ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. 
ЀизиологичСскиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ обСспСчСния подвиТности спСрматозоидов

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Cohen-Dayag A., Tur-Kaspa I., Dor J. et al. Sperm capacita-tion in humans is transient and correlates with chemotactic responsiveness to follicular factors // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92. P. 11 039βˆ’11 043. Somanath P. R., Jack S. L., Vijayaraghavan S. Changes in sperm glycogen synthase kinase-3 serine phosphorylation and activity accompany motility initiation and stimulation… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ЀизиологичСскиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ обСспСчСния подвиТности спСрматозоидов (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π² Π½Π°ΡΡ‚оящСС врСмя установлСно, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ спСрматозоидов зависит ΠΎΡ‚ Π±ΠΎΠ»ΡŒΡˆΠΎΠ³ΠΎ числа Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… слоТныС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ рСгуляции. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ подвиТности спСрматозоидов ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ Π°ΡΡ‚СнооспСрмии ΠΈ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ муТского бСсплодия.

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  • 1. Mariano G. Buffone, Takashi W. Ijiri, Wenlei Cao et al. Heads or tails? structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility // Mol Reprod Dev. 2012. Vol. 79, N 1. P. 4−18.
  • 2. Kazuo I. Sperm flagella: comparative and phylogenetic perspectives of protein components // Molecular Human Reproduction. 2011. Vol. 17, N 8. P. 524−538.
  • 3. Ford W. C. L. Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round? // Human Reproduction Update. 2006. Vol. 12, N 3. P. 269 -274.
  • 4. Vijayaraghavan S., Stephens D.T., Trautman K. et al. Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity // Biol. Reprod. 1996. Vol. 54, N 3. P. 709−718.
  • 5. Somanath P. R., Jack S. L., Vijayaraghavan S. Changes in sperm glycogen synthase kinase-3 serine phosphorylation and activity accompany motility initiation and stimulation // Journal Androl. 2004. Vol. 25, N 4. P. 605−617.
  • 6. Ho H.-C., Suarez S. S. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated. Reprod. 2003. Vol. 68, N 5. P. 1590−1596.
  • 7. Costello S., Michelangeli F., Nash K. et al. Ca2±stores in sperm: their identities and functions // Reproduction. 2009. Vol. 138. P. 425−437.
  • 8. Alberto Darszon, Takuya Nishigaki, Carmen Beltran et al. Calcium channels in the development, maturation, and function of spermatozoa // Physiol Rev. 2011. Vol. 91. P. 1305−1355.
  • 9. Carlson A. E., Hille B., Babcock D. F. External Ca2+ acts upstream of adenylyl cyclase SACY in the bicarbonate signaled activation of sperm motility // Dev. Biol. 2007. Vol. 312. P. 183−192.
  • 10. Susan S. Suarez. Control of hyperactivation in sperm // Human Reproduction Update. 2008. Vol. 14, N 6. P. 647−657.
  • 11. Pastor-Soler N., Beaulieu V., Litvin T. N. et al. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling // J. Biol. Chem. 2003. Vol. 278, N 49. P. 49 523−49 529.
  • 12. Shum W. W. C., Da Silva N., Brown D. et al. Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk // J. Exp. Biol. 2009. Vol. 212. P. 1753−1761.
  • 13. Ho H.-C., Granish K. A., Suarez S. S. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2^ and not cAMP // Dev Biol. 2002. Vol. 250. P. 208−217.
  • 14. Kirichok Y., Navarro B., Clapham D. E. Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2|3 channel // Nature. 2006. Vol. 439. P. 737−740.
  • 15. Marquez B., Suarez S. S. Bovine sperm hyperactivation is promoted by alkaline-stimulated Ca2^ influx // Biol. Reprod.
  • 2007. Vol. 76. P. 660−665.
  • 16. Wang D., Hu J., Bobulescu I. A. et al. A sperm-specific Na+/ H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC) // Proc. Natl. Acad. Sci. U. S.A. 2007. Vol. 104. P. 9325−9330.
  • 17. Wang D., King S. M., Quill T. A. et al. A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility // Nat. Cell Biol. 2003. Vol. 5. P. 1117−1122.
  • 18. Martfnez-Lopez P., Santi C. M., Trevino C. L. et al. Mouse sperm K+ currents stimulated by pH and cAMP possibly coded by Slo3 channels // Biochem. Biophys. Res. Commun. 2009. Vol. 381. P. 204−209.
  • 19. Santi C. M., Martfnez-Lopez P., de la Vega-Beltran J. L. et al. The SLO3 sperm-specific potassium channel plays a vital role in male fertility // FEBS Letters. 2010. Vol. 584. P. 1041−1046.
  • 20. Zeng X-H., Yang C., Kim S. T. et al. Deletion of the Slo3 gene abolishes alkalizationactivated K+ current in mouse spermatozoa // Proceedings of the National Academy of Sciences. 2011. Vol. 108. P. 5879−5884.
  • 21. Iqbal M., Shivaji S., Vijayasarathy S. et al. Synthetic peptides as chemoattractants for bull spermatozoa structure activity correlations // Biochem Biophys Res Commun. 1980. Vol. 96. P. 235−242.
  • 22. Zamir N., Riven-Kreitman R., Manor M. et al. Atrial natriuretic peptide attracts human spermatozoa in vitro // Biochem Biophys Res Commun. 1993. Vol. 197. P. 116−122.
  • 23. Villanueva-Diaz C., Arias-Martinez J., Bermejo-Martinez L. et al. Progesterone induces human sperm chemotaxis // Fertil Steril. 1995. Vol. 64. P. 1183−1188.
  • 24. Isobe T., Minoura H., Tanaka K. et al. The effect of RANTES on human sperm chemotaxis // Hum. Reprod. 2002. Vol. 17. P. 1441−1446.
  • 25. Spehr M., Gisselmann G., Poplawski A. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis // Science. 2003. Vol. 299. P. 2054;2058.
  • 26. Fukuda N., Yomogida K., Okabe M. et al. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility // Journal Cell Sci. 2004. Vol. 117. P. 5835−5845.
  • 27. Cosson M. P., Carre’D, Cosson J. Sperm chemotaxis in sipho-nophores. II. Calcium-dependent asymmetrical movement of spermatozoa induced by attractant // J. Cell Sci. 1984. Vol. 68. P. 163−181.
  • 28. Spehr M., Schwane K., Riffell J. A. et al. Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis // J. Biol. Chem. 2004. Vol. 279. P. 40 194−40 203.
  • 29. David A., Vilensky A., Nathan H. et al. Temperature changes in the different parts of the rabbit’s oviduct // Int. J. Gynaecol Obstet. 1972. Vol. 10. P. 52−56.
  • 30. Hunter R. H. F., Nichol R. A preovulatory temperature gradient between the isthmus and the ampulla of pig oviducts during the phase of sperm storage // J. Reprod. Fert. 1986. Vol. 77. P. 599−606.
  • 31. Hunter R. H. F. Sperm-epithelial interactions in the isthmus and ampulla of the Fallopian tubes and their ovarian control // Gamettes: Develoment and Function, Serono Symposia Rome. 1998. P. 355−367.

