Разработать лабораторный стенд для испытания устройств защиты судовых генераторов
Триггер VT1, VT2 представляет собой, также как и в схеме устройства УВР, двухкаскадный усилитель постоянного тока, охваченный положительной обратной связью. последняя осуществляется включением общего резистора R7 в цепь эммитеров транзисторов, благодаря чему создается релейный эффект. При отсутствии перегрузки генератора транзистор закрыт, так как ток через его переход эммитер — база возникает… Читать ещё >
Разработать лабораторный стенд для испытания устройств защиты судовых генераторов (реферат, курсовая, диплом, контрольная)
Аннотация
В данном дипломном проекте был разработан лабораторный стенд для испытания устройств защиты судовых генераторов, а именно: устройства распределения мощности, устройства включения резерва, устройства токовой защиты, реле мощности РМ-53, реле обратного тока РОТ-53,устройства разгрузки генератора.
Была разработана электрическая принципиальная схема стенда на основе анализа работы устройств защиты. Расчет и выбор элементов произведен в соответствии с принципиальной схемой.
Так же была разработана конструкция стенда на основе наиболее удобного пользования приборами при проведении испытаний, составлены алгоритмы проведения испытаний.
В разделе «экономическое обоснование проекта» рассчитана стоимость стенда, обоснована целесообразность использования данного стенда в учебном процессе.
В разделе «Безопасность и экологичность проекта», произведен анализ соответствия данного стенда критериям экологичности и безопасности, дана инструкция по безопасной эксплуатации стенда.
The summary
In the given degree project the laboratory stand for test of devices of protection of ship generators namely was developed: devices of distribution of capacity, device of inclusion of a reserve, device токовой of protection, relay of capacity RS-53, relay of a return current RRC-53, device of unloading of the generator.
The electrical basic circuit of the stand was developed on the basis of the analysis of work of devices of protection. The account and choice of elements is made according to the basic circuit.
As the design of the stand on a basis of the most convenient usage by devices was developed at realization of tests, the algorithms of realization of tests are made.
In section «an economic substantiation of the project «cost of the stand is designed, the expediency of use of the given stand in educational process is reasonable.
In section «Safety and ecology of the project «, the analysis of conformity of the given stand to criteria ecology and safety is made, the instruction on safe operation of the stand is given.
1. Обоснование дипломного проекта
1.1. Описание лабораторного стенда для испытания устройств защиты судовых генераторов
1.2. Описание и технические данные устройств зашиты судовых генераторов
1.3. Разработка функциональной схемы стенда
1.4. Разработка принципиальной электрической схемы стенда
2. Расчет и выбор электрооборудования стенда для испытания устройств защиты судовых генераторов
2.1. Требования правил Регистра к выбору электрооборудования
2.2. Расчет и выбор элементов блока изменения напряжения
2.3. Расчет и выбор элементов блока изменения тока
2.4. Выбор блока питания U — 24 В
2.5. Расчет и выбор элементов релейно-индикационного блока
2.6. Расчет и выбор элементов блока индикации питания стенда
2.7. Расчет надежности
2.8. Разработка конструкции стенда
2.9. Тепловой расчет
2.10. Инструкция по эксплуатации
3. Разработка алгоритмов проведения испытаний устройств защиты судовых генераторов
3.1. Введение
3.2 Алгоритмы проведения испытаний устройств защиты судовых генераторов
3.3.Заключение
4. Безопасность и экологичность проекта
4.1. Введение
4.2. Анализ на соответствие требованиям безопасности и экологичности
4.3. Указания для разработки требований к проектируемому объекту для повышения ею устойчивости
4.4. Защита от вредных, опасных и аварийных факторов
4.5. Обеспечение экологической безопасности
4.6. Обеспечение повышенной устойчивости проектируемого объекта
4.7. Ответственность за нарушение инструкции
4.8. Заключение
4.9. Список литературы
5. Экономическое обоснование проекта
5.1. Введение
5.2. Определение оптовой цены испытательного стенда
5.3. Заключение
6. Порядок контроля и приемки
6.1. Подача питания
6.2. Проведение испытания стенда
6.3. Составление акта о приемке
7. Заключение
8. Список использованных источников
9. Приложения
1.1. Описание лабораторного стенда для испытания устройств защиты судовых генераторов
Создание судов транспортного и промыслового флотов различных модификаций с широкой электрификацией технических средств привело к созданию ряда унифицированных функциональных систем и средств автоматизации электроэнергетических установок. Речь идет о системах и устройствах, предназначенных для распределения реактивных и активных нагрузок, программирования загрузки судовой электростанции, контроля и сигнализации. Внедрение новых средств автоматизации влечет за собой надобность в специалистах, имеющих обслуживать эти средства. Подготовкой специалистов эксплуатационников занимается кафедра «Электрооборудования и автоматики судов». Поэтому необходимо повышать качество обучения студентов внедрением учебной программы, включающую в себя изучение новых средств автоматизации, расширить лабораторную базу кафедры. С этой целью и был разработан лабораторный стенд для испытания устройств защиты судовых генераторов.
Стенд представляет из себя устройство, позволяющее имитировать различные режимы работы судовых генераторов при повышении, понижении нагрузки исчезновению напряжения и т. д.
На стенде имеется контрольно-измерительная аппаратура, позволяющая контролировать ток нагрузки, и напряжение генератора и косинус угла между током и напряжением генератора.
В частности, лабораторный стенд был разработан для испытания УРГ — устройства разгрузки генератора, УРМ — устройства распределения мощности, УТЗ — устройства токовой защиты, РМ-53 — реле мощности, РОТ-53 — реле обратного тока, УВР — устройства включения резерва.
Стенд обеспечивает устройства необходимым для работы питанием, позволяет контролировать время срабатывания устройств при появлении запредельных параметров генератора. Конструкция стенда (см. Сборочный чертеж) разработана из условия наиболее удобного проведения испытания. У стенда имеется полка, на которую можно установить испытуемые приборы, клеммники с помощью которых можно подсоединить испытуемый прибор. Около каждого элемента имеются пояснительные таблички, позволяющие легко ориентировать в приборах.
1.2. Описание и технические данные устройств защиты судовых генераторов
1.2.1 Устройство распределения активной мощности типа УРМ-35
Устройство типа УРМ-35 предназначено для автоматического пропорционального распределения активной нагрузки между параллельно работающими синхронными генераторами судовых электроэнергетических установок переменного тока частотой 50 Гц. Устройство предназначено для работы в помещениях электростанций. Использование устройства УРМ-35 в составе электроэнергетической установки обеспечивает в статистических режимах точность распределения активных нагрузок между параллельно работающими генераторами в пределах 5% при изменении суммарной нагрузки системы от 20 до 110% номинальной и изменении коэффициента мощности в пределах от 1,0 до 0,7.
