Зубчатые передачи.
Борьба с шумом в деревообрабатывающем производстве
Величина циклической ошибки на нарезаемом колесе быстро убывает с ростом числа зубьев делительного колеса станка. Поэтому применяют станки с большим числом зубьев делительного колеса. При работе зубчатого механизма при малых частотах вращения без размыканий и ударов частотный спектр шума соответствует спектру кинематической погрешности зубчатой передачи. Амплитуды составляющих спектра… Читать ещё >
Зубчатые передачи. Борьба с шумом в деревообрабатывающем производстве (реферат, курсовая, диплом, контрольная)
Шум зубчатых передач вызывается колебаниями колес и элементов конструкций, сопряженных с ними. Причинами этих колебаний являются взаимное соударение зубьев при входе в зацепление, переменная деформация зубьев, вызванная непостоянством сил, приложенных к ним, кинематические погрешности зубчатых колес, переменные силы трения.
Спектр шума занимает широкою полосу частот, особенно значителен он в диапазоне 2000—5000 Гц. На фоне сплошного спектра имеются дискретные составляющие, основными из которых являются частоты, обусловленные взаимным соударением зубьев, действием ошибок в зацеплении и их гармониками. Составляющие вибрации и шума от деформации зубьев под на грузкой имеют дискретный характер с основной частотой, равной частоте пересопряжения зубьев. Частота действия накопленной ошибке зубчатого колеса кратна частоте вращения. Однако имеются случаи, когда накопленная ошибка окружного шага не совпадает с частотой вращения; в этом случае будет существовать еще одна дискретная частота, равная частоте действия этой ошибки.
Колебания возбуждаются также с частотами, определяемыми погрешностями зубчатой пары (перекос осей, отклонение от межцентрового расстояния и т. п.). Зубчатое зацепление представляет собой систему с распределенными параметрами и имеет большое количество собственных частот колебаний. Это приводит к тому, что практически на всех режимах работа зубчатого зацепления сопровождается возникновением колебаний на резонансных частотах. Снижение уровня шума может быть достигнуто снижением величины действующих переменных сил, увеличением механического импеданса в местах воздействия переменных сил, снижением коэффициента передачи звуковых колебаний от мест возникновения к местам излучения, снижением колебательных скоростей за счет улучшения конструкции колеблющегося тела, сокращением поверхности излучения увеличением внутреннего трения материала колес. Для изготовления зубчатых колес в основном используются углеродистые и легированные стали. В тех же случаях, когда необходимо обеспечить менее шумную работу передачи, для зубчатых колес используются неметаллические материалы. Раньше с этой целью зубчатые колеса изготовлялись из дерева и кожи; в настоящее время их делают из текстолита, древопластиков, полиамидных пластмасс (в тoм числе из капрона).
Зубчатые колеса, изготовленные из пластмасс, имеют ряд преимуществ по сравнению с металлическими: износостойкость, бесшумность в работе, способность восстанавливать форму после деформации (при невысоких нагрузках), более простую технологию изготовления и т. п. Наряду с этим они имеют существенные недостатки, ограничивающие область их применения, относительно малую прочность зубьев, низкую теплопроводность, большой коэффициент линейного термического расширения. Наибольшее применение для изготовления зубчатых колес нашли термореактивные пластмассы на основе фенолформальдегидной смолы. Прочные изделия из них получаются путем введения в состав материала органического наполнителя. В качестве наполнителя применяют хлопчатобумажную ткань в количестве 40—50% к массе готовой пластмассы или древесину в количестве 75—80%, а также стеклоткань, асбест, волокна.