    32. BahatA., Tur-Kaspa I., GakamskyA. et al. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract // Nature Med. 2003. Vol. 9. P. 149−150.

  • 33. Cohen-Dayag A., Ralt D., Tur-Kaspa I. et al. Sequential acquisition of chemotactic responsiveness by human spermatozoa // Biol. Reprod. 1994. Vol. 50. P. 786−790.
  • 34. Cohen-Dayag A., Tur-Kaspa I., Dor J. et al. Sperm capacita-tion in humans is transient and correlates with chemotactic responsiveness to follicular factors // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92. P. 11 039−11 043.
  • 35. Fabro G., Rovasio R. A., Civalero S. et al. Chemotaxis of capacitated rabbit spermatozoa to follicular fluid revealed by a novel directionality-based assay // Biol. Reprod. 2002. Vol. 67. P. 1565−1571.
  • 36. Smith D.J., Gaffney E.A., Gadhela H. et al. Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity // Cell Motil Cytoskelet. 2009. Vol. 66. P. 220−236.
  • 37. Miki K., Clapham D. E. Rheotaxis guides mammalian sperm // Curr Biol. 2013. Vol. 23, N 6. P. 443−452.
  • 38. Rossato M et al. Role of seminal osmolarity in the regulation of human sperm motility // International Journal of Andrology. 2002. Vol. 25. P. 230−235.
  • 39. Auger J., Eustache F., Andersen A. G. et al. Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities // Hum. Reprod. 2001. Vol. 16. P. 2710−2717.
  • 40. Yousef M. I., El-morsey A. M., Hassan M. S. Aluminium-induced deterioration in reproductive performance and seminal plasma biochemistry of male rabbits: protective role of ascorbic acid // Toxicology. 2005. Vol. 215. P. 97−107.
  • 41. Kaludin I., Georgiev G. T., Marinov M. F. Zinc and manganese transport in ram sex cells // Vet. Med. Nauki. 1983. Vol. 20. P. 91−96.
  • 42. Wong W. Y., Flik G., Groenen P. M. et al. The impact of calcium, magnesium, zinc, copper in blood and seminal plasma on semen parameters in men // Reprod Toxicol. 2001. Vol. 15. P. 131−136.
  • 43. Pasternak K, Florianczyk B. Selected Metals and Their Role in the Functioning of Human Body. Wyd. Folium, lublin, Poland, 1995.
  • 44. Kabata-Pendias A., Pendias H. The Biogeochemistry of Trace Elements. Wyd. Nauk. PWN, Warszawa, Poland, 1999.
  • 45. Semczuk M., Kurpisz M. The Andrology. Wyd. Lek. PZWL, Warszawa, 2006.
  • 46. Kabata-Pendias A., Mukherjee A. B. Trace Elements from Soil to Human. Springer, Heidelberg, Germany, 2007.
  • 47. Aloyan K.A., Matveyev A. V., Morev V. V, Korneyev I. A. Physiology of sperm motility
ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