ([]).

if i % 4 == 0:

byte = self. round_keys[i — 4][0].

^ Sbox[self.round_keys[i — 1][1]].

^ Rcon[i / 4].

self.round_keys[i]. append (byte).

for j in range (1, 4):

byte = self. round_keys[i — 4][j].

^ Sbox[self.round_keys[i — 1][(j + 1) % 4]].

self.round_keys[i]. append (byte).

else:

for j in range (4):

byte = self. round_keys[i — 4][j].

^ self. round_keys[i — 1][j].

self.round_keys[i]. append (byte).

# print self. round_keys.

def encrypt (self, plaintext):

self.plain_state = text2matrix (plaintext).

self.__add_round_key (self.plain_state, self. round_keys[:4]).

for i in range (1, 10):

self.__round_encrypt (self.plain_state, self. round_keys[4 * i: 4 * (i + 1)]).

self.__sub_bytes (self.plain_state).

self.__shift_rows (self.plain_state).

self.__add_round_key (self.plain_state, self. round_keys[40:]).

return matrix2text (self.plain_state).

def decrypt (self, ciphertext):

self.cipher_state = text2matrix (ciphertext).

self.__add_round_key (self.cipher_state, self. round_keys[40:]).

self.__inv_shift_rows (self.cipher_state).

self.__inv_sub_bytes (self.cipher_state).

for i in range (9, 0, -1):

self.__round_decrypt (self.cipher_state, self. round_keys[4 * i: 4 * (i + 1)]).

self.__add_round_key (self.cipher_state, self. round_keys[:4]).

return matrix2text (self.cipher_state).

def __add_round_key (self, s, k):

for i in range (4):

for j in range (4):

s[i][j] ^= k[i][j].

def __round_encrypt (self, state_matrix, key_matrix):

self.__sub_bytes (state_matrix).

self.__shift_rows (state_matrix).

self.__mix_columns (state_matrix).

self.__add_round_key (state_matrix, key_matrix).

def __round_decrypt (self, state_matrix, key_matrix):

self.__add_round_key (state_matrix, key_matrix).

self.__inv_mix_columns (state_matrix).

self.__inv_shift_rows (state_matrix).

self.__inv_sub_bytes (state_matrix).

def __sub_bytes (self, s):

for i in range (4):

for j in range (4):

s[i][j] = Sbox[s[i][j]].

def __inv_sub_bytes (self, s):

for i in range (4):

for j in range (4):

s[i][j] = InvSbox[s[i][j]].

def __shift_rows (self, s):

s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[2][1], s[3][1], s[0][1].

s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2].

s[0][3], s[1][3], s[2][3], s[3][3] = s[3][3], s[0][3], s[1][3], s[2][3].

def __inv_shift_rows (self, s):

s[0][1], s[1][1], s[2][1], s[3][1] = s[3][1], s[0][1], s[1][1], s[2][1].

s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2].

s[0][3], s[1][3], s[2][3], s[3][3] = s[1][3], s[2][3], s[3][3], s[0][3].

def __mix_single_column (self, a):

# please see Sec 4.1.2 in The Design of Rijndael.

t = a[0] ^ a[1] ^ a[2] ^ a[3].

u = a[0].

a[0] ^= t ^ xtime (a[0] ^ a[1]).

a[1] ^= t ^ xtime (a[1] ^ a[2]).

a[2] ^= t ^ xtime (a[2] ^ a[3]).

a[3] ^= t ^ xtime (a[3] ^ u).

def __mix_columns (self, s):

for i in range (4):

self.__mix_single_column (s[i]).

def __inv_mix_columns (self, s):

# see Sec 4.1.3 in The Design of Rijndael.

for i in range (4):

u = xtime (xtime (s[i][0] ^ s[i][2])).

v = xtime (xtime (s[i][1] ^ s[i][3])).

s[i][0] ^= u.

s[i][1] ^= v.

s[i][2] ^= u.

s[i][3] ^= v.

self.__mix_columns (s).

test.py.

import unittest.

rom aes import AES.

class AES_TEST (unittest.TestCase):

def setUp (self):

master_key = 0×10 203 040 506 070 8080a0b0c0d0e0f.

self.AES = AES (master_key).

def test_encryption_decription (self):

laintext = 0×11 223 344 556 677 8889aabbccddeeff.

print «plain text =», hex (plaintext).

encrypted = self.AES.encrypt (plaintext).

print «encripted text =», hex (encrypted).

decrypted = self.AES.decrypt (encrypted).

print «decrypted text =», hex (decrypted).

if __name__ == '__main__':

unittest.main ().

