Помощь в написании студенческих работ
Антистрессовый сервис

Электрическая составляющая системы дыхания

РефератПомощь в написанииУзнать стоимостьмоей работы

Переход в кровь нейтрального кислорода и выделение положительно заряженного углекислого газа повышает объемный положительный заряд внутри альвеол. Это приводит к увеличению кулоновских сил действующих на положительно заряженные внутренние стенки альвеол (особенно в начальный момент расширения), что приводит, совместно с увеличением парциального давления углекислого газа (закон Дальтона… Читать ещё >

Электрическая составляющая системы дыхания (реферат, курсовая, диплом, контрольная)

Как известно процесс дыхания обеспечивается механическим изменением объема грудной клетки. При вдохе получается следующее: диафрагма и межреберные мышцы увеличивают объем грудной клетки и оказывают определенное растягивающее действие на легкие. Парциальное давление высвобождающегося из крови углекислого газа расширяет альвеолы, а слипаемость стенок которых (вязкость слизи) снижает белок сурфактанта. Так все и происходит, но только при определенном ритме. Иными словами полноценное дыхание возможно в определенном диапазоне чередования вдохов и выдохов. Как же происходит резкое увеличение газообмена, например, при беге? Конечно за счет подключения резервного запаса альвеол и более полного их газонаполнения и освобождения, при усилении работы диафрагмы и увеличении кровотока. Но эти процессы имеют ограничения. Например, как при резком увеличении нагрузки увеличить скорость химических реакций с использованием сурфактанта или увеличить мобилизационные возможности сурфактанта? Тренировками этого не достигнешь. Кроме того, имеет ограничения скорость диффузии газов через стенки альвеол и количество липидов сурфактанта. При этом усиление работы диафрагмы и межреберных мышц в большей мере влияет только на сжатие альвеол, чем на их расширение. К тому же известно, что выдыхаемый углекислый газ имеет положительный заряд, а значит не учитывать электростатическую составляющую процесса уже дыхания нельзя. Так каков истинный механизм?

Переход в кровь нейтрального кислорода и выделение положительно заряженного углекислого газа повышает объемный положительный заряд внутри альвеол. Это приводит к увеличению кулоновских сил действующих на положительно заряженные внутренние стенки альвеол (особенно в начальный момент расширения), что приводит, совместно с увеличением парциального давления углекислого газа (закон Дальтона), к повышению давления внутри альвеол и облегчает выдох. Этот эффект особенно заметен при длительной задержке дыхания. Подчеркну, что электрораспор альвеол в данном случае не ограничивается взаимоотталкиванием одноименно заряженных стенок альвеолы и газов внутри объема окруженного этими стенками. Электрораспор альвеол — это также отталкивание одноименно заряженных и возможно частично слипшихся (несмотря на остаточный объем альвеол) при выдохе стенок друг от друга. Затем поступающий в просвет альвеолы и имеющий положительный электрический заряд углекислый газ и испаряющиеся пары жидкости усиливают взаимоотталкивание, и альвеола, расправляясь, принимает шарообразную форму, совместно с действием диафрагмы и межреберных мышц. Причем липиды, обеспечивающие диффузию газов, могут иметь в отличие от липидов в других сосудах организма положительный или нейтральный электрический заряд. Таким образом, организм избавляется от положительного «электричества», а электрораспор альвеол позволяет дополнить уже известный механизм дыхания.

