Методы определения стабильности лекарственных средств
Метод: это метод «ускоренного старения», он позволяет за 15−115 дней при 40−70С установить срок годности лекарственного средства. Этот метод основан на изучении кинетики реакций разложения лекарственных веществ. Определение ведут в климатических шкафах автоматически создающих заданные условия хранения: температуру, влажность, свет. Исследуя физические и химические изменения вещества, оценивают… Читать ещё >
Методы определения стабильности лекарственных средств (реферат, курсовая, диплом, контрольная)
Существует два метода определения стабильности: классический метод и метод «ускоренного старения» .
- 1 метод: лекарственное средство в течение срока годности хранят с соблюдением требуемых условий и анализируют по ФС каждые полгода или год в зависимости от срока годности. Затем дают заключение об оптимальном сроке хранения. Это длительный метод.
- 2 метод: это метод «ускоренного старения», он позволяет за 15−115 дней при 40−70С установить срок годности лекарственного средства. Этот метод основан на изучении кинетики реакций разложения лекарственных веществ. Определение ведут в климатических шкафах автоматически создающих заданные условия хранения: температуру, влажность, свет. Исследуя физические и химические изменения вещества, оценивают его стабильность.
Процессы, происходящие при хранении лекарств
В процессе хранения могут происходить как химические, так и физические изменения лекарственного вещества. При этом постепенно теряется фармакологическая активность или появляются примеси, изменяющие фармакологическую активность. Физические факторы, влияющие на стабильность лекарств — это температура, свет и влажность.
Велико влияние температурного режима на стабильность лекарственных веществ, так как с повышением температуры повышается скорость химической реакции и ускоряется разложение лекарственного вещества. Эта взаимосвязь лежит в основе метода «ускоренного старения». Например: если температурный коэффициент равен 2, то скорость реакции при нагревании реагирующих веществ от 20 оС до 100 оС возрастает в 256 раз.
Пониженные температуры по-разному влияют на лекарственные средства. Например: ампульные растворы 40%-ной глюкозы, 25%-ного раствора магния сульфата, 10%-ного кальция хлорида сохраняют качества при температуре даже -43 оС. В то же время, бактерийные препараты разлагаются при температуре ниже 0 оС, а растворы антибиотиков разрушаются в течение нескольких дней при температуре от 6 до 20 оС.
Воздействие света ускоряет процесс разложения лекарственных веществ. Сухие кристаллические вещества более устойчивы к свету, чем растворы. Фенолы, амины, сульфаниламиды изменяют окраску и форму кристаллов при хранении на свету. Также есть лекарственные вещества, которые на свету сохраняются лучше, чем в темноте. Например, соли железа (II) стабильны и повышают устойчивость к свету других лекарственных веществ.
Влажность воздуха — это фактор активно снижающий стабильность лекарственных веществ. Пониженная влажность воздуха приводит к уменьшению 3 содержания кристаллизационной воды, и как следствие к повышению концентрации препарата и изменению его физических свойств (формы кристаллов, растворимости). Повышенная влажность воздуха влияет на физические свойства гигроскопичных лекарственных веществ (изменяются внешний вид, окраска, концентрация). Образующиеся продукты разложения снижают фармакологическую активность.
Химические процессы, происходящие при хранении лекарств, разнообразны и тесно связаны с физическими факторами.
Гидролиз — химический процесс, происходящий при хранении сложных эфиров, амидов, лактонов, лактамов, имидов, уретанов, уреидов. Некоторые из них гидролизуются даже в кристаллическом виде при повышенной температуре и влажности воздуха. Следы солей металлов (например: меди, цинка, железа) в этом случае катализируют процесс. На скорость гидролиза растворов лекарственных веществ значительно влияют растворители.
Обычно растворителем служит вода, а в ней повышается возможность гидролиза. Но при использовании воды в сочетании с пропиленгликолем константа скорости гидролиза заметно снижается. Константа скорости гидролиза зависит от рН раствора.
Можно установить с помощью буферных растворов интервал значений рН среды, при котором константа скорости гидролиза имеет минимальную величину. Ингибируют процессы гидролиза также растворы хлористоводородной кислоты и растворы щелочи. Константа зависит также от ионной силы раствора и диэлектрической постоянной. Поэтому в качестве стабилизатора используют натрия хлорид и другие соли. Процесс гидролиза также ингибирует добавление поверхностно-активных веществ (ПАВ) — например, лаурилсульфат натрия. При этом в 10−20 раз повышается устойчивость ряда сложных эфиров.
Окисление — это процесс также вызывающий разложение лекарственных веществ. Некоторые вещества, например: фенолы, окисляются в кристаллическом состоянии. При растворении процесс окисления активируется. Особенно легко окисляются вещества, проявляющие восстановительные свойства (альдегиды, гидразиды, производные фенотиазина).
Признаками окисления являются изменения окраски или появление опалесценции. Основным фактором, вызывающим окисление является кислород воздуха. Активизируют процесс окисления повышенная температура, влажность, ультрафиолетовое облучение. Примеси тяжелых металлов, например: железа, меди, свинца, никеля являются 4 катализаторами окисления.
Изомеризация лекарственных средств также может происходить при хранении. Образование рацематов является причиной снижения фармакологического действия лекарственных веществ, обладающих оптической активностью.
Оптические изомеры отличаются друг от друга по фармакологической активности иногда в несколько раз. Например: l — изомер адреналина в 15−20 раз активнее d — изомера. В растворе адреналина постепенно происходит процесс образования рацематов — смеси обоих изомеров и активность вещества заметно снижается. Таким образом, для нестабильных лекарственных средств надо разрабатывать методы их стабилизации. Изучив механизм процесса разложения можно предложить пути стабилизации лекарственного вещества.