Необходимым условием применения устройства УРМ-35 является возможность параллельного перемещения скоростных характеристик агрегата путем перестройки регуляторов частоты первичного двигателя с помощью серводвигателя в пределах от ± 10% номинального значения. Соотношения мощностей параллельно работающих генераторов при использовании устройств УРМ-35 не должно быть более чем 1: 5. устройство содержит следующие блоки: датчик активного тока УРМ-35Д, формирователь импульсов УРМ-35Ф, усилитель УРМ-35У.
Блоки УРМ-35У имеют пять модификаций и предназначены для работы со следующими типами серводвигателей: УРМ-35У1 — с серводвигателем постоянного тока последовательного возбуждения напряжением 24 В и током до 10А; УРМ-35У2 — с серводвигателем постоянного тока последовательного возбуждения напряжением 110 В и током до 10А; УРМ-35У3 — с серводвигателем постоянного тока независимого возбуждения напряжением 27 В и током до 2, 5А; УРМ-35У4 — с серводвигателем постоянного тока независимого возбуждения напряжением 110 В и током до 2, 5А; УРМ-35У5 — с двухфазными и трехфазными асинхронными двигателями напряжением 127 В и током до 2, 5А.
Конструктивно функциональные блоки устройства размещены в двух корпусах. В одном корпусе (индекс УРМ-35Д) находится датчик активного тока в другом (индекс УРМ-35ФУ) — формирователь и усилитель. Функциональный блок — усилитель — выполнен сменным, что позволяет применять тот или иной тип усилителя в зависимости от типа принятого серводвигателя.
Количество датчиков и усилителей, а также типы усилителей определяются составом оборудования, схемой генерирования и распределения электроэнергии судовой установки.
Датчик подключается к генератору через типовой измерительный трехфазный трансформатор напряжения со вторичным напряжением 1127 В, частотой 50 Гц и через типовой измерительный трансформатор ток с номинальным вторичным током 5А.
Питание усилителей и преобразователя осуществляется от сети однофазного переменного тока напряжением 127 В, частотой 50Гц.
На рис. 1.1 представлена функциональная схема устройства УРМ-35 для системы, состоящей из двух генераторов с воздействием только на один серводвигатель. Выходы датчиков соединены по дифференциальной схеме, в которую включен вход формирователя. Формирователь импульсов собран по схеме двухтактного широтно-импульсного модулятора и вместе с датчиком активного тока полностью определяет статистические и динамические характеристики всего устройства УРМ-35. поэтому для получения необходимых характеристик он должен иметь определенную крутизну и достаточно высокую линейность переходной характеристики.
Частота следования импульсам находится в пределах от 0,2 до 0,4 Гц; импульс наименьшей длительности, соответствующий наибольшему входящему напряжению, не превышает величины, определяемой по формуле tmax=1/ (2fH).
Сигнал дифференциальной цепи, обуславливаемый разностью активных нагрузок? Р генераторов, поступает на входы полупроводниковых реле «больше», «меньше» КБ и КМ. На эти же входы реле подается «запирающее» напряжение от генератора пилообразного напряжения ГПН.
При разности активных нагрузок на генераторах, превышающей 5%, на входы реле КБ и КМ кроме пилообразного напряжения с генератора ГПН поступит постоянный сигнал из дифференциальной цепи датчиков, достаточный для срабатывания одного из реле в зависимости от полярного сигнала дифференциальной цепи в момент уменьшения пилообразного напряжения. Этот сигнал усиливается вначале усилителем УМ или УБ, а затем выходным усилителем ВУБ или ВУМ. С выходного усилителя импульсное напряжение поступает на серводвигатель генераторного агрегата, воздействуя на первичный двигатель генератора таким образом, чтобы активные нагрузки генераторов выравнивались. При равенстве нагрузок генераторов ток в дифференциальной цепи уменьшится до нуля и формирователь прекратит выдавать импульсы напряжения. Длительность импульсов зависит от величины рассогласования нагрузок. На рис. 1.2. приведена схема включения устройства УРМ-35 для электростанции с тремя генераторами. На шины каждого генератора устанавливается датчик активного тока. Выходы датчиков соединяются по дифференциальной схеме. Коммутация дифференциальной цепи для случая параллельной работы двух или более генераторов производится контактами автоматов генераторов. Так как выходы датчиков соединены между собой встречно, то при равенстве нагрузок на генераторах напряжение на входах блоков УРМ-35ФУ равно нулю и напряжение на их выходах тоже равно нулю. При неравенстве нагрузок генераторов датчики дают разный по величине выходной сигнал, что обусловливает на входах блоков УРМ-35ФУ напряжение. На выходах последних появляется сигнал, подаваемый на серводвигатели, которые воздействуют на регуляторы первичных двигателей таким образом, что выравнивает нагрузки на параллельно работающих генераторах.
Датчик активного тока. Этот датчик представляет собой вектормерное устройство, позволяющее получить на выходе сигнал, пропорциональный активной мощности генератора.
Основными элементами датчика являются (рис. 1.4): тороидальный трансформатор напряжения TV, тороидальный согласующий трансформатор TLI, тороидальные промежуточные трансформаторы TL2, TL3, выпрямительные мосты, балластные сопротивления.
Трансформатор TV, соединенный по схеме (рис. 1.3, а), позволяет получить во вторичных обмотках напряжения, ориентированные, как показано на рис. 1.4, б.
В режиме холостого хода генератора, когда ток нагрузки равен нулю, напряжения на вторичных обмотках трансформатора TV равны и приложены к первичным обмоткам одинаковых трансформаторов TL2 и TL3 (см. рис. 1.3). при этом сигнал на выходе датчика равен нулю При активной нагрузке генератора в соответствие с рис. 1.5, а напряжение UR2 на резисторе R2, поступающее с вторичной обмотки трансформатора TL1, совпадает с напряжением U1, одной вторичной обмотки трансформатора TV и находится в противофазе с напряжением U2 другой. В результате на первичной обмотке одного трансформатора напряжение увеличивается, а на первичной обмотке другого уменьшается. При чисто реактивной нагрузке генератора (рис. 1.5, б) напряжение UR2 сдвинуто относительно напряжений U1 и U2 вторичных обмоток трансформатора TL2 и TL3 на 900.