Но почему гипотеза предполагает, что поступающий в альвеолы и переходящий в кровь кислород электрически нейтрален? Ведь вдыхаемый воздух содержит ионы различных знаков. Тут необходимо следующее пояснение. Еще со времен Чижевского считаются полезными для здоровья легкие отрицательные ионы кислорода, которые отдают свой заряд в кровь внутри альвеол. Но, как показали последующие исследования, глубина проникновения отрицательных аэроионов не велика и ограничена только носоглоткой. Так, например, К. П. Семенов (1989) [16] приводит результаты эксперимента с группами цыплят и кроликов, находящихся в воздушной среде насыщенной сухой угольной пылью. Для экспериментальных групп воздушную среду насыщали отрицательными ионами, а для контрольных нет. После двухмесячного эксперимента было произведено вскрытие с осмотром состояния дыхательных органов, и изучено гистологическое строение слизистых оболочек. Было установлено, что легочная ткань животных и птиц, которые поглощали запыленный и искусственно ионизированный воздух, содержала пыли значительно меньше, чем легочная ткань цыплят и кроликов, содержавшихся в условиях запыленного воздуха без ионизации. Благодаря дополнительной отрицательной ионизации воздуха пыль задерживалась в верхних отделах дыхательных путей в виде отдельных скоплений, и удалялась откашливанием или сглатыванием. А без искусственной ионизации, большее количество пыли проникало в нижние отделы дыхательных путей. Так было установлено, что отрицательно ионизированный воздух предотвращает «запыливание» ткани легких. Но угольная пыль это в основном тяжелые ионы, а как же с более легкими? Но, известны и результаты других экспериментов, в которых при определении количества ионов по ходу дыхательных путей выяснилось, что оседание аэроионов обоих знаков происходит на слизистой оболочке верхних отделов дыхательных путей [17]. О том, «…что большая или меньшая часть легких и тяжелых ионов ионизированного воздуха отдает свои заряды стенкам воздухоносового тракта» считала А. М. Скоробогатова (1955) [18], и подвергал «.сомнению участие альвеолярного отдела дыхательных путей в физиологических аспектах аэроионизации» Н. С. Финогенов [18]. Кроме того, турбулентность вдыхаемого воздушного потока в полости носа не оставляет сомнения, что любой отрицательный ион при вдохе обязательно соприкасается со слизистой оболочкой. Тогда можно утверждать, что отрицательные ионы (не только кислорода) попадая с вдохом в верхние отделы дыхательных путей, отдают заряд на ближайшей слизистой оболочке (за счет увлажнения имеющей малое переходное омическое сопротивление), причем тяжелые отрицательные ионы в виде заряженных частиц пыли прилипают тут же, и не проходит вглубь. Это относиться и к положительным ионам. Что подтверждает ранее высказанное предположение, что в нижние дыхательные пути поступает и участвует в газообмене в альвеолах кислород, имеющий нейтральный электрический заряд.

Итак, предположим, что основной путь проникновения отрицательного «электричества» в организм через верхние отделы дыхательных путей при вдохе. При этом отрицательный ион вдыхаемого воздуха передает электрон слизистой оболочке верхних дыхательных путей при соприкосновении. Получившая отрицательный заряд слизистая оболочка в свою очередь «передает» электроны частицам крови и лимфы, тем самым, снижает свой отрицательный заряд. Так в перераспределении отрицательного «электричества» и передача его в первую очередь в кровь в грудном отделе участвует лимфатическая система и лимфатические узлы на всем протяжении правого, левого и грудного лимфатических протоков. Возможно, одной из причин возможных осложнений на другие органы (например, после ангины), является влияние воспалительного процесса в глотке на установившуюся передачу «электричества» лимфой и нарушения снабжения отрицательным «электричеством» других органов (в виде сбоев в сложившихся путях «прохождения» отрицательного «электричества» по лимфатическим сосудам). Причем это влияние может быть не только во время болезни, но и после нее. Может надо быть более осторожным при принятии решения об операционном удалении миндалин?

Общее регулирование и передачу отрицательного «электричества» на принципах «пульсовой волны» осуществляет нервная система на основе ритмов задаваемых сердцем и легкими.

