Помощь в написании студенческих работ
Антистрессовый сервис

Клеточные основы роста. 
Фазы роста клеток и их характеристики

РефератПомощь в написанииУзнать стоимостьмоей работы

Адаптация (приспособление) растения к конкретным условиям среды обеспечивается за счет физиологических механизмов (физиологическая адаптация), а у популяции организмов (вида) — благодаря механизмам генетической изменчивости, наследственности и отбора (генетическая адаптация). Факторы внешней среды могут изменяться закономерно и случайно. Закономерно изменяющиеся условия среды (смена сезонов года… Читать ещё >

Клеточные основы роста. Фазы роста клеток и их характеристики (реферат, курсовая, диплом, контрольная)

1-деление клетки, 2-растяжение клетки, 3-дифференциация клетки.

В основе роста многоклеточных организмов лежит увеличение числа и размеров клеток, сопровождаемое их дифференциацией, т. е. возникновением и накоплением различий между клетками, образовавшимися в результате деления. Еще со времени Ю. Сакса рост клеток принято делить на три фазы: эмбриональную, растяжения, дифференцировки. Такое разделение носит условный характер. За последнее время внесены изменения в само понимание основных особенностей, характеризующих эти фазы роста. Если прежде считалось, что процесс деления клетки происходит лишь в эмбриональную фазу роста, то сейчас показано, что клетки могут иногда делиться и в фазу растяжения. Важно, что дифференцировка отнюдь не является особенностью только третьей, последней фазы роста. Дифференцировка клеток, в смысле появления и накопления внутренних физиологических различий между ними, проходит на протяжении всех трех фаз и является важной особенностью роста клеток. В третьей фазе эти внутренние физиологические различия лишь получают внешнее морфологическое выражение. Все же ряд существенных отличий между фазами роста имеется, и физиологи продолжают рассматривать их отдельно. Эмбриональная фаза. Клетка возникает в результате деления другой эмбриональной клетки. Затем она несколько увеличивается, главным образом за счет увеличения веществ цитоплазмы, достигает размеров материнской клетки и снова делится. Таким образом, эмбриональная фаза делится на два периода: период между делениями — интерфаза продолжительностью 15−20 ч и собственно деление клетки — 2−3 ч. Время это колеблется в зависимости от вида растений и условий (температуры).

Несколько типов роста клеточной оболочки:

  • 1) вновь образовавшиеся микрофибриллы целлюлозы внедряются в промежутки между сетью старых микрофибрилл (интусессцепция);
  • 2) сетка вновь образовавшихся микрофибрилл целлюлозы, между которыми образуются новые связи, накладывается на старую.

При этом происходит и переориентировка старых молекул: они становятся в более вертикальное положение. Общая толщина стенки при этом не изменяется, оставаясь около 0,3−0,5 мкм. Этот особенный тип аппозиционного роста получил название многосетчатого роста. Таким образом, рост растяжением включает следующие этапы:

  • 1) разрыхление связей между компонентами клеточной оболочки и увеличение ее пла­стичности;
  • 2) поступление воды, которая давит на стенки, вызывает растяжение и увеличивает объем клетки;
  • 3) закрепление увеличения объема путем многосетчатого роста оболочки.

Фаза дифференциации.

На этой фазе процесс дифференцировки уже проявляется в определенных структурных признаках, т. е. меняется форма, внутренняя и внешняя структура клетки. Процесс функциональной дифференциации клеток, или накопление физиологических различий между ними, происходит на всех фазах роста. Определенные различия имеются уже между появившимися в период деления дочерними клетками, из которых в дальнейшем будут образовываться различные ткани. Это проявляется в их химическом составе, морфологических особенностях. Значительно варьируют число и структура митохондрий, и особенно пластид, обилие и локализация эндоплазматической сети. Очень видоизменяются клетки проводящей системы. При дифференциации члеников ситовидных трубок большинство органелл разрушается. В сосудах ксилемы почти полностью исчезает цитоплазма. Происходит образование вторичной клеточной оболочки. Этот процесс сопровождается наложением новых слоев микрофибрилл целлюлозы на старые. При этом ориентация фибрилл целлюлозы в каж­дом новом слое другая. Клеточная оболочка утолщается и теряет способность к росту.