Напряжение UTL2 UTL3 оказываются равными и выход датчика в этом случае равен нулю. Таким образом, датчик, подключенный к шинам генератора трехфазного тока частотой 50 Гц, будет иметь на выходе сигнал постоянного напряжения, пропорциональный активной нагрузке генератора.
Формирователь импульсов УРМ-35Ф. Формирователь представляет собой полупроводниковое устройство, преобразующее сигнал постоянного тока в импульсный, с изменяющимися длительностями импульса и паузы в зависимости от величины входного сигнала. Он собран по схеме двухтактного широтно-импульсного модулятора и разделяется на две одинаковые части, аналогичные по своему построению (рис. 1.5).
В состав элементов формирования выходного импульса входят: несимметричный триггер на транзисторах VTI, VT3, (VT2, VT4), эммитерный повторитель на транзисторе VT5 (VT6), стабилитрон VT7 (VT8), триодный тиристор VS11 (VS12), выпрямительный мост VD14… VD17 (VD18…VD21). При поступлении на вход формирователя сигнала отрицательной полярности, большего, чем уровень срабатывания триггера, последний срабатывает и через эммитерный повторитель выдается сигнал на управляющий электрод тиристора VS11 (VS12). Тиристор открывается, замыкает выходную цепь формирователя и на усилитель поступает управляющий сигнал напряжением 25 В, частотой 50 Гц.
Генератор пилообразного напряжения построен на основе симметричного триггера на транзисторах VT9, VT10. При подаче питания один из транзисторов триггера переходит в режим насыщения, а другой — в режим отсечки. В момент, когда напряжение на конденсаторе С9 достигает напряжения пробоя стабилитрон VD10 пробивается и на базу транзистора VT9 поступает импульс отрицательной полярности. Триггер VT9, VT10 срабатывает, VT9 переходит в режим насыщения, VT10 — в режим отсечки. Конденсатор С9 мгновенно разряжается через открывшийся транзистор VT9, а конденсатор С10 начинает заряжаться и по аналогичной схеме после пробоя стабилитрона VD13 триггер переходит в первоначальное состояние.
При одной полярности входного сигнала к базе одного из триггеров прикладывается минус, а к базе другого — плюс, а при другой полярности знаки изменяются.
Срабатывание того или другого триггера, а следовательно и появление сигнала на выходе формирователя, будет определяться суммарным действием на вход триггеров напряжения входного сигнала из дифференциальной цепи и пилообразного напряжения.
В зависимости от величины входного сигнала соотношение между длительностью импульса и паузой выходного сигнала формирователя меняется. Длительность импульса регулируется резистором R*29, а длительность паузы формирователем R*24.
Усилитель УРМ-35У. Схема каждого усилителя УРМ-35У1,УРМ-35У2, УРМ-35У3, УРМ-35У4, УРМ-35У5 (рис. 1.6, 1.6) включает в себя два переключающихся плеча на тиристорах с трансформаторами, выпрямителями, конденсаторами и резисторами. Усилитель предназначен для усиления сигналов, поступающих на его вход от формирователя.
При отсутствии входного сигнала на обоих входах усилителя тиристоры закрыты и напряжение на выходе схемы равно нулю. При подаче импульса на один из входов усилителя вентили одного плеча открываются и усилитель выдает импульс на выходе. Переключение импульса на другой вход вызывает изменение полярности или фазы выходного импульса.
Тиристоры зашунтированы резисторами для выравнивания напряжения на них и диодами для защиты от перенапряжения, обусловленного наличием против ЭДС якоря серводвигателя.
Питание схемы осуществляется двухполупериодным выпрямленным напряжением без сглаживания пульсаций.
1.2.2. Устройство автоматического включения резерва типа УВР
Данное устройство автоматического управления резервом предназначено для подачи импульса: на запуск резервного генераторного агрегата при повышении нагрузки сверх заданной; остановку резервного генераторного агрегата (или сигнал при уменьшении нагрузки ниже заданной); отключение генераторного автомата работающего агрегата и запуск резервного агрегата при длительном снижении или исчезновении напряжения.
Рассматриваемое устройство подключается к генератору трехфазного переменного тока через типовые измерительные трансформаторы напряжения с вторичным напряжением 127 В, частотой 50 Гц и через трансформатор тока на 5 А. питание устройства УВР осуществляется от постороннего источника переменного тока напряжением 127 В, частотой 50 Гц или постоянного тока напряжением 24 В.
Мощность, потребляемая устройством, составляет не более 10 и 15 ВА соответственно от трансформаторов напряжения и тока со стороны генератора и не более 25 ВА со стороны постороннего источника. Для включения резервного полного генераторного агрегата устройство выполняется для работы по полному или активному току нагрузки и настраивается на полный ток срабатывания в пределах 1,8…4,0 А. Отключение резервного генераторного агрегата возможно по полному току срабатывания в пределах 1…2,8 А.
Точность срабатывания устройства находится в пределах ± 5% значения тока уставки (для устройств, работающих по активному току, при изменении cos ц от 0,6 до 1,0). Срабатывание происходит также при снижении напряжения генератора до 80 ± 5% номинального и ни же с выдержкой времени 5…8 с. Коэффициент возврата находится в пределах 0,95…1,0. Допускаются следующие перегрузки устройства по току генератора: 10% в течение 2 ч; 25% в течение 30 мин и 50% в течение 5 мин.
В качестве выходных реле устройства использованы реле типа РМ-4.
Устройство УВР выполняется следующих четырех типов:
1) УВР-1А1 для работы по активному току с напряжением питания от постороннего источника переменного тока 127 В, частотой 50 Гц (рис. 1.8);
2) УВР-1А2 для работы по активному току с напряжением питания от постороннего источника постоянного тока 24В;
3) УВР-1П1 для работы по полному току с напряжением питания от постороннего источника переменного тока В, частотой 50 Гц (рис. 1.9);
4) для работы по полному току с напряжением питания от постороннего тока постоянного тока 24 В.
Схемы устройств УВР-1А2 и УВР-1П2 отличаются от схемы устройств УВР-1А1 и УВР-1П1 тем, что питание от постороннего источника осуществляется не через трансформатор, а непосредственно от цепи постоянного тока напряжением 24 В, поэтому схемы здесь не приводятся.
Каждая из указанных модификаций устройства УВР состоит из блоков: контроля повышения нагрузки (I); контроля понижения нагрузки (II) и контроля напряжения (III).
Блок контроля повышения нагрузки I содержит согласующий трансформатор TL1, измеритель активного тока ИАТ (или полного тока ИПТ), триггер на транзисторах VT7, VT2 и реле времени на транзисторах VT3, VT4 и VT5 с выходным реле К1.
