Формирование икосаэдрической фазы в квазикристалле системы Al-Cu-Fe
Спектры рентгеновского поглощения за K-краями меди и железа исследуемых образцов системы Al-Cu-Fe были измерены на лабораторном спектрометре «R-XAS Looper» (ЮФУ, НОЦ «Наноразмерная структура вещества»). Исследуемые образцы были растолчены в порошок в ступке в течение 30 минут и нанесены на слой липкой ленты. Для получения оптимального скачка поглощения использовались пять слоев. Измерения K-края… Читать ещё >
Формирование икосаэдрической фазы в квазикристалле системы Al-Cu-Fe (реферат, курсовая, диплом, контрольная)
Икосаэдрическая квазипериодическая структура впервые была открыта в 1984 году в быстрозакаленном сплаве Al86Mn14 Д. Шехтманом с соавторами методом просвечивающей электронной микроскопии. Квазикристаллические структуры — это отдельный класс апериодических структур, которые в отличие от традиционных кристаллов характеризуются отсутствием трансляционной симметрии. Несмотря на отсутствие трансляционной симметрии, в квазикристаллах наблюдается дальний порядок, о чем свидетельствуют острые максимумы дифрактограмм.
Квазикристаллы не являются обычными металлами, изоляторами или полупроводниками. В отличие от кристаллических металлов их электросопротивление при низких температурах аномально велико и уменьшается с ростом температуры, и возрастает по мере увеличения структурного порядка и отжига дефектов. Они имеют низкую теплоропроводность, низкий электронный вклад в удельную теплоемкость и низкий коэффициент трения. В отличие от изоляторов, плотность электронных состояний на уровне Ферми в квазикристаллах отлична от нуля, но ниже, чем у типичных металлов. К характерным особенностям электронного спектра квазикристаллов относятся псевдощель в плотности электронных состояний на уровне Ферми и тонкая пиковая структура, что отражается на их физических свойствах.
В некоторых квазикристаллических системах, таких как: Al-Cu-Fe, Al-Cu-Ru и Al-Mn-Pd фазонные деформации отсутствуют, о чем свидетельствуют отсутствие смещений дифракционных пиков и почти на порядок меньшая их ширина.
На основе анализа ближней тонкой структуры рентгеновских спектров поглощения (XANES) и проведения компьютерного моделирования была сделана попытка определения особенности локальной атомной и электронной структуры кристаллов префазы Al70Cu20Fe10, Al65Cu22Fe13 и квазикристалла Al65Cu22Fe13.
Исследуемые образцы системы Al-Сu-Fe были получены методом порошковой металлургии. Порошки алюминия, меди и железа смешивались вручную в соответствующих пропорциях в алундовой ступке в течение одного часа в среде изопропилового спирта. Синтез прессовок проводился в вакуумной печи. В сплавах Al-Сu-Fe, полученных отжигом при температуре 5500С и выдержке 20 минут была выявленафаза (кристалл-префаза), которая является ответственной за дальнейшее образование однофазного квазикристаллического порошка Al65Cu22Fe13, а при температуре 8000С и выдержкой в течение 2-х часов образуется практически 100%-ое преобразование Al-Cu-Fe сплава в квазикристаллическую фазу с икосаэдрической структурой, что было показано при проведении рентгонодифракционного анализа.
Рентгенограммы были измерены на дифрактометре ДРОН-3М (ЮФУ, физический факультет, Ростов-на-Дону). Напряжение на рентгеновской трубке составляло U = 35кВ и ток I = 22мА, с использованием фильтрованного CuKб излучения, методом сканирования и? 2и в интервале углов от 22°? 2и? 82° с шагом 0.02° и временем экспозиции в каждой точке 8 сек. Обработка рентгенограмм проводилась с использованием компьютерной программы Powder Cell 2.4 и исследование показало, что структура кристалла-префазы Al65Cu22Fe13 соответствует структуре кристалла-аналога Al7Cu2Fe (P4/mnc).