Выделение положительного «электричества» происходит при выдохе. При этом положительно заряженный углекислый газ и водяные пары удаляются из положительно заряженных легких и проходят (за счет силы выдоха) через имеющие отрицательный (или нейтральный в зависимости от потребностей организма в отрицательном «электричестве») заряд верхние отделы дыхательных путей. Возможно, что при этом может происходить частичная нейтрализация электрических зарядов. При увеличении скорости выдоха (как это даже рекомендуют многие дыхательные гимнастики) нейтрализация уменьшается. Кроме того, этот процесс также имеет свои принципы регулирования. Например, «автоматический» переход при учащенном дыхании на выдох через рот позволяет не снижать отрицательный заряд полости носа.

Измеряя изменение заряда выдоха при различных нагрузках организма, можно будет определять электрическую адаптацию организма, что позволит судить о состоянии здоровья, возможностях мобилизационных резервах и даже о стрессоустойчивости организма. Ниже этот пример, и другие будут рассмотрены более подробно.

Получается, что эволюционно сложился электрообмен в виде поступления отрицательного «электричества» с кислородом и другими частицами воздуха и отвод положительного «электричества» с углекислым газом и водяным паром. Причем (опять предусмотрительность природы) это ведь действительно самый удобный путь. Вдох через нос, а выдох через рот наиболее оптимальный режим дыхания даже в условиях угрозы внешнего инфицирования организма, при загрязнениях воздуха или наличии в воздухе аллергенов и т. д. Так как при этом увеличение отрицательного заряда санирует полость носа и является одной из защитных функций организма. Процесс санации состоит в угнетении патогенной микрофлоры электрическим полем [19] и осаждения ее с другими частицами, в том числе различных аллергенов, на мерцательный эпителий слизистой оболочки, снижая попадание внутрь организма.

Рассмотренная выше ситуация характерна для воздушной среды в которой содержится большее количество отрицательных ионов. Но современный человек большую часть времени проводит в помещениях и на улицах городов в неблагоприятных по содержанию отрицательных ионов условиях. Какие тогда ионы потребляет организм из воздуха? Предположительно, что преобладание в воздухе положительных ионов придаст носоглотке положительный объемный заряд, который не будет за ненадобностью «забираться» внутрь организма. Необходимое организму отрицательное «электричество» будет вырабатываться самим организмом, или браться из «резерва» (ниже подробнее о резервах хранения электрических зарядов внутри организма). Через некоторое время объемный заряд носоглотки создаст электростатическое «препятствие» вдоху положительным ионам воздуха. Человек субъективно почувствует затрудненность дыхания. Попробуем рассмотреть «затрудненное» дыхание в «душном» помещении с учетом предлагаемой гипотезы. Как правило, в таких случаях мы говорим, что в «душном» помещении мало кислорода. Да кислорода поменьше, но ведь в пределах норм жизнеобеспечения (19−24%). Но, кислородного удушья (менее 19%) не наблюдается, да и как правило, при других условиях такое снижение концентрации кислорода даже неощутимо, например, низкие концентрации О2 есть и в других помещениях и даже на улице. Еще в «душном» помещении повыше температура, повыше процент углекислого газа и дополнительно имеются продукты метаболических выделений (антропотоксины), но все-таки основной недостаток — это большое количество положительных ионов и незначительное (или полное отсутствие) отрицательных. Такое «душное» помещение образуется, например, в результате длительного нахождения большого количества людей. Недостаток отрицательных ионов снижает темп обменных и электрообменных процессов организма и соответственно нарушается электрораспор альвеол. Кроме того, повышение положительного объемного заряда в окружающей среде создает электростатическое «препятствие» выдоху и вдоху положительно заряженного воздуха. В этом то и состоит основная проблема «душного» помещения. Включив ионизатор воздуха (генерирующий именно отрицательные ионы, а не биполярные или, что еще хуже создающих «горный» воздух посредством его озонации) в «душном» помещении кислорода мы не добавим, но субъективно дышать станет легче, только за счет нейтрализации положительных и насыщения отрицательными ионами.

Показать весь текст
Заполнить форму текущей работой