Блок контроля снижения нагрузки II состоит из согласующего трансформатора TL2, измерителя полного тока ИПТ, триггера на транзисторах VT6, VT7 и реле времени на транзисторах VT8, VT9 и VT10 с выходным реле К2.
Блок контроля напряжения III включает в себя измеритель напряжения ИН и реле времени на транзисторах VT11, V12 и VT13 с выходным реле К3 в цепи триггера VT14, VT15.
Трансформаторы TL1 и TL2 служат для согласования цепей измерителя активного или полного тока и типового измерительного трансформатора тока.
Измеритель ИАТ или ИПТ преобразует либо полный ток нагрузки, либо его активную составляющую в постоянное напряжение. Триггеры обеспечивают усиление сигнала измерителя и четкое срабатывание устройства при заданной величине уставки. Реле времени служит для создания выдержки и времени срабатывания.
Измеритель ИАТ устройств типов УВР-1А1 (см. рис. 1.8) и УВР-1А2 представляет собой мост на резисторах R47-R50 с диодами VD4 и VD5. Два резистора R45 и R46, включенные в фазы В и С, и мост R47… R50 образуют искусственную нулевую точку трехфазной системы. Если сопротивления резисторов R45 и R46 равны, то на диагональ моста подается напряжение, совпадающее по фазе с напряжением фазы, А генератора (рис. 1.10).
Сопротивление моста одновременно обтекаются током от трансформатора тока, включенного в фазу, А генераторов через согласующий трансформатор. С другой диагонали моста снимается выпрямленное выходное напряжение измерителя, равное разности потенциалов точек, а и b (см. рис. 1.8), т. е. разности падений напряжений на резисторах R49 и R50:
Ua b= U4 9 — U50
При холостом ходе генератора мост сбалансирован и напряжение на его выходе равно нулю:
UH 4 9= UH 50; Ua b х UH 4 9 — UH 50=0.
При нагруженном генераторе ток трансформатора тока нарушает баланс моста. Этот ток, протекая в один полупериод через резистор R49, а в другой — через резистор R50, в цепях этих резисторов сдвигается по фазе на угол 1800.
Токи, протекающие через указанные резисторы, создают падение напряжения UT 49= IT 49R49; UT 50= IT 50R50, которые складываются с напряжениями UH49 и UH50, создавая разность потенциалов Ua b=U49— U50.
На рис. 3.4. приведена векторная диаграмма напряжений на выходе измерителя.
Учитывая, что R49= R50= R, IT 49= IT 50= IT; UH49= UH50= UH, из треугольников OUHUH49 и UH50, получим
U4 9=
U50=
Прибавляя и вычитая, получим
U4 9=
U50=.
Так как UT < UH, то разностью можем пренебречь. Тогда
; ;
т.е. напряжение на выходе измерителя приблизительно пропорционально активной составляющей тока генератора.
Если напряжение генератора считать неизменным, то напряжение Ua b (см. рис. 1.8) пропорционально активной мощности генератора.
Конденсатор С4 служит для сглаживания пульсаций напряжения между точками a и b. С помощью потенциометра R1 производится настройка устройства на заданную величину уставки.
Погрешность схемы измерителя активного тока ИАТ частично компенсируется при настройке путем изменения величины сопротивления резистора R48.
С измерителя полного тока ИПТ снимается выпрямленное напряжение от вторичной обмотки согласующего трансформатора, замкнутой на резисторе R1. Это напряжение пропорционально полной силе тока нагрузки генератора.
Выходное напряжение измерителя активного тока (см. рис. 1.8) или полного тока (см. рис 1.9) блока I контроля повышения нагрузки подается через стабилитрон VD1 на триггер VT1, VT2. Последний представляет собой двухкаскадный усилитель постоянного тока с положительной обратной связь, осуществляемой включением общего резистора R8 в цепь эмиттеров транзисторов VT1 и VT2, благодаря которой создается релейный эффект.
При отсутствии перегрузки генератора транзистор VT1 закрыт, так как ток через его переход эмиттер — база возникает только под действием выходного напряжения измерителя, когда оно становится больше напряжения пробоя стабилитрона, т. е. более 7,5…8,5 В. При закрытом транзисторе VT1 база транзистора VT2 получает отрицательный потенциал с его коллектора по отношению к эммитеру, т. е. через переход эммитер — база транзистора течет ток. Сопротивления резисторов выбираются так, чтобы этот транзистор был полностью открыт. Падение напряжения на резисторе обратной связи R8 является закрывающим для транзистора VT1.
По мере увеличения напряжения на выходе измерителя выше величины пробоя стабилитрона закрывающий ток в цепи базы транзистора VT1 уменьшается, а коллекторный ток увеличивается. Напряжение коллектора этого транзистора уменьшается, следовательно, коллекторный ток транзистора VT2 также уменьшается, что, в свою очередь, приводит к уменьшению напряжения обратной связи, вычитаемого из напряжения сигнала, открывающего транзистор VT1.
Уменьшение напряжения обратной связи при увеличении напряжения сигнала приводит к тому, что схема лавинообразно переходит во второе состояние, когда транзистор VT1 полностью открыт. Напряжение в его цепи эммитер — коллектор составляет десятые доли вольта, следовательно, напряжение на переходе эммитер — база транзистора недостаточно для его открывания и коллекторный ток практически равен нулю. При уменьшении напряжения сигнала стабилитрон VD1 закрывается, и схема переходит в первое состояние с открытым транзистором VT2.
При малых нагрузках генераторов конденсатор С1 реле времени зашунтирован транзистором VT2 и небольшим сопротивлением обратной связи резистора R8. Поэтому напряжение на его зажимах мало. Стабилитрон VD2 не пропускает ток через переход эммитер — база транзистора VT3. Следовательно, на переход эммитер — база транзистора VT4 напряжение достаточно для его открывания. При этом транзистор VT5 закрыт и ток, проходящий через выходное реле К1, практически равен нулю.
При достижении током нагрузки генератора значения, соответствующего напряжения пробоя стабилитрона VD1 на выходе моста, триггер VT1, VT2 срабатывает, транзистор VT2 закрывается. Конденсатор С1 начинает заряжаться через резисторы R9 и R10, обеспечивая выдержку времени. При достижении на конденсаторе С1 напряжения, равного пробивному напряжению стабилитрона VD2 (8,5…9,5 В), транзистор VT3 открывается, шунтируя переход эммитер — база транзистора VT4. транзистор VT5 также открывается, и реле К1 срабатывает. С уменьшением нагрузки генератора все транзисторы перебрасываются в исходное положение в том же порядке, что и при включении.
