Помощь в написании студенческих работ
Антистрессовый сервис

После Эйнштейна. 
Эволюция представлений о пространстве и времени

РефератПомощь в написанииУзнать стоимостьмоей работы

На основе квантовых уравнений Эйнштейна был выполнен численный расчет процесса в пространственно однородном изотропном случае. Был рассчитан пространственно-временной континуум вне планковского режима и на «другой» стороне Большого Взрыва. На так называемой ветви «предбольшого» взрыва. Оказалось, что этот сжимающийся континуум тоже хорошо описывается Общей Теорией Относительности. Однако когда… Читать ещё >

После Эйнштейна. Эволюция представлений о пространстве и времени (реферат, курсовая, диплом, контрольная)

«Действительно, новые области нашего опыта будут всегда приводить к кристаллизации новой системы научных знаний и законов. Мы, сталкивающиеся с новыми чрезвычайными интеллектуальными вызовами, постоянно следуем примеру Колумба, который обладал смелостью оставить известный мир в почти безумной надежде на открытие земли на том конце моря»

В.Гейзенберг «Последние изменения в точных науках»

Общая Теория Относительности — лучшая теория тяготения и структуры пространства-времени, которую мы имеем на сегодняшний день. Она может описывать внушительное множество явлений в пределах от великого космического расширения до функционирования всемирной системы позиционирования на Земле. Но эта теория не полна, поскольку она игнорирует квантовые эффекты, управляющие субатомным миром. Более того, эти две теории принципиально различны. Мир Общей Теории Относительности обладает геометрической точностью, он детерминирован. В отличие от этого мира, мир квантовой механики подвержен сомнениям, он является вероятностным. Физики поддерживают это счастливое, почти шизофреническое состояние, используя Общую Теорию Относительности для описания крупномасштабных явлений в астрономии и космологии, и квантовую теорию для описания свойств атомов и элементарных частиц. Заметим, что это довольно жизнеспособная стратегия, поскольку эти два мира встречаются очень редко. Но, тем не менее, эта стратегия, с концептуальной точки зрения, весьма неудовлетворительна. Все в нашем физическом опыте говорит нам, что должна быть более великая, более полная теория, из которой и Общая Теория Относительности и квантовая теория должны возникать, как частные, ограниченные случаи. На место такой теории претендует квантовая теория гравитации. Это насущная проблема, абсолютно логично возникающая вслед за работами Эйнштейна. Вопреки общепризнанной точке зрения, сформировавшейся вследствие более поздних замечаний Эйнштейна по поводу неполноты квантовой механики, он четко знал об этом ограничении Общей Теории Относительности. Замечательно, но Эйнштейн указывал на необходимость создания квантовой теории гравитации еще 1916 году! В своей статье, опубликованной в Preussische Akademie Sitzungsberichte, он писал:

— Однако, вследствие внутриатомного движения электронов, атомы должны были излучать не только электромагнитную, но так же и гравитационную энергию, но только в крошечных количествах. Поскольку все едино в Природе, кажется, что квантовая теория должна была бы изменить не только электродинамику Максвелла, но так же и новую теорию тяготения.

В Большом Взрыве и в сингулярности черной дыры, миры очень большого и очень маленького встречаются. Поэтому, хоть и в настоящее время эта встреча является для нас тайной за семью печатями, но именно она является теми воротами, в которые мы можем выйти за пределы Общей теории Относительности. В настоящее время считается, что реальная физика не может останавливаться на пороге горизонта событий. Скорее всего, это Общая Теория Относительности терпит там неудачу. Понятно, что теоретическая физика должна в очередной раз пересмотреть наше понимание пространства-времени. Мы нуждаемся в новом языке, способном заглянуть за эти ворота непознанного.

Создание этого языка расценивается как самый серьезный и самый главный вызов, перед которым стоит фундаментальная физика сегодня. В этом направлении сегодня существует несколько подходов. Один из них связан со струнной теорией, но мы остановимся на понятии квантовой петлевой гравитации (loop quantum gravity). Это подход к построению квантовой теории, возникший более 20 лет назад в работах индийского физика Абхая Аштекара (Abhay Ashtekar) и, как считается в данный момент, являющийся альтернативой струнному подходу в решении этой проблемы.