Общие причины адаптивных реакций растений на экологический стресс (включение системы стрессовых, мембранных, структурных белков, перестройка физиологических процессов). Пути повышения устойчивости растений

Территория России включает различные климатические зоны. Значительная их часть приходится на районы неустойчивого земледелия, для которых характерны недостаток или избыток осадков, низкие зимние или высокие летние температуры, засоленность или заболоченность, закисленность почв и др. В этих условиях урожайность сельскохозяйственных культур во многом определяется их устойчивостью к неблагоприятным факторам среды конкретного сельскохозяйственного региона.

Приспособленность онтогенеза растений к условиям среды является результатом их эволюционного развития (изменчивости, наследственности, отбора). На протяжении филогенеза каждого вида растений в процессе эволюции выработались определенные потребности индивидуума к условиям существования и приспособленность к занимаемой им экологической нише. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчи­вость и другие экологические особенности конкретных видов растений сформировались в ходе эволюции в результате длительного действия соответствующих условий. Так, теплолюбивые растения и растения короткого дня характерны для южных широт, менее требовательные к теплу и растения длинного дня — для северных.

В природе в одном географическом регионе каждый вид растений занимает экологическую нишу, соответствующую его биологическим особенностям: влаголюбивые — ближе к водоемам, теневыносливые — под пологом леса и т. д. Наследственность растений формируется под влиянием определенных условий внешней среды. Важное значение имеют и внешние условия онтогенеза растений.

В большинстве случаев растения и посевы (посадки) сельскохозяйственных культур, испытывая действие тех или иных неблагоприятных факторов, проявляют устойчивость к ним как результат приспособления к условиям существования, сложившимся исторически, что отмечал еще К. А. Тимирязев. Способность к эффективной защите от действия неблагоприятных абиотических и биотических факторов среды, устойчивость к ним возделы­ваемых видов и сортов — обязательные свойства районированных в данном регионе сельскохозяйственных культур.

Адаптация (приспособление) растения к конкретным условиям среды обеспечивается за счет физиологических механизмов (физиологическая адаптация), а у популяции организмов (вида) — благодаря механизмам генетической изменчивости, наследственности и отбора (генетическая адаптация). Факторы внешней среды могут изменяться закономерно и случайно. Закономерно изменяющиеся условия среды (смена сезонов года) вырабатывают у растений генетическую приспособленность к этим условиям.

Стресс — общая неспецифическая адаптационная реакция организма на действие любых неблагоприятных факторов. Выделяют три основные группы факторов, вызывающих стресс у растений.

  • 1. физические — недостаточная или избыточная влажность, освещенность, температура, радиоактивное излучение, механические воздействия.
  • 2. химические — соли, газы, ксенобиотики (гербициды, инсектициды, фунгициды, промышленные отходы и др.)
  • 3. биологические — поражение возбудителями болезней или вредителями, конкуренция е другими растениями, влияние жи­вотных, цветение, созревание плодов.

Некоторых видов растений наблюдаются усиление распада белков и накопление в тканях растворимых форм азота. Из-за изменения структуры митохондрий и пластид аэробное дыхание и фотосинтез снижаются. Деградация хлоропластов, разрушение нормальной структуры пигментно-липидного комплекса приводят к подавлению функции запасания энергии этими органоидами, что способствует нарушению энергетического обмена растения в целом. Основной причиной повреждающего действия низкой температуры на теплолюбивые растения является нарушение функциональной активности мембран из-за перехода насыщенных жирных кислот из жидкокристаллического состояния в состояние геля, а также общие изменения процессов обмена веществ. Процессы распада преобладают над процессами синтеза, происходят нарушение проницаемости цитоплазмы (повышение ее вязкости), изменения в системе коллоидов, снижается (пада-ет) осевой градиент потенциалов покоя (ПП), активный транспорт веществ против электрохимического градиента.

Изменение проницаемости мембран приводит к тому, что нарушаются поступление и транспорт веществ в растения и отток ассимилятов, токсичных веществ из клеток. Все эти изменения существенно снижают жизнеспособность растений и могут привести к их гибели. Кроме того, в этих условиях растения более подвержены действию болезней и вредителей, что также приводит к снижению качества и количества урожая.

Показать весь текст
Заполнить форму текущей работой