Помощь в написании студенческих работ
Антистрессовый сервис

Физиологические особенности амаранта

РефератПомощь в написанииУзнать стоимостьмоей работы

Основная причина пониженного расхода воды С4-растениями состоит в том, что их устьица оказывают высокое сопротивление диффузии газов, причем при подвядании листьев и сжатии устьиц оно многократно возрастает для паров воды и в меньшей степени для СО2. Низкая величина сопротивления диффузии клеток мезофилла для СО2 при более высоком сопротивлении устьиц для Н2О благоприятствует повышению… Читать ещё >

Физиологические особенности амаранта (реферат, курсовая, диплом, контрольная)

Своеобразие амаранта определяется в значительной степени типом его фотосинтеза. Подобно кукурузе, сорго, просо, сахарному тростнику, амарант обладает С4-путем фотосинтеза. Вместе с тем в отличие от перечисленных растений, которые представляют собой малатные формы, амарант относится к аспартатным представителям С4-растений, так как первичными продуктами фотосинтеза у него являются дикарбоновые четырехуглеродные аминокислоты, к которым относится аспарагиновая кислота.

Аспартат — исходное соединение для образования лизина, высоким содержанием которого отличается амарант. Как С4-растение, то есть растение тропического происхождения, амарант характеризуется большой скоростью фиксации углекислоты в расчете на единицу поверхности листа, быстро растет и развиваться, обладает мощной продуктивностью при условии высокой инсоляции и температуры [1].

Листья С4-растений содержат два типа хлоропластов: хлоропласты обычного гранального вида в мезофильных клетках и большое количество крупных хлоропластов, обладающих или мелкими гранами или совсем не имеющих их, — в клетках, окружающих проводящие пучки (обкладка) [2]. СО2, диффундирующий в лист через устьица, попадает в цитоплазму клеток мезофилла, где при участии фосфоенолпируват (ФЕП)-карбоксилазы взаимодействует с ФЕП, образуя четырехуглеродную щавелевоуксусную кислоту (ЩУК) или оксалоацетат (рис. 3). В присутствии аммиачной формы азота ЩУК в цитоплазме превращается в аспартат, что характерно для амаранта. Затем аспартат переносится в митохондрии клеток обкладки, где дезаминируется, а образовавшаяся ЩУК восстанавливается до малата (яблочной кислоты), последний декарбоксилируется до пирувата и СО2. Углекислота поступает в хлоропласты, взаимодействует с рибулозобисфосфатом (РБФ) и включается в основной С3-путь фотосинтеза — цикл Кальвина. Пируват же аминируется с помощью аминотрансфераз в цитоплазме клетки обкладки, и образующийся при этом аланин перемещается обратно в хлоропласты клеток мезофилла, где после дезаминирования образует пируват. Последний в результате взаимодействия с АТФ и ГТФ может снова превращаться в первичный акцептор углекислоты — ФЕП.

Такое пространственное разделение процессов позволяет растениям с С4-путем фотосинтеза осуществлять фиксацию углекислоты даже при относительно закрытых устьицах, поскольку хлоропласты клеток обкладки используют малат (или аспартат), образовавшийся ранее, в качестве доноров углекислоты. Фиксация СО2 с участием ФЕП и образованием малата или аспартата служит своеобразным насосом для поставки СО2 в хлоропласты обкладки, функционирующие по С3-пути.

ФЕП-карбоксилаза обладает большим сродством к углекислоте, благодаря чему способна интенсивно использовать СО2 даже при его низких концентрациях, что происходит при полузакрытых устьицах. Интересно, что и сопротивление мезофилла диффузии СО2 у С4-растений значительно меньше: оно составляет 0,3−0,8 см/с, в то время как у С3-форм — 2,8 см/с [1].

Кроме того, ФЕП-карбоксилаза отличается более высоким температурным оптимумом по сравнению с РБФ-карбоксилазой — основным ферментом С3-пути (30−45? по сравнению с 15−25?), что обеспечивает высокую интенсивность фотосинтеза С4-растений при повышенных температурах. Амарант, в частности, способен фотосинтезировать даже при температуре выше 50? С. Минимальные температуры, при которых начинает осуществляться фотосинтез у амаранта, 12−15?С.

Светонасыщение С4-фотосинтеза также происходит при более высоких значениях интенсивности света, чем у С3-растений. Так, у С3-растений интенсивность фотосинтеза перестает увеличиваться при 50% от полного солнечного освещения, то есть при 950 Вт/м2, в то время как у С4-форм этого не происходит. Такие особенности С4-растений, в том числе у амаранта, объясняют высокую интенсивность их фотосинтеза и продуктивность при повышенных температуре и освещенности. Показано, что С3-растения ассимилируют на полном солнечном свету СО2 со скоростью 1−50 мг/дм2 «ч, а С4-растения — со скоростью 40−80 мг/дм2 «ч. Высокая потенциальная продуктивность амаранта может быть реализована именно при полном солнечном освещении и высокой температуре.

Выяснение механизма фотосинтеза С4-растений делает понятным и еще одну особенность физиологии амаранта — высокую засухо-, термои солеусточивость. Некоторые исследователи считают даже, что возникновению С4-фотосинтеза способствовали ксероморфные, то есть засушливые, условия окружающей среды [1]. Выше отмечалось, что у С4-растений фотосинтез может осуществляться и при почти закрытых устьицах. Закрывание устьиц на наиболее жаркое время дня сокращает потери воды за счет транспирации (испарения). Однако эффективность использования воды, то есть отношение массы ассимилированного СО2 к массе воды, израсходованной при транспирации у С4-растений, может быть вдвое выше, чем у С3-растений. Понятно поэтому, что С4-растения имеют преимущество перед С3-растениями в засушливых местах обитания благодаря высокой интенсивности фотосинтеза даже при закрытых устьицах.