Слоистые пластмассы изготовляются двух типов текстолит и древесно-слоистый пластик (ДСП). Изделия из этих пластмасс получаются в большинстве случаев методом механической обработки. Из термопластических смол широкое распространение получили полиамидные смолы. Они сочетают в себе хорошие литейные качества, достаточно высокую механическую прочность и низкий коэффициент трения. Зубчатые колеса изготовляются как полностью из полиамидов, так и в сочетании с металлом. Применение полиамидов для венцов колес с металлическими ступицами дает возможность снизить вредное влияние большого коэффициента линейного термического расширения полиамидных смол на точность зубчатой передачи. Зубчатые колеса из полиамидных материалов не могут долго работать при температуре выше 100 °C и ниже 0 °C, так как они теряют механическую прочность. С целью увеличения механической прочности зубчатые колеса из пластмасс усиливаются посредством введения специальных деталей, изготовленных из металла, стеклопластика или другого материала с прочностью выше, чем прочность пластмассы. Из листа 0,1—0,5 мм изготовляют армирующую деталь, воспроизводящую форму зубчатого колеса, но значительно меньшею по наружным размерам. Деталь снабжается отверстиями и пазами для прохождения пластмассы и устанавливается в форму так, чтобы она полностью покрывалась пластмассой. В зависимости от толщины колеса вводят одну или несколько таких деталей. Подобным образом можно армировать не только прямозубые, но и глобоидальные колеса, а также червяки и кулачки.
Сравнительные испытания зубчатых передач с колесами из пластмасс и со стальными колесами, проведенные ЦНИИТМАШ, подтвердили эффективность применения пластмасс для снижения шума. Так, уровень звукового давления пар сталь — капрон снизился по сравнению с уровнем звукового давления стальных зубчатых пар на 18 дБ. Повышение нагрузки пластмассовых зубчатых передач вызывает меньшее увеличение шума, чем у стальных. Сравнительная оценка шума зубчатых пар сталь — капрон и капрон — капрон на всех режимах работ показывает, что для снижения шума передач практически достаточно заменить одно зубчатое колесо пластмассовым.
Эффективность снижения шума за счет применения пластмассовых колес на высоких частотах выше, чем на низких. Материалом, находящим все новые и новые области применения в современной технике, стала резина. Прочность, надежность, долговечность резиновых деталей определяются правильным выбором конструкции, оптимальных размеров, марки резины, рациональной технологии изготовления деталей. Практика показала эффективность применения упругих зубчатых колес, а также колес с внутренней виброизоляцией. В качестве элементов таких изделий применяются гибкие резиновые шарниры. Упругость зубчатого колеса достигается путем укрепления резиновых вставок между ступицей и венцом колеса. Это способствует смягчению и уменьшению ударных нагрузок на зуб колеса.
Технология изготовления зубчатых колес, принцип зубообразования, вид инструмента для нарезания, припуски на обработку, точность станков не только определяют качество по отклонениям в отдельных элементах зацепления, но и предопределяют кинематическое взаимодействие элементов зацепления. Накопленные ошибки в окружном шаге зубчатых колес и сочетание этих ошибок вызывают, как правило, низкочастотные колебания.
К низкочастотным возбуждениям систем приводят также местные накопленные и единичные ошибки на профиле зуба, расположение которых по обороту колеса носит случайный характер. Дефекты работы червячной передачи зуборезного станка (неточность шага червячного колеса, биение червяка) вызывает образование на поверхности зубьев возвышений или переходных площадок (волн). Расстояние по окружности между линиями неровностей соответствует шагу зубьев делительного колеса станка, в связи с чем частота колебаний этого вида зависит от — числа зубьев делительного колеса зуборезного станка. Интенсивный шум в области высоких частот обусловливается наличием отклонений от эвольвенты, размеров, формы и шага зубьев. В этих случаях направления действия сил, приложенных к зубьям; могут отличаться от направления теоретического действия сил в идеальном зацеплении. Это приводит к возникновению других форм колебаний. крутильных, поперечных с частотами, отличными от рассмотренных.
Кроме рассмотренных ошибок накопления, носящих циклический характер, имеют место так называемые ошибки обката. Одним из способов уменьшения вибрации и шума зубчатых колес является повышение точности их изготовления.