Выходное напряжение измерителя полного тока блока контроля снижения нагрузки подается через стабилитрон VD3 на триггер VD6, VD7. Последний аналогичен триггеру VT1, VT2, т. е. при нагрузках генератора ниже величины, соответствующей уставке устройства при отключении резервного генератора, транзистор VT6 закрыт, а транзистор VT7 полностью открыт. Конденсатор С2 реле времени зашунтирован транзистором VT7 и небольшим сопротивлением обратной связи резистора R25. Напряжение на его зажимах отсутствует, следовательно, транзистор VT8 закрыт, коллекторный ток его практически равен нулю, и на базу транзистора VT9 подается отрицательный потенциал политическое отношению к его эммитеру. Таким образом, транзистор VT9 будет открыт, а транзистор VT10 закрыт. Стабилитрон VD4 служит для надежного закрывания транзистора VT8.
Политическое мере увеличения напряжения на выходе измерителя выше величины пробоя стабилитрона VD3 (т.е. выше 8, 5…9, 5В), триггер срабатывает, транзистор VT7 закрывается, а конденсатор С2 заряжается. С незначительной выдержкой времени открывается транзистор VT8, срабатывает триггер VT9, VT10, транзистор VT10 открывается и реле К2 срабатывает. В таком положении эти элементы блока контроля находятся до тех пор, пока нагрузка генератора превышает заданную установку срабатывания.
Если нагрузка падает ниже величины уставки, стабилитрон VD3 закрывается, транзистор VT7 открывается, его напряжение эммитер — коллектор уменьшается почти до нуля и конденсатор С2 начинает разряжаться, поддерживая еще некоторое время ток через переход эммитер — база транзистора VT8. Через 5…8 с, когда конденсатор разрядится, транзистор VT8 закрывается, триггер VT9, VT10 переходит в начальное состояние и реле К2 обесточивается. Его нормально замкнутые контакты выдают импульс на остановку резервного генератора.
Измеритель блока контроля напряжения в устройствах УВР-1А1 (см. рис. 1.8.) и УВР-1А2 представляет собой трансформатор напряжения TV1 или в устройствах УВР-1П1 (см. рис. 1.10) и УВР-1П2 — делитель напряжения на резисторах R60, R61, R62 и выпрямитель VD9… VD12 с фильтрующим конденсатором С6. Напряжение на выходе измерителя, пропорциональное напряжению генератора, подается на реле времени, аналогичное реле времени блоков контроля повышения и контроля снижения нагрузки.
При номинальном напряжении на генераторе стабилитрон VD6 пробит, конденсатор С3 заряжен, транзисторы VT11 и VT13 открыты и реле К3 находится под напряжением. При снижении напряжения ниже 80 ±5% номинального закрывается стабилитрон VD6, конденсатор С3 разряжается, обеспечивая заданную выдержку времени, после чего транзистор VT11 закрывается, триггер VT12, VT13 срабатывает, реле К3 лишается питания и устройство выдает импульс на отключение генератора и запуск резервного агрегата.
Конструктивно устройство типа УВР выполнено в корпусе брызгозащищенного исполнения. Все элементы его схемы смонтированы в выдвигающемся блоке, причем расположение элементов обеспечивает открытый доступ к ним и облегчает условия монтажа, а также обслуживания устройства.
1.2.3 Устройство автоматической разгрузки типа УРГ
Устройство данного типа применяется с целью отключения части потребителей при перегрузке генераторных агрегатов и рассчитано для работы политическое активному или полному току.
Подключение устройства к генератору трехфазного переменного тока выполняется через типовые измерительные трансформаторы напряжения с вторичным напряжением 127 В, частотой 50 Гц и через трансформатор тока с вторичным током 5 А.
Устройство УРГ обеспечивает надежную работу в условиях длительных колебаний в пределах ±3%, при кратковременных колебаниях напряжения от -25 до 13% и частоты от -6 до 4%. Мощность, потребляемая устройством, составляет не более 10 и 5 ВА соответственно от трансформаторов напряжения и тока, питающих датчик тока, и не более 40 ВА от трансформатора напряжения, питающего релейный блок.
Предусмотрена возможность настройки на уставки срабатывания в пределах 3…5 А по полному току с точностью срабатывания по уставкам ±5% тока уставки при изменении cos ц от 0,7 до 1,0. Коэффициент возврата устройства обеспечивается в пределах 0, 85…1, 0.
Схема устройства УРГ обеспечивает три последовательные ступени срабатывания с выдержкой времени между ступенями 4…8 с и допускает перегрузки по току генераторов, также как и устройство УВР.
В качестве выходного реле датчика тока использовано реле типа РМ-4 с коммутационной способностью контактов на длительное протекание: постоянного тока 1 А напряжением 30 В; постоянного тока 0, 1 А напряжением 300 В; переменного тока 1 А напряжением 115 В и частотой до 400 Гц.
В качестве выходных реле релейного блока использованы реле РМ-4 с коммутационной способностью контактов: на длительное протекание переменного тока 5 А напряжением 380 В; включение 10 А и отключение 5 А переменного тока напряжением 380 В с коэффициентом мощности не менее 0, 6 и частотой от 50 до 400 Гц; включение 7 А и отключение 0, 6 А постоянного тока напряжением 110 В и индуктивностью, соответствующей индуктивности двух катушек контактора постоянного тока типа КМ2333; безотказную коммутацию постоянного тока 50 мА при напряжении 20 В.
Устройство УРГ состоит из двух отдельных блоков: датчика активного тока УРГ-1ДА (рис. 1.13) или датчика полного тока типа УРГ-1ДП (рис. 1.14) и релейного блока УРГ-1Р (рис. 1.15).
Датчик активного тока и датчик полного тока обеспечивают срабатывание с выдержкой времени первой ступени устройства при повышении соответственно активной и полной нагрузки до заданной уставки. Релейный блок выдает сигнал на отключение потребителей электроэнергии с выдержкой времени между первой, второй и третьей ступенями срабатывания устройства.
Каждый датчик тока содержит следующие основные части (см. рис. 1.13, 1.14): измеритель активного тока ИАТ или полного тока ИПТ, с помощью которого полный ток нагрузки или его активная составляющая преобразуется в постоянное напряжение; триггер, выполненный на транзисторах VT1, VT2, обеспечивающий срабатывание устройства при заданной величине уставки; реле времени, выполненное на транзисторах VT3, VT4,VT5, для создания выдержки времени срабатывания и получения достаточно мощного выхода блока; питающий блок, состоящий из трансформатора TV и выпрямителя VD5… VD8 с фильтрующим конденсатором С3.