Основная причина пониженного расхода воды С4-растениями состоит в том, что их устьица оказывают высокое сопротивление диффузии газов, причем при подвядании листьев и сжатии устьиц оно многократно возрастает для паров воды и в меньшей степени для СО2. Низкая величина сопротивления диффузии клеток мезофилла для СО2 при более высоком сопротивлении устьиц для Н2О благоприятствует повышению интенсивности фотосинтеза при пониженной транспирации у С4-растений. Что касается амаранта, то он регулирует транспирацию активными движениями замыкающих клеток устьиц, более или менее плотно замыкая их в полуденные часы. Опасность перегрева листьев ему практически не угрожает из-за высокой термоустойчивости. Не снижается и интенсивность фотосинтеза, но расход воды значительно сокращается, что сказывается на высокой эффективности использования им воды.

Максимальная продуктивность амаранта обусловливает особую требовательность его к минеральному питанию [3]. По потребности в питательных веществах амарант значительно превосходит даже кукурузу, тоже относящуюся к С4-растениям. Средний вынос минеральных веществ в расчете на 100 ц зеленой массы составляет: по азоту 25−30 кг, калию 75−85, фосфору 18−22, кальцию 35−40, магнию 16−18 кг. Исходя из этих потребностей амаранта определяют конкретные дозы удобрений. Урожай зерна достигает 60 ц/га при внесении в почву не менее 200 кг/га азота.

Исследование взаимодействия между элементами минерального питания и функционированием С4-пути углерода показало, что эффективность использования азота С4-растениями выше, чем С3-формами [4]. С4-растения характеризуются более высокой скоростью фотосинтеза и образования биомассы на единицу азота в листе. Большая эффективность использования азота у аспартатных форм С4-растений может определяться наличием тесной связи ассимиляции СО2 с биосинтезом аминокислот. Быстрому перемещению соединений азота способствует взаимодействие клеток мезофилла и обкладки, которое обеспечивает ассимиляцию не только углерода, но и азота, а также функциональную сопряженность этих процессов.

Различия в ответных реакциях на форму минерального азота также могут быть обусловлены принадлежностью растений к С3- или С4-типу фотосинтеза. При выращивании С4-растений исключительно на аммонийной форме азота интенсивность фотосинтеза снижается примерно на 300% по сравнению с растениями, выращенными на нитратах, вследствие ингибирования активности основных ферментов С4-цикла [4]. При использовании в качестве единственного источника азота аммония растения амаранта, кукурузы, проса значительно отставали в росте и развитии в течение всего онтогенеза от растений, находившихся на нитратах. Однако количество белкового азота и свободных аминокислот на аммонийном удобрении возрастало. Отмечено также, что в листьях кукурузы, выращенной на аммонии, происходило переключение потоков углерода при фотосинтезе с образования органических кислот и углеводов на синтез аминокислот и белков, то есть происходило превращение кукурузы из малатной формы в аспартатную.

При интенсивном использовании амарантом нитратной формы азота возникает опасность чрезмерной аккумуляции нитратов в его биомассе, особенно в стеблях. Поэтому важно применение оптимального сочетания различных источников азота в удобрениях, а также внесение других минеральных элементов, в частности калия и фосфора. Очень важно, что амарант активно поглощает также тяжелые металлы, радионуклиды, пестициды. Оказалось, что амарант настолько интенсивно накапливает и концентрирует эти вещества в тканях, что его можно использовать для ликвидации локальных загрязнений почв.

Подобным же образом возможно применение амаранта в фитомелиоративных целях. Для некоторых видов амаранта характерна выносливость к хлористому натрию: NaCl в концентрации до 10 мМ стимулирует рост и повышает продуктивность этих растений. Интенсивно поглощая NaCl из засоленных почв, амарант тем самым может эффективно улучшать их режим. Например, засоленные в результате поливного земледелия почвы удается рекультивировать с помощью 2−3-летнего возделывания амаранта в такой степени, что они оказываются пригодными для возделывания пшеницы.

Наряду с хорошо изученной способностью амаранта приспосабливаться к недостатку влаги и засолению в последние годы получены данные об адаптации некоторых видов амаранта к избытку влаги. Эти работы были предприняты в связи с необходимостью расширения областей культивирования амаранта, в частности выявления видов, способных расти в условиях северо-запада России, для которых характерны периоды временного переувлажнения и затопления почвы, сопровождаемые кислородной недостаточностью.

Сравнительная оценка различных видов амаранта на устойчивость к затоплению показала, что из трех изученных видов амаранта: A. cruentus L., A. edulus L., A. caudatus L. — наиболее устойчивым к данному воздействию оказался A. cruentus L. [5]. Он выдерживал почти без снижения продуктивности две недели затопления, и даже через три недели растения еще были далеки от гибели. Неустойчивый же вид амаранта (A. edulus L.) погибал уже через неделю пребывания в таких условиях.

Интересно, что A. cruentus L. проявил себя способным адаптироваться не только к недостатку кислорода, но и к избытку ионов Н+, то есть он лучше развивался на кислых почвах. Повышенная же кислотность является сопутствующим фактором при переувлажнении и затоплении почв.

Показать весь текст
Заполнить форму текущей работой