Спектры рентгеновского поглощения за K-краями меди и железа исследуемых образцов системы Al-Cu-Fe были измерены на лабораторном спектрометре «R-XAS Looper» (ЮФУ, НОЦ «Наноразмерная структура вещества»). Исследуемые образцы были растолчены в порошок в ступке в течение 30 минут и нанесены на слой липкой ленты. Для получения оптимального скачка поглощения использовались пять слоев. Измерения K-края меди и железа в кристаллах префаза и квазикристалла Al65Cu22Fe13, Al7Cu2Fe были проведены с использованием кристалла-монохроматора Ge (220) в режиме на прохождение с использованием I0 детектора Ar-300 и сцинтилляционного детектора SC-70. Напряжение на рентгеновской трубке составляло U = 25кВ и ток I = 70мА. Среднее время измерения спектра составлял 1 час. Как правило, для достижения приемлемого для последующего количественного анализа качества спектров требовалось усреднение 4−6 независимых сканов для одного образца, так что полное время съемки составляло 4−6 часов на один образец. Предварительная обработка спектров поглощения: определение функции фона и его вычитание из данных, нормировка, удаление глитчей, сложение спектров была выполнена с использованием программы Rex-2009.
Вычисление спектров поглощения было выполнено с помощью программных комплексов FEFF9 (самосогласованный метод полного многократного рассеяния в маффин-тин приближении) и FDMNES2009 (метод конечных разностей в полном потенциале). Структурные параметры локального окружения уточнялись с использованием подхода многомерной интерполяции спектров, реализованного в программном комплексе FitIt. Все вычисления теоретических спектров проводились на высокопроизводительном вычислительном кластере ЮФУ, Ростов-на-Дону.
Кристалл префаза Al7Cu2Fe имеет параметры решетки, а=6.33Е и с=14.81 Е и группу симметрии P4/mnc. Элементарная ячейка кристалла Al7Cu2Fe состоит из 40 атомов, которые соответствуют трем неэквивалентным позициям атомов алюминия, атомов меди и железа, показанные в таблице 1. Ближайшее окружение атомов Fe (e) составляет 9 атомов Al (4 атома? Al (3), 4 атома? Al (2), 1 атом? Al (1)). Ближайшее окружение атомов Cu (h) состоит из 11 атомов, из которых 3 атома Cu, 6 атомов Al (3), 2 атома Al (1) и нет ни одного атома Al (2). Среднее расстояние Fe-Al? 2.48 Е, Cu-Сu? 2.53 Е, Cu-Al? 2.56 Е, Al-Al? 2.86 Е.
Таблица 1. Позиции и координаты атомов в элементарной ячейке Al7Cu2Fe.
Атомы. | Позиции. | X. | Y. | Z. | |
Al (1). | 4(e). | 0.0. | 0.0. | 0.134. | |
Al (2). | 8(g). | 0.165. | 0.665. | 0.250. | |
Al (3). | 16(i). | 0.198. | 0.420. | 0.100. | |
Cu. | 8(h). | 0.278. | 0.088. | 0.0. | |
Fe. | 4(e). | 0.0. | 0.0. | 0.2992. | |
Таким образом, ближайшее координационное окружение атомов железа в кристалле префазы состоит только из атомов алюминия, несмотря на то, что медные атомы окружены, главным образом, атомами алюминия и меди, но не атомами железа.
Ранее на основе анализа спектров XAFS проводились исследования локальной атомной структуры подобных квазикристаллов. Формирование икосаэдрических кластеров вокруг атомов железа приводит к образованию икосаэдрической структуры тройных сплавов Al-Cu-Fe, при этом ближайшее окружение меди сохраняет симметрию, характерную для кристалла префазы.
Мы рассмотрели следующую модель квазикристалла, в которой вокруг атомов железа формируется икосаэдрический кластер, состоящий из 12 атомов алюминия, находящихся на расстоянии 2.5 Е от атома железа. При этом происходит увеличение координационного числа атома железа с 9 до 12. Икосаэдры, состоящие только из атомов алюминия, имеют касания (по 3 атома алюминия), то есть часть атомов входят в состав икосаэдров для разных атомов железа, что не приводит к увеличению концентрации атомов алюминия. Ближайшее окружение атомов меди также изменилось.
Наибольшие изменения в рассматриваемой модели квазикристалла происходят в окружении атомов железа, а именно, смещения атомов алюминия, приводящие к образованию икосаэдрического окружения. Ближайшее окружение атомов меди состоит, главным образом, из атомов алюминия и меди, но не из атомов железа. Ближайшее расстояние Fe-Cu составляет ~ 4.22 Е, а расстояние Fe-Fe ~ 4.71 Е.