Датчик активного тока ИАТ (см. рис. 1.13) выполнен в виде моста на транзисторах R21… R24 с диодами VD2 и VD3. два резистора R*19 и R20 включенные в фазы В и С, и мост образуют искусственную нулевую точку трехфазной системы. Если сопротивление обоих резисторов равны, тока на диагональ моста подается напряжение, совпадающее по фазе с напряжением фазы, А генератора. Построение датчика устройства УРГ аналогично измерителю устройства УВР.
Погрешности схемы измерителя активного тока частично компенсируется при настройке путем изменения сопротивления резистора R*19.
При работе устройства по полному току м измерителя снимается выпрямленное напряжение вторичной обмотки согласующего трансформатора TL, замкнутой на резистор R1 (см. рис. 1.14). это напряжение пропорционально полному току нагрузки генератора. Выходное напряжение измерителя активного или полного тока подается через стабилитрон VD1 на триггер VT1, VT2.
Триггер VT1, VT2 представляет собой, также как и в схеме устройства УВР, двухкаскадный усилитель постоянного тока, охваченный положительной обратной связью. последняя осуществляется включением общего резистора R7 в цепь эммитеров транзисторов, благодаря чему создается релейный эффект. При отсутствии перегрузки генератора транзистор закрыт, так как ток через его переход эммитер — база возникает только под действием выходного напряжения измерителя, когда оно становится больше напряжения пробоя стабилитрона, т. е. более 7, 5…8, 5 В. При открытом транзисторе VT1 база транзистора VT2 получает отрицательный потенциал с коллектора транзистора VT1 по отношению к своему эммитеру. Сопротивления резисторов выбираются так, чтобы транзистор VT2 был полностью открыт. При этом падение напряжения на резисторе обратной связи R7 является закрывающим для транзистора VT1.
По мере увеличения напряжения на выходе измерителя выше величины пробоя стабилитрона закрывающий ток в цепи базы транзистора VT1 уменьшается, а коллекторный ток увеличивается. Напряжение коллектора транзистора VT1 снижается, следовательно, уменьшается коллекторный ток транзистора VT2 и напряжение обратной связи, вычитающееся из напряжения сигнала, открывающего транзистора VT1. уменьшение напряжения обратной связи при увеличении напряжения сигнала является положительной обратной связью. Поэтому схема лавинообразно переходит во второе состояние, когда первый транзистор полностью открыт.
При уменьшении напряжения сигнала стабилитрон VD1 закрывается и схема переходит в первое состояние с открытым транзистором VT2.
При малых нагрузках генератора конденсатор С2 реле времени зашунтирован транзистором VT2 и резисторами R7 и R9. Стабилитрон VD2 не пропускает ток через переход эммитер — база транзистора VT3.
Следовательно, на переходе эммитер — база транзистора VT4 напряжение достаточно для его открывания, а поскольку транзистор VT4 открыт, тока транзистор VT5 закрыт. При этом ток, проходящий через катушку реле К, практически равен нулю.
Когда ток нагрузки генератора достигнет значения, соответствующего напряжению пробоя стабилитрона VD1, на выходе измерителя, триггер VT1, VT2 срабатывает. конденсатор С2 начинает заряжаться через резисторы R8 и R9, обеспечивая необходимую выдержку времени. Когда напряжение на конденсаторе С2 станет больше величины пробивного напряжения стабилитрона VD2, т. е. не более 7, 5…8, 5 В, транзистор VT3 открывается, шунтируя переход эммитер — база транзистора VT4. Транзистор VT5 открывается и реле К срабатывает. С уменьшением нагрузки генератора все транзисторы переходят в исходное положение. После срабатывания реле К его контакт включает питание релейного блока.
Релейный блок (см. рис. 1.15) состоит из реле К1 и двух транзисторных реле времени, которые имеют одинаковые схемы, но разные параметры для получения различного времени срабатывания. При подаче питания реле К1 срабатывает, отключая первую ступень потребителей, после чего начинают заряжаться конденсаторы С2, С3 и С4, обеспечивая выдержки времени второй и третьей ступеней отключения потребителей.
Напряжение на конденсаторе С2 реле времени второй ступени растет быстрее, чем на конденсаторах С3 и С4 реле третьей ступени. По достижении напряжения величины пробоя стабилитрона VD1 транзистор VT1 открывается, транзисторные реле на транзисторах VT2 и VT3 срабатывают и реле К2 замыкает свои контакты. Аналогично срабатывает реле К3 третьей ступени. При уменьшении нагрузки генератора контакт реле К датчика тока отпадает и схема прекращает свою работу.
Конструктивно каждый из блоков устройства УРГ выполнен в типовом корпусе брызгозащищенного исполнения аналогично устройствам УВР. Принципиально релейный блок и датчики УРГ можно совместить в одном корпусе, однако разделение блоков позволяет при необходимости увеличить число ступеней (добавить релейный блок, используя один датчик).
1.2.4 Устройство токовой защиты типа УТЗ-1М
Техническое описание
1. Устройство токовой защиты типа УТЗ-1М предназначено для выдачи сигналов при перегрузке судовых генераторов переменного тока частотой 50 Гц.
Устройство имеет две ступени выдачи сигналов. Первая ступень выдает сигнал с выдержкой времени, зависимой от тока нагрузки. Вторая ступень выдает сигнал с постоянной выдержкой времени после срабатывания первой ступени, а также независимо от первой ступени (отсечка) при превышении током нагрузки заданного максимального значения.
2. Устройство состоит из блока датчика активного тока УТЗ-ДА, предназначенного для выработки напряжения, пропорционального активному току генератора, и блока времени УТЗ-БВ, предназначенного для выдачи сигналов при повышении тока нагрузки.
3. Блок УТЗ-ДА устройства подключается к генератору трехфазного переменного тока через типовые измерительные трансформаторы напряжения с вторичным напряжением 133 В, частотой 50 Гц и трансформатор тока с вторичным током 5 А.
Блок УТЗ-БВ устройства питается от однофазной сети переменного тока напряжением 133 В, частотой 50 Гц.
4. Мощность, потребляемая:
а) блоком УТЗ-ДА — не более 5 ВА;
б) блоком УТЗ-БВ — не более 50 ВА.