В результате применения этих операций величина циклически действующих ошибок уменьшается, и тем самым значительно снижается шумообразование (на 5—10 дБ). Длительная притирка зубьев не рекомендуется, так как она приводит к недопустимому искажению их профиля. Исключение и снижение циклических ошибок в элементах зацепления зубчатых колес достигаются повышением точности изготовления профиля зубьев и точности основного шага. Ошибка основного шага должна быть меньше деформации под нагрузкой или температурной деформации и поэтому не приведет к заметной дополнительной динамической нагрузке. Снизить вредное влияние циклических ошибок в отдельных случаях можно также слесарной доводкой мест контакта во время испытаний и увеличением подачи масла. Уровень шума снизится, если изготовлять зубья колес максимально упругими за счет высокой коррекции или модифицировать их по высоте профиля. Существенным фактором повышения качества зубчатых колес является увеличение точной и кинематической цепи обкатки и цепи подача зубофрезерных станков, а также обеспечение постоянства температуры в процессе зубообработки.
Величина циклической ошибки на нарезаемом колесе быстро убывает с ростом числа зубьев делительного колеса станка. Поэтому применяют станки с большим числом зубьев делительного колеса. При работе зубчатого механизма при малых частотах вращения без размыканий и ударов частотный спектр шума соответствует спектру кинематической погрешности зубчатой передачи. Амплитуды составляющих спектра определяются при этом величинами допущенных погрешностей и условиями излучения звуковых волн в окружающую среду. При работе зубчатого зацепления с размыканием, имеющим место при повышенных скоростях и переменных нагрузках, возникают кратковременные импульсы с широкими спектрами частот, которые способствуют возрастанию уровня шума в отдельных случаях на 10—15 дБ. Величина этих импульсов и интервалы между ними могут быть переменными. При постоянной частоте вращения увеличение передаваемого момента вдвое приводит к удвоению линейных деформаций и амплитуды колебаний. Излучаемая звуковая мощность пропорциональна квадрату нагрузки. Поэтому шум и вибрация зависят от нагрузки примерно так же, как от частоты вращения. Снижение шума передачи может быть достигнуто уменьшением частоты вращения зубчатых колес. На увеличение уровня шума зубчатых передач существенное влияние оказывают также монтажные и эксплуатационные дефекты. К монтажным дефектам относят повышенные зазоры в подшипниках, перекос осей, невыдержка межцентровых расстояний спариваемых зубчатых колес, неточное центрирование их, биение соединительных муфт к эксплуатационным факторам, влияющим на шум зубчатых колес относят изменение передаваемого крутящего момента (в частности, его колебания), износ и режимы смазывания и количество смазочного материала. Изменение передаваемого крутящего момента порождает ударный характер взаимодействия зубьев в зацеплении.
Отсутствие или недостаточное количество смазочных материалов металлических зубчатых колес приводит к повышению трения и, как следствие к увеличению уровней звукового давления на 10—15 дБ. Снижение интенсивности низкочастотных составляющих шума достигается повышением качества сборки и динамической балансировкой вращающихся деталей, а также введением упругих муфт между редуктором и двигателем, редуктором и исполнительным механизмом.
Введение
упругих элементов в систему снижает динамические нагрузки на зубья зубчатых колес. Расположение зубчатых колес возле опор на двухопорных валах по возможности на неподвижной посадке без зазоров в опорах также приводит к снижению шума.
Применение специальных демпферов как в самих зубчатых передачах, так и во всем механизме в целом смещает максимум звуковой энергии в сторону средних частот. Уменьшение зазоров между зубьями заметно уменьшает амплитуду вибраций зубчатых колес, вызванных внешними причинами, однако уменьшение зазора до значений, меньших допустимого нормами, вызовет заметное ухудшение в работе передачи.
Своевременный и высококачественный ремонт зубчатых передач, при котором зазоры во всех сочленениях доводятся до предусмотренных допусками, необходим для снижения уровня шума и вибрации. Кожухи имеют небольшие габариты и внутренняя воздушная полость редукторных систем относится к классу «малых» акустических объемов, размеры которых меньше длины волны на низких и средних частотах. Ограждающие конструкции жестко связаны с металлическими опорными конструкциями, общий уровень излучаемого редукторными системами шума определяется уровнем шума, излучаемого тонкостенными крышками ограждений, обычно размеры излучающих ограждений соизмеримы с расстояниями до зон, в которых находится обслуживающий персонал[11].