В Общей Теории Относительности пространство-время является континуумом. Основная идея, заложенная в основу квантовой петлевой гравитации, заключается в утверждении, что этот континуум является только приближением, которое нарушается на, так называемых, Планковских расстояниях. Планковская длина — это уникальная величина, которая может быть построена из гравитационной постоянной, постоянной Планка, характерной для квантовой физики и скорости света. Эта длина равна 3.10−33 см., что на 20 порядков меньше радиуса протона. Поэтому даже на самых мощных ускорителях частиц на Земле, можно без опаски работать с пространственно-временным континуумом. Но эта ситуация резко меняется, в частности, вблизи Большого Взрыва и в черных дырах. В подобных случаях нужно использовать квантованное пространство-время, квантом которого является петлевой квант гравитации.

Попробуем понять, что такое квант пространства-времени. Обратимся к листу бумаги, лежащему перед нами. Для нас он кажется сплошным двумерным континуумом. Но при этом мы знаем, что он состоит из атомов. Этот лист имеет дискретную структуру, которая становится просто декларацией, если мы не смотрим на него, например, с помощью электронного микроскопа. Теперь дальше. Эйнштейн утверждал, что геометрия пространства-времени не менее физична, чем материя. А поэтому, она тоже должна иметь «атомарное» строение. Это предположение позволило в середине 90-х годов объединить принципы Общей Теории Относительности с квантовой физикой и создать квантовую геометрию. Так же как непрерывная геометрия дает математический язык для формулировки Общей Теории Относительности, так и квантовая геометрия дает математический инструмент и порождает новые физические понятия для описания квантовых космических времен.

В квантовой геометрии, первичными являются фундаментальные замкнутые в кольцо геометрические возбуждения, являющиеся одномерными. Обычная ткань кажется гладким двумерным континуумом, но в ее основе лежат одномерные нити. Аналогичное предположение можно выдвинуть и относительно континуума более высокой размерности. Находясь на чисто интуитивном уровне, можно рассматривать фундаментальные геометрические возбуждения, как квантовые нити, которые можно ткать, создавая саму ткань пространства-времени. Что возникает, когда мы находимся вблизи пространственно-временной сингулярности. Понятно, что в этой области само понятие пространственно-временного континуума просто не применимо. Квантовые колебания в этой области настолько огромны, что квантовые нити просто не могут быть «вморожены» в пространственно-временной континуум. Ткань пространства-времени разорвана. Физика пространственно-временного континуума «закрепляется» на остатках пространственно-временной ткани. При этом, становится понятным, что сами нити, составляющие основу ткани мироздания, приобретают особое значение. Используя квантовое уравнение Эйнштейна все еще можно изучать физику, описывать процессы, происходящие в квантовом мире. Но тут есть важный момент. Дело в том, что в отсутствие пространственно-временного континуума многие из обычно используемых в физике понятий становятся просто не корректными. Необходимо вводить в рассмотрение новые понятия, заменяющие или дополняющие отброшенные, а для этого нужна новая физическая интуиция. И в таких драматических условиях прокладывается путь для квантовых уравнений Эйнштейна.

На основе этих уравнений стало возможным уточнить некоторые детали Большого Взрыва. При этом оказалось, что дифференциальные уравнения Эйнштейна, написанные для пространственно-временного континуума, должны быть заменены дифференциальными уравнениями, записанными на языке дискретной структуры квантовой геометрии. Проблема заключается в том, что стандартные уравнения Эйнштейна, превосходно описывающие классическое пространство-время, совершенно перестают работать при приближении к Большому Взрыву, когда плотность материи приближается к планковской плотности, равной 1094 г/см3 по порядку величины. В квантовой геометрии кривизна пространства-времени в планковском режиме становится очень большой, но конечной. Удивительно, но эффекты квантовой геометрии порождают новую расталкивающую силу, которая является настолько большой, что с легкостью преодолевает силу гравитации. Общая Теория Относительности перестает работать. Вселенная расширяется. Квантовые уравнения Эйнштейна позволяют развить квантовую геометрию и построить правильное описание материи в режиме Планка, не оставляющего места такому нефизичному понятию, как сингулярность. На место Большого Взрыва приходит сильный квантовый удар.