5. Устройство обеспечивает надежную работу при условиях:
а) температуры окружающей среды от 00 до ±450 С;
б) относительной влажности до 98% при температуре + 400С;
в) корабельной качки с наклонами до 450 и периодом 7−9 с, а также при длительных наклонах в любую сторону до 450;
г) вибрации с частотой до 25 Гц и ускорения 5 м/с2;
д) ударных сотрясений с ускорением 15д в вертикальном направлении и 5д — в горизонтальном;
е) морского тумана;
ж) длительных колебаний напряжения питающей сети от +6% до -10% и частоты +5% от номинальных значений, а при кратковременных колебаниях напряжения от +15% до -30% от номинальных значений не более 1, 5 с и колебаниях частоты +10% от номинального значения не более 5 с и не дает ложных срабатываний.
6. Устройство предусматривает возможность изменения уставки по активному току в пределах 2, 4−4 А при изменении cos ц от 0, 7 до 1, 0 с точностью срабатывания по уставкам +5%, а при изменении cos ц от 0, 7 до 0, 6 точность срабатывания по уставкам +10%.
7. По отсечке устройства настраивается на ток не менее 110% тока уставки, при этом верхний предел уставки отсечки должен выбираться с учетом допустимых перегрузок, оговоренных в п. 12 настоящего ТО. Точность срабатывания при cos ц от 1, 0 до 0, 7 — +5%, а при cos ц от 0, 7 до 0, 6 +10%.
8. Первая ступень выдает сигнал при токе уставки с выдержкой времени, настраиваемой в пределах от 10 до 1, 5 с. Заданное время при нормальных климатических условиях (НКУ) должно находится в зоне допуска на уставку по току. В остальных условиях, оговоренных в ТУ, изменение выдержки времени не должно превышать +20%. При токах, больших тока уставки, время выдержки уменьшается.
9. При сохранении перегрузки после срабатывания первой ступени, вторая ступень выдает сигнал с постоянной выдержкой времени, настраиваемой в пределах (2−6) с +20%.
10. Вторая ступень выдает сигнал также независимо от первой ступени (отсечка) с нерегулируемой выдержкой времени не превышающей 1 сек при превышении током нагрузки заданного максимального значения.
11. Коэффициент возврата устройства, определяемый отношением тока отпускания к току срабатывания, должен быть не менее 0, 85.
12. Блок УТЗ-ДА устройства допускает следующие перегрузки по полному току:
а) в течение двух часов — 5, 5 а;
б) в течение 30 мин. — 6, 225 а;
в) в течение 5 мин. — 7, 5 а.
13. В качестве выходных элементов первой и второй ступеням блока УТЗ-БВ устройства использованы электромеханические реле.
14. Сопротивление электрической изоляции токоведущих частей относительно корпуса:
а) при температуре окружающей среды +250 до +100С и относительной влажности 95+3% - не менее 20 Мом;
б) при температуре окружающей среды +400+20С и относительной влажности 95+3% - не менее 1 Мом.
15. Иллюстрационные чертежи блоков устройства приведены в приложениях 1 и 2 (л).
16. Исполнение блоков устройства — брызгозащищенное.
17. Рабочее положение блоков устройства — вертикальное.
18. Устройство рассчитано на непрерывную работу в течение 5000 час. Общий срок службы устройства 25 000 час, но не более пяти лет с момента дачи устройства заказчику. Между периодами непрерывной работы допускается подрегулировка устройства и замена вышедших из строя блоков.
Описание общее и основных узлов.
Устройство осуществляет непрерывный контроль по активному току и выдает сигнал при достижении контролируемой величины тока уставки.
Блок датчика тока устройства (рис. 1.16) состоит из:
а) тороидального трансформатора напряжения Тр1 с двумя первичными обмотками, каждая из которых намотана на отдельный сердечник, и четырьмя вторичными, охватывающими оба сердечника;
б) тороидального согласующего трансформатора Тр2, первичная обмотка которого подключена к выходной обмотке трансформатора тока фазы; вторичная имеет вывод от средней точки;
в) четырех транзисторов ПП1… ПП4, выполняющих роль ключей.
При нагруженном генераторе и cos ц=1 (при активной нагрузке) напряжения на вторичных обмотках трансформатора напряжения Тр1 (Uф) совпадают по фазе с напряжением на вторичной обмотке согласующего трансформатора Тр2 (U=Iф).
Допустим, что в данный момент (участок Ов рис. 1.16) на концах вторичных обмоток 12 и 14 трансформатора Тр1 имеется отрицательный потенциал. В этом случае транзисторы ПП1 и ПП2 открыты, т.к. отрицательные напряжения приложены к их базам. Транзисторы ПП3 и ПП4 при этом закрыты — к их базам приложен положительный потенциал.
При наличии напряжения на вторичной обмотке согласующего трансформатора Тр2 по цепи 5 Тр2 («+») — диодный мост Д5… Д8 — 2 В (2П2) — «+4ОВ» — нагрузка датчика — «- 40В» — Iв (IП2) — резистор R9 — 6 Тр2 («-») потечет ток прямого направления.
В цепи полуобмотки 6−7 Тр2 тока не будет т.к. транзисторы ПП3 и ПП4 закрыты.
В следующий полупериод (участок вс рис. 1.16) откроются транзисторы ПП3 и ПП4 (7 и 9 Тр1 — отрицательный потенциал), а транзисторы ПП1 и ПП2 закроются.
В этом случае со вторичной обмотки трансформатора Тр2 потечет ток по цепи: 7 Тр2 («+») — диодный мост Д9… Д12 — транзисторы ПП3 и ПП4 — диодный мост Д9… Д12 — 2 В (2П2) — «+4ОВ» — нагрузка датчика — «-4ОВ» — Iв (1П2) — резистор R9 — 6 Тр2 («-») также в прямом направлении.
При активной нагрузке (cos ц=1) напряжение на нагрузке (Uвых) датчика имеет форму двухполупериодной пульсации (рис. 1.16).
Среднее значение напряжения на нагрузке равно:
При cos y<1 напряжения на вторичных обмотках трансформатора напряжения Тр1 (Uф) не совпадают по фазе с напряжением на вторичной обмотке согласующего трансформатора Тр2 (U=Iф).
На участке od (рис. 1.17 и 1.18) ток и напряжение находятся в противофазе. На концах вторичных обмоток 12 и 14 трансформатора Тр1 имеется отрицательный потенциал — транзисторы ПП1 и ПП2 открыты.
В этом случае (для участка od) ток со вторичной обмотки Тр2 потечет по цепи: 6 Тр2 («+») — резистор R9 — Iв (1П2) — «-» — нагрузка датчика — «+» — 2 В (2П2) — диодный мост Д5… Д8 — 5 Тр2 («-») в обратном направлении.