В расчете спектров поглощения за Fe и Cu K-краем кристалла и модели квазикристалла использовался кластер радиуса 7.0Е (~ 100 атомов). В формировании формы спектра Fe K-края в модели квазикристалла участвует не только ближайшее икосаэдрическое окружение атомов железа, но и соседние икосаэдры с центрами в атомах железа, расположенными на расстоянии ~ 4.71 Е, так и атомы меди. На рисунке 1а сопоставлены экспериментальные и теоретические спектры Fe K-XANES, которые хорошо согласуются по форме, интенсивностям и положениям особенностей спектров, как для кристалла, так и для модели квазикристалла. Так спектры кристалла имеют интенсивные особенности A3 и A4, тогда как спектр квазикристалла имеет интенсивные особенности A1 и A2. Таким образом, выбранная модель образования икосаэдрического окружения вокруг атомов железа является разумным.
Рисунок 1? Сопоставление экспериментальных K-XANES спектров квазикристалла Al65Cu22Fe13 и кристалла префазы Al65Cu22Fe13 с теоретическими спектрами для железа (а) и меди (б) Теоретические спектры Cu K-XANES в кристалле и модели квазикристалла также согласуются с экспериментальными спектрами. В спектрах для модели квазикристалла имеется уширение особенностей, уменьшение интенсивностей пиков и замазывание особенности A1-A4 в форме основного максимума, вследствие того, что теряется упорядоченность в структуре. Для структуры квазикристалла характерным изменением является увеличение интенсивности особенности A3 и A4 и уширение пика B. Для вычисленных спектров имеется хорошее согласие и в EXAFS области спектров поглощения.
Расчеты полных и парциальных плотностей электронных состояний (DOS) кристалла и модели квазикристалла были проведены на основе метода многократного рассеяния с использованием программного кода FEFF9 и представлены на рисунке 2. Нулевое значение по шкале энергий соответствует положению уровня Ферми.
Уровень Ферми в кристалле лежит в минимуме полной DOS, образуя псевдощель. В интенсивность полной DOS валентной зоны вносят локализованные d-состояния меди и железа. Интенсивные пики Cu d-состояний с шириной ~ 2 эВ расположены в области ~ 5 эВ ниже уровня Ферми, взаимодействует с Al s-, p-состояниями. Интенсивный пик Fe d-состояний с шириной пика ~ 3 эВ расположены в области ~ 3 эВ ниже уровня Ферми и взаимодействует с Al pи d-состояниями.
Уровень Ферми в модели квазикристалла находится в локальном максимуме, соответствующей гибридизации Fe dи Al p-состояний. Как и в кристалле, вершина валентной зоны формируется, в основном, из d-состояниями меди и железа. Интенсивные пики Cu d-состояний с шириною ~ 2 эВ расположены в области ~ 5 эВ ниже уровня Ферми взаимодействуют с Al sи p-состояниями. Интенсивные пики Fe d-состояний с шириной пика ~ 3 эВ расположены в области ~ 3 эВ ниже уровня энергии Ферми и взаимодействуют с Al pи d-состояниями.
Рисунок 2? Сопоставление вычисленных полных и парциальных плотностей электронных состояний кристалла (а) и модели квазикристалла (б) квазикристаллический апериодический трансляционный электронный.
Рисунок 3? Сопоставление вычисленных Fe K-XANES спектров с парциальными плотностями электронных состояний кристалла (а) и модели квазикристалла (б) Плотности электронных состояния выше уровня Ферми сопоставлены вместе с Fe K-XANES спектрами кристалла и модели квазикристалла. На рисунке 3 показана связь между коэффициентом поглощения и конечными состояниями электронной конфигурации. Формирование особенностей A1, A2, A3, A4 в форме Fe K-края спектра в области края поглощения связано с формой Fe 4p плотности состояний, что обусловлено 1s — 4p переходами, а в форме Cu K-края спектра в области края поглощения обусловлено Cu 1s — 4p переходами. Формирование зоны проводимости, как в кристалле, так и в модели квазикристалла, в основном, происходит за счет взаимодействия Al s-, p-, d-состояний с Fe d-, p-состояниями.