РСализация. Π‘ΡƒΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΈ основныС Π²ΠΈΠ΄Ρ‹ ΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΈΡ.

RSA.py.

import random.

def gcd (a, b):

while b ≠ 0:

a, b = b, a % b.

return a.

def multiplicative_inverse (e, phi):

d = 0.

x1 = 0.

x2 = 1.

y1 = 1.

temp_phi = phi.

while e > 0:

temp1 = temp_phi/e.

temp2 = temp_phi — temp1 * e.

temp_phi = e.

e = temp2.

x = x2- temp1* x1.

y = d — temp1 * y1.

x2 = x1.

x1 = x.

d = y1.

y1 = y.

if temp_phi == 1:

return d + phi.

def is_prime (num):

if num == 2:

return True.

if num < 2 or num % 2 == 0:

return False.

for n in xrange (3, int (num**0.5)+2, 2):

if num % n == 0:

return False.

return True.

def generate_keypair (p, q):

if not (is_prime (p) and is_prime (q)):

raise ValueError ('Both numbers must be prime.').

elif p == q:

raise ValueError ('p and q cannot be equal').

#n = pq.

n = p * q.

phi = (p-1) * (q-1).

# Vybrat' tseloye chislo takoye, chto ye i fi (p) vzaimno prosty.

e = random. randrange (1, phi).

#ispol Algoritm Yevklida proverit', chto ye i fi (N) vzaimno prosty.

g = gcd (e, phi).

while g ≠ 1:

e = random. randrange (1, phi).

g = gcd (e, phi).

#use Rasshirennogo algoritma Yevklida dlya generirovaniya sekretnyy klyuch.

d = multiplicative_inverse (e, phi).

#Return zakrytogo i chastnogo pary klyuchey.

#Public Klyuch (ye, p) i zakrytyy klyuch (D, N).

return ((e, n), (d, n)).

def encrypt (pk, plaintext):

key, n = pk.

#Convert Kazhdoy bukvy v nezashifrovannom vide na nomera, osnovannogo na kharaktere, ispol’zuya ^ b?? mod m.

cipher = [(ord (char) ** key) % n for char in plaintext].

#Return massiv bytes.

return cipher.

def decrypt (pk, ciphertext):

#Unpack Klyuch v yeye komponentov.

key, n = pk.

#Generate Otkrytyy tekst na osnove zashifrovannogo.

#teksta i klyucha, ispol’zuya ^ b?? mod m.

plain = [chr ((char ** key) % n) for char in ciphertext].

#Return Massiv baytov v vide stroki.

return ''.join (plain).

if __name__ == '__main__':

'''.

Detect if the script is being run directly by the user.

'''.

print «RSA Encrypter/ Decrypter» .

p = int (raw_input («Enter a prime number (17, 19, 23, etc): «)).

q = int (raw_input («Enter another prime number (Not one you entered above): «)).

print «Generating your public/private keypairs now.. .» .

public, private = generate_keypair (p, q).

print «Your public key is «, public ,» and your private key is «, private.

message = raw_input («Enter a message to encrypt with your private key: «).

encrypted_msg = encrypt (private, message).

print «Your encrypted message is: «.

print ''.join (map (lambda x: str (x), encrypted_msg)).

print «Decrypting message with public key „, public ,“.. .» .

print «Your message is:» .

print decrypt (public, encrypted_msg).

РСализация. Π‘ΡƒΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΈ основныС Π²ΠΈΠ΄Ρ‹ ΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΈΡ.
ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