На участке dв ток и напряжение находятся в фазе. Транзисторы ПП1 и ПП2 открыты.
Ток со вторичной обмотки Тр2 потечет по цепи: 5 Тр2 («+») — диодный мост Д5… Д8 — транзисторы ПП1 и ПП2 — диодный мост Д5… Д8 — 2 В (2П2) — «+» — нагрузка датчика — «-» — Iв (1П2) — резистор R29 — 6 Тр2 («-») в прямом направлении.
Аналогично для участков ве и ес, но только при этом открыты транзисторы ПП3 и ПП4.
Для участка ве: 6 Тр2 («+») — резистор R9 — Iв (1П2) — «-» — нагрузка датчика — «+» — 2 В (2П2) — диодный мост Д9… Д12 — транзисторы ПП3 и ПП4 — диодный мост Д9… Д12 — 7 Тр2 («-») — ток обратного направления.
При cos y<1 среднее значение напряжения на нагрузке датчика (Uвых датчика) будет меньше, чем при cos y=1 (рис. 1.17 и 1.18)
Таким образом, напряжение на нагрузке датчика пропорционально активному току.
Характеристика выхода датчика приведена на рис. 1.19
Блок времени УТЗ-БВ (рис 1.20) состоит из:
а) трансформатора питания с тремя выпрямителями стабилизированного источника питания;
б) четырех эммитерных повторителей;
в) трех триггеров Шмита;
г) двух формирователей выдержки времени;
д) двух выходных триодных тиристоров;
е) двух электромеханических реле;
ж) магнитного усилителя.
Магнитный усилитель служит для разделения входов и усиления сигнала, поступающего в формирователь выдержки времени.
Магнитный усилитель УМ является однокаскадным, одноконтактным усилителем с выходом на постоянного токе, с внешней отрицательной обратной связью (обмотка обратной связи WI-2).
При отсутствии тока в обмотке управления W3−4, поле, создаваемое обмоткой смещения W5−6, запирает магнитный усилитель. При появлении тока управления магнитный усилитель открывается и выдает сигнал на первый формирователь выдержки времени.
Характеристика выхода магнитного усилителя приведена на рис. 1.19
Величину минимального тока, при котором срабатывает УТЗ-1М, и начальную выдержку времени можно изменять. Эти параметры устанавливаются перед включением устройства в работу. величина минимального тока срабатывания устанавливается потенциометром R1, начальная выдержка времени при этом токе — потенциометр R3, а минимальный ток отсечки — потенциометром R7.
При достижении выходным напряжением блока УТЗ-ДА величины, достаточной для пробоя стабилитрона Д22, последний пробивается и на вход первого триггера Шмита (на базу транзистора ПП2) через первый эммитерный повторитель (транзистор ПП1) поступает сигнал. Триггер изменяет свое состояние (транзистор ПП2 открывается, а транзистор ПП3 закрывается) и с выхода его поступает сигнал на второй эммитерный повторитель (транзистор ПП4).
Отрицательный потенциал, снимаемый с эммитерного повторителя (с резистора R19), запирает диод Д7; таким образом, заряд конденсатора С4 и С5 проходит по цепи первого формирователя выдержки времени под действием суммы напряжения UI, снимаемого с потенциометра R3, и напряжения U2, снимаемого с резистора R19, через стабилитрон Д5, Д6, конденсатор С4 или С5, резистор R4.
Конденсатор С4 или С5 стремится зарядиться до напряжения, равного сумме напряжений UI и U2, с постоянной времени:
Т=С4(R19+R4+RД5+RД6)
Но при достижении на конденсаторе величины напряжения, равной напряжению U2, диод Д7 открывается и заряд конденсатора прекращается. Таким образом, конденсатор заряжается по начальному участку экспоненты до напряжения выхода второго эммитерного повторителя.
При изменении величины тока нагрузки генератора изменяется напряжение UI, при этом время заряда конденсатора С4 или С5 до постоянного напряжения U2 тока изменяется (рис. 1.21).
Чем больше ток нагрузки генератора, а, следовательно, больше и напряжение UI, тем меньше выдержка времени устройства (рис. 1.21).
Стабилитроны Д5 и Д6 включены в схему для смещения характеристики выдержки времени устройства по оси токов.
Зависимость выдержки времени срабатывания первой ступени от тока нагрузки показана на рис. 1.22, где сплошными линиями показаны характеристики при максимальной постоянной времени
RC=[R*4+R19+RзавII (R2+Rзас)] (C4+C5),
R*4=20ком; R19=5, 6ком; R2=510ом,
Rзав, Rзас — величина, зависимая от положения движка потенциометра R3, С4=50 мкф, С5=100 мкф (приложение 6), а пунктирными — характеристики при минимальной постоянной времени
RC=[R*4+R19+RзавII (R2+Rзас)] C4
R*4=7, 5ком Параметром характеристик является положение движка потенциометра R3.
Для задания наклона рабочей характеристики поступают следующим образом: из точки уставки по активному току (Iуст, tуст) проводятся кривые характеристики (пользуясь методом интерполяции) при максимальной и минимальной постоянной времени. Между построенными характеристиками можно задать вторую точку рабочей характеристики при токе большем тока уставки.
Примеры
1.Уставка по активному току Iуст= 3, 2а, выдержка времени срабатывания первой ступени при токе уставки 3, 2а — tуст=6 сек (точка I).
При токе -3, 6а выдержка времени срабатывания первой ступени может быть задана в пределах от 2, 9 (точка 2) до 5, 45 сек (точка 3).
2. Уставка по активному току Iуст=2, 8а, выдержка времени срабатывания первой ступени при токе уставки 2, 8а — tуст=3, 5 сек (точка 4).
При токе -3, 1а выдержка времени срабатывания первой ступени может быть задана в пределах от 2, 225 (точка 5) до 3 сек (точка 6).
При достижении напряжением на конденсаторе С4 или С5 величины, достаточной для пробоя стабилитрона Д23, последний пробивается, и на вход триггера Шмитта (на базу транзистора ПП6) через эммитерный повторитель (транзистор ПП5) поступает сигнал. назначение эммитерного повторителя — увеличение входного сопротивления следующего за ними триггера Шмитта с целью исключения его влияния на заряд конденсатора С4 или С5. Триггер изменяет свое состояние (транзистор ПП6 открывается, а транзистор ПП7 закрывается), в результате чего по цепи управления триодного тиристора Д116 течет ток через резистор R27 и стабилитрон Д20. Триодный тиристор открывается и замыкает цепь питания катушки реле Р1.