Расчет оптимальной системы резервирования
Горячее резервирование — резервирование с постоянно включенным резервом, а холодное — резервирование с замещением. Функциональная схема САР при m=1 представлена на рис. 2.1. Функциональная схема САР при m=2 представлена на рис. 2.2. Определение времени наработки на отказ системы Тс, исходной стоимости системы С0, значение целевой функции в случае поэлементного «горячего» резервирования 2-х… Читать ещё >
Расчет оптимальной системы резервирования (реферат, курсовая, диплом, контрольная)
Министерство образования и науки РФ ГОУ ВПО «Норильский индустриальный институт»
Кафедра ЭиАТПиП
Расчетная работа
по дисциплине: «Диагностика и надежность автоматизированных систем»
Тема: «Расчет оптимальной системы резервирования»
Вариант 1
Выполнил: ст. гр. АПм — 06 Арламов А.С.
Проверил: ассистент Ботвиньев К.М.
Норильск 2010
Постановка задачи
Система автоматического регулирования состоит из 5-ти элементов, включенных последовательно (рис. 1).
Рис. 1. Система автоматического регулирования В табл. 1. заданы значения интенсивности отказа л и стоимость каждого элемента С системы.
Таблица 1
Интенсивности отказа | Стоимость С•10?6 | ||
л1 | 0.02 | ||
л2 | 0.14 | 0,05 | |
л3 | 0.3 | 0,6 | |
л4 | 0.11 | 0,11 | |
л5 | 0.6 | 0,2 | |
?л = 1,68 | ?С = 2,96 | ||
Необходимо выполнить расчеты
1. Определить время наработки на отказ системы Тс, исходную стоимость системы С0, значение целевой функции .
2. Определить время наработки на отказ системы Тс, исходную стоимость системы С0, значение целевой функции E при полном «холодном» резервировании кратности
m = 1 и m = 2.
3. Определить время наработки на отказ системы Тс, исходную стоимость системы С0, значение целевой функции при полном «горячем» резервировании кратности
m = 1 и m = 2.
4. Определить время наработки на отказ системы Тс, исходную стоимость системы С0, значение целевой функции в случае поэлементного «горячего» резервирования 2-х элементов системы с кратностью m = 1 и m = 2.
5. Определить оптимальное резервирование из критерия Eopt = min E.
Выполнение работы
1. Определение времени наработки на отказ системы Тс, исходной стоимости системы С0, значение целевой функции .
автоматическое регулирование система резервирование
2. Определение времени наработки на отказ системы Тс, исходной стоимости системы С0, значение целевой функции E при полном «холодном» резервировании кратности m=1 и m=2.
Горячее резервирование — резервирование с постоянно включенным резервом, а холодное — резервирование с замещением. Функциональная схема САР при m=1 представлена на рис. 2.1. Функциональная схема САР при m=2 представлена на рис. 2.2.
Для определения числа резервных элементов системы используем следующую формулу:
Рис. 2.1.САР при «холодном» общем резервировании кратности m = 1
Рис. 2.2. САР при «холодном» общем резервировании кратности m = 2
3. Определение времени наработки на отказ системы Тс, исходной стоимости системы С0, значение целевой функции при полном «горячем» резервировании кратности m=1 и m=2.
Рис. 2.3. Функциональная схема САР при «горячем» общем резервировании кратности m=1
Рис. 2.4. Функциональная схема САР при «горячем» общем резервировании кратности m=2
4. Определение времени наработки на отказ системы Тс, исходной стоимости системы С0, значение целевой функции в случае поэлементного «горячего» резервирования 2-х элементов системы с кратностью m=1 и m=2.
Рис. 2.5. Функциональная схема САР в случае поэлементного «горячего» резервирования первых 2-х элементов при кратности m=1
Рис. 2.6. Функциональная схема САР в случае поэлементного «горячего» резервирования первых 2-х элементов при кратности m=2
5. Определяем оптимальное резервирование из критерия Eopt = min E.
Вид резервирования | E | |
Без резервирования | 410-6 | |
«Холодное» при m = 1 | 410-6 | |
«Холодное» при m = 2 | 410-6 | |
«Горячее» при m = 1 | 5.3310-6 | |
«Горячее» при m = 2 | 6.5810-6 | |
Поэлементное «горячее» резервирование 2-х элементов при m = 1 | 6.2610-6 | |
Поэлементное «горячее» резервирование 2-х элементов при m = 2 | 8.510-6 | |
Вывод: оптимальным резервированием является холодное, при котором достигается минимальное значение целевой функции Е = 4•10?6.