Выбор метода очистки
При определении области предположительного использования различных способов очистки для газов, в которых соотношение СО: Н2S более 3−3,5, следует использовать методы, основанные на физической абсорбции Н2S. При выборе того или иного поглотителя необходимо учитывать не только способность растворять углеводородные газы, летучесть, дефицитность, селективность по отношению к Н2S, емкость по нему… Читать ещё >
Выбор метода очистки (реферат, курсовая, диплом, контрольная)
При выборе метода очистки окончательным критерием является величина приведенных затрат, зависящих в основном от энергетических и капитальных затрат. Однако такой выбор во многих случаях труден, что объясняется влиянием на экономические показатели трех групп факторов:
- 1) внешние технологические параметры процесса /8/ - состав, давление и температура очищаемого газа, требуемая степень очистки, параметры энергоресурсов (давление пара, наличие отбросного тепла), возможность использования вторичных энергоресурсов и т. д., то есть факторы, независящие от аппаратурно-технологического оформления процесса очистки;
- 2) внутренние параметры процесса — расход тепла, электроэнергии, растворителя, отходы, тип и вес аппаратуры, а также их зависимость от параметров исходного газа и степени очистки, то есть параметры, на которые влияет аппаратурно-технологическое оформление процесса очистки.
- 3) экономические факторы — цены на энергоресурсы, сырье, отходы, аппаратуру, а также дефицитность каких-либо видов сырья (растворителей и др.) и энергии.
Таким образом, выбор процесса должен осуществляться только после детального технологического, термодинамического и технико-экономического анализа.
Особенности газоочистных и газоперерабатывающих установок выдвигают ряд требований к их проектированию:
большой диапазон устойчивой работы (отношение максимально и минимально допустимых нагрузок по газу и жидкости) оборудования;
получение кондиционной товарной продукции при изменении параметров сырья в широком интервале;
возможность использования оборудования в широком интервале давления и температуры. Это важно как ввиду влияния температуры окружающей среды на параметры процесса, так и из-за необходимости компенсации влияния изменения одного параметра (Р или t) на показатели процесса, за счет повышения или понижения значения другого параметра.
При определении области предположительного использования различных способов очистки для газов, в которых соотношение СО: Н2S более 3−3,5, следует использовать методы, основанные на физической абсорбции Н2S. При выборе того или иного поглотителя необходимо учитывать не только способность растворять углеводородные газы, летучесть, дефицитность, селективность по отношению к Н2S, емкость по нему, упругость паров сернистых соединений в конкретном поглотителе. При минимальных теплотах растворения можно достичь максимальных соотношений Н2S: СО2, при которых энергетически целесообразно проводить процесс очистки физическими поглотителями. Согласно физико-химической природе поглотителей, с уменьшением теплоты растворения увеличивается упругость паров увлекаемого компонента над раствором, что видно из следующей термодинамической зависимости:
(2.1).
где К — константа Генри газа в растворителе;
А — коэффициент, зависящий от давления и температуры;
?Н — теплота растворения газа;
R — универсальная газовая постоянная;
Т — температура растворения.
Уравнение (1) показывает, что с увеличением теплоты растворения уменьшается константа Генри (растет растворимость), а это в конечном итоге приводит к повышению степени очистки или понижению расхода абсорбента. В связи с этим не во всех случаях целесообразно стремиться к выбору абсорбента с минимальной теплотой растворения сернистых соединений.
Необходимо учитывать селективность поглотителя. Это связано с тем, что соотношение СО2: Н2S в исходном газе характеризует кислые газы регенерации. Поэтому чем выше селективность, тем большую область охватывают методы очистки физической абсорбцией. Следовательно, при выборе физического поглотителя необходимо решать оптимизационную задачу с учетом перечисленных показателей.
Результаты опытных работ показали, что такие нежелательные компоненты, как Н2S и СО2, органические соединения, присутствующие в составе природного газа Карачаганакского месторождения, хорошо поглощаются метанолом, особенно при низких температурах /8, 9, 10/.
Предлагаемая в данной работе технология очистки газа основана на процессе одновременного удаления кислых компонентов. Как сказано выше, эти вещества хорошо абсорбируются метанолом, особенно при низких температурах и повышенных давлениях, а при понижении давления легко удаляются из насыщенного раствора.
Зависимость растворения СО2 и Н2S в метаноле от температуры при различных давлениях приведена на рисунках 4 и 5, из которых видно, что растворимость Н2S в метаноле выше растворимости СО2 в нем. Это позволяет осуществлять селективное их разделение. Наличие в метаноле СО2 снижает растворимость Н2S на 10−15%. Растворимость органических сернистых соединений в метаноле также велика. Расход тепла на процесс весьма невелик, так как поглотительный растворитель охлаждается вследствие снижения давления на ступени регенерации, а поступающий газ охлаждается с широким использованием теплообмена с отходящими потоками очищенного газа и извлекаемых компонентов газа.
К основным преимуществами этого процесса следует отнести:
а) значительное снижение расхода энергии по сравнению с другими методами очистки (например, абсорбция этаноламинами); б) высокая степень очистки от сернистых соединений в присутствии СО2; в) одновременная осушка от влаги и очистка от тяжелых углеводородов.
Наряду с положительными качествами предлагаемому процессу присущи недостатки:
- а) сложность технологической схемы;
- б) сравнительно большие потери метанола с очищаемым газом;
- в) нежелательно высокая растворимость углеводородов в метаноле, особенно при низких температурах.
1 — РН2S = 53 кПа; 2 — РН2S = 40 кПа; 3 — РН2S = 26,7 кПа; 4 — РН2S = 17,3 кПа; 6 — РН2S = 6,67 кПа Рисунок 1. Влияние температуры растворимость Н2S в метаноле.
1 — при минус 26оС; 2 — при минус 36 оС; 3 — при минус 45 оС; 4 — при мину 60 оС.
Рисунок 2. Изотермы растворимости СО2 в метаноле.