Расширение пространства-времени космологического петлевого кванта.

Рис. 4 Расширение пространства-времени космологического петлевого кванта (представление художника). Время на рисунке снова бежит вертикально. Общая теория Относительности описывает только верхнюю половину этого рисунка, соответствующую Большому Взрыву. Квантовые уравнения Эйнштейна расширяют это пространство-время на прошлое Большого Взрыва. Сходящаяся ветвь «предбольшого взрыва» связана с расширяющейся ветвью «постбольшого взрыва». Полоса в середине соответствует «квантовому мосту», соединяющему эти ветви и обеспечивающему детерминированное развитие процесса в жестком планковском режиме.

На основе квантовых уравнений Эйнштейна был выполнен численный расчет процесса в пространственно однородном изотропном случае. Был рассчитан пространственно-временной континуум вне планковского режима и на «другой» стороне Большого Взрыва. На так называемой ветви «предбольшого» взрыва. Оказалось, что этот сжимающийся континуум тоже хорошо описывается Общей Теорией Относительности. Однако когда плотность материи становится равной 0,8 планковской плотности, отталкивающая сила, порожденная квантовой геометрией, бывшая незначительной ранее, становится доминирующей. И вместо того, что бы коллапсировать в точку, Вселенная испытывает сильный квантовый удар, переводящий процесс в расширяющуюся ветвь «постбольшого» взрыва, в которой мы сейчас живем. Классическая Общая Теория Относительности очень хорошо описывает обе ветви, кроме случая, когда процесс происходит в планковском режиме. В этом режиме квантовый мост связывает обе эти ветви и этим мостом управляет квантовая геометрия.

Возникновение отталкивающей силы квантовой природы в момент квантового удара имеет любопытную аналогию с возникновением отталкивающей силы в процессе умирания звезды. В случае, когда отталкивающая сила начинает преобладать над гравитационной, когда ядро звезды достигает критической плотности 6×1016 г/см3, она может предотвратить коллапс звезды в черную дыру и превратить ее в устойчивую нейтронную звезду. Эта отталкивающая сила порождается принципом запрета Паули и напрямую связана с квантовой природой происходящего процесса. Однако, если масса умирающей звезды оказывается большей, чем 5 масс Солнца, гравитация преодолевает эту силу и звезда коллапсирует в черную дыру. Возникает сингулярность. Отталкивающая сила, порождаемая квантовой геометрией, входит в игру при более высоких плотностях материи, но при этом она преодолевает гравитационное сжатие не зависимо от того, насколько массивным было разрушающееся тело. Действительно, ведь это тело может быть целой Вселенной! Привлекательность квантовой петлевой гравитации заключается в том, что, предсказывая этот эффект, она предотвращает образование сингулярностей в реальном мире, расширяя «жизнь» нашего пространства-времени посредством квантового моста.

Благодаря Эйнштейну в 20-м столетии понимание пространства и времени подверглось кардинальному пересмотру. Геометрия пространственно-временного континуума стала столь же физичной, насколько физичной была до этого материя. Это понимание открыло новые перспективы в космологии и астрономии. Но в нашем столетии нас ожидают не менее кардинальные перемены в понимании пространства-времени. Благодаря квантовой геометрии Большой Взрыв и черные дыры для физики больше не окружены границами недоступности. Физическое квантовое пространство-время является намного большим, чем Общая Теория Относительности. Существование связи между этими теориями позволяет говорить о непротиворечивости квантовой петлевой гравитации. Эта непротиворечивость позволяет нам делать вполне определенные выводы о физике возникновения нашей Вселенной и о физике черных дыр. Еще более захватывающие возможности могут открываться в результате дальнейшего развития этой теории.

Источник: Abhay Ashtekar Space and Time: From Antiquity to Einstein and Beyond. — Science Journal v.23, PennState, Summer 2005.

Показать весь текст
Заполнить форму